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ENERGY EFFICIENT MASSIVE MIMO DESIGN 

ABSTRACT 

High data rate and energy-efficient design are of paramount importance for 5G 
systems. Massive multi-input multi-output (MIMO) can ensure both by extending the 
number of antennas at base station (BS) to a few hundreds and operating in time 
division duplex (TDD) mode to serve several tens of terminals. This study evaluates 
the impact of user location distribution (ULD) variation on the energy efficiency of a 
load-adaptive massive MIMO system. Then, it suggests a dynamic resource 
allocation strategy that exploits the advantage of ULD variations to attain a more 
energy-efficient design. Daily ULD variation is modelled by splitting the cell into a 
certain number of coverage areas and assigning different user densities to each one 
for each hour. This modelling yields different ULD variations, such as boundary 
focused (BF), middle focused (MF), uniform, and center focused (CF) ULD variations. 
For clarity, all cells are assumed identical in terms of BS configurations, cell loading 
and ULD variation. The simulation performed in this study benchmarks the proposed 
dynamic strategy with a fixed strategy dimensioned at maximum cell load and BF ULD 
model. The results show that the optimal number of antennas depends primarily on 
ULD model and secondarily on cell loading. Up to one third of the active antennas 
can be turned off daily, and this in turn conserves up to 36-50% of the consumed 
energy.  

Keywords: Energy efficiency, Guaranteed Data Rate (GDR), Massive MIMO, User 
Location Distribution (ULD) Model.
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INTRODUCTION 

Next-generation -5G- wireless systems promise to support ultra-high data rate, 

massive number of connected devices (around 50 billion), very high volume of data 

transfer, and ultra-low energy consumption. By 2020, these goals are to be actualized 

through some of these key technology components: multi-antenna transmission (aka 

massive multi-input multi-output (MIMO)), ultra-lean design, user/control separation, 

flexible spectrum usage, flexible duplex, direct device-to-device communication (D2D) 

and access/backhaul integration, spatial modulation, cognitive radio networks, mobile 

femtocell, and visible light communication (VLC) [1-4]. 

Massive MIMO can help fifth generation mobile systems to utilize low-cost low-power 

units operating coherently in the base stations (BSs), where each BS uses a few 

hundred antennas to serve several tens of single-antenna user equipment (UE) [5-6]. 

By means of this high ratio of number of BS antennas to number of UEs, a massive 

MIMO system can deliver higher and more reliable user throughput and achieve better 

energy efficiency (EE) than typical MIMO systems when interference-suppressing 

precoding such as zero-forcing (ZF) is utilized [6-10].  

The need to minimize operating expenditure (OpEx) and reduce CO2 emission of the 

current wireless networks leads the planner of next-generation wireless systems to 

set EE maximization as one of the design requirements and to define EE metrics to 

evaluate the greenness of newly proposed techniques. Of particular significance to 

EE maximization is improving the efficiency of BS (especially power amplifiers (PAs)) 

since it is responsible for 57% of power usage and 52% of CO2emission per 

subscriber per year in a typical mobile network [11-12]. 

From different points of view, there are several EE metrics to evaluate wireless 

networks. A well-known metric that is suitable for this study is EE at BS-level, defined 

as the ratio of total downlink (DL) rate to total power consumption at BS in units of 

(Mbps/Watt). This metric assesses the energy consumption while considering the 

capacity of BS and, by considering cell coverage area, can easily be raised to a 

network-level metric in units of (Mbps/Watt/Km2), which quantifies the degree of 

greenness [11-16]. When EE of a massive MIMO system is evaluated by this metric, 

it can be modelled as a quasi-concave function of three design parameters (K, M, ρ), 
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namely, number of users K, number of active antennas M, and signal to interference 

and noise ratio (SINR) ρ. EE maximization is accomplished by an alternating 

optimization algorithm that uses three closed-form expressions for each one of the 

design parameters [17]. 

Improving EE by adaptive resource allocation in wireless BSs that operates with the 

support of MIMO systems has been studied intensively in previous literature [12-15]. 

The authors in [12] proposed a technique, named bandwidth expansion, to improve 

EE at the cost of spectral efficiency (SE) by exploiting the spare bandwidth at low DL 

traffic conditions and adapting to low-order modulation schemes. In [13], the number 

of active antennas, which is the same as the number of PAs when each antenna has 

its own PA, is adapted to cope with daily cell load variation for a multi-cell network 

with uniform user location distribution (ULD), thereby a significant gain on EE is 

achieved at low traffic-load states and the gain decreases inverse proportionally to 

the cell load. In [14], incorporation of discontinuous transmission (DTX) feature, which 

allows BS to deactivate some of its transmission components during silent traffic 

periods and reactivate them immediately when traffic is initiated, is examined with 

beamforming technology for a millimeter wave (mmW) propagation and rural 

deployment environment with non-uniform ULD. According to the results, DTX feature 

leads to insignificant EE improvement when beamforming technology is already 

implemented. In [15], long term evolution advanced (LTE Advanced) systems were 

considered and their EE was shown to be improved when adopting femtocells and 

heterogeneous network implementation. These techniques were proposed to cope 

with non-uniform user location distribution within the network coverage area. 

However, they do not take into consideration any time-variation in ULD. Assuming 

ULD is invariant underrates dynamic user behavior, thus rendering a constant EE over 

time. 

In this study, we develop various ULD variations and examines their effects on EE 

and user-rate of a massive MIMO system. we consider a BS integrated with a massive 

MIMO system and dimensioned to handle peak DL data traffic at maximum cell 

loading condition. For this baseline BS, we study EE under different ULD models, 

namely, boundary focused (BF), uniform and center focused (CF), and investigate EE 

improvement opportunities. We propose a resource allocation strategy to adapt the 

number of antennas based on tracking variations of ULD and cell loading on an hourly 

basis. This strategy is different from [13] by way of its taking advantage of two 

environment variations to exploit massive MIMO favorable propagation and to lower 
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the number of active antennas while maintaining a tolerable user-rate loss and thus 

operating more efficiently.  

For fairness, we compare our simulation results with a fixed antenna system 

dimensioned with the same network conditions. When cell loading varies between 

10% and 100%, the proposed strategy results in 47%, 113% and 222% average EE 

gain at the cost of 19%, 35% and 35% average user-rate loss over fixed antenna 

massive MIMO system for BF, uniform and CF ULD models, respectively. In addition, 

when center-to-boundary user ratio changes from 90/10% (CF) to 10/90% (BF), the 

strategy can improve user-rate by a factor of two at the boundary area and by a factor 

of one and a half at the center area. On daily basis, the strategy can turn off up to one 

third of the fixed antenna system, thereby saving 36%-50% of the daily-consumed 

energy.  

The remainder of this study is organized as follows1: Section 0 describes the models 

and assumptions used for simulation and Section 0 tackles the EE maximization 

problem. Then, we discuss the simulation results in Section 3 and conclude the study 

in Section 0. 

1Upper-case plain symbols represent matrices while lower-case fonts denote scalar 

variables. 
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1.MODELS AND ASSUMPTIONS 

1.1. Massive MIMO System Model 

In this study, we consider a DL of a multi-cell massive MIMO system that contains N 

hexagonal cells, where each cell BSi∈N consists of one BS placed at the cell center 

and is equipped with Mi antenna elements that communicate with Ki single-antenna 

users, such that Mi>Ki. The users are distributed inside each cell according to ULD 

models given in Section 1.2. Each BS transmits a constant output power Pc that is 

distributed equally among PAs, where each PA is connected to one antenna element. 

Thus, the mean output transmission power per antenna is p= Pc Mi⁄ . We assume that 

all BSs and UEs are synchronized and operate on time-division duplex (TDD) 

protocol. In addition, all BSs employ ZF precoding to cancel out intra-cell interference 

by using beamforming technique and can perfectly estimate channel state information 

(CSI) of UEs by using the uplink pilots sent by UEs at the first part of transmission 

blocks. 

We assume antenna array elements are adequately spaced apart such that the 

channel components at UEz are uncorrelated and the path distances are the same 

since the distances to UEz  are much greater than the distance between array 

elements, where UEz denotes a UE at location z.  The channel is assumed to be a 

block flat Rayleigh channel and to remain static within a time-frequency coherence 

block of TcBc symbols, where Bc is the coherence bandwidth in Hz and Tc is the 

coherence time in seconds. Assuming the channel response is a realization of a zero-

mean circularly symmetric complex Gaussian distribution, the channel response 

hjiz ∈C
M

 between BSj and UEz in cell BSi within a transmission block is such that 

hjiz ~ CN (0, dj(UEz)IMj
) (1.1) 

In Eq.(1.1), IMj
 is an Mj×Mj identity matrix, dj(UEz) is a deterministic function that 

accounts for large scale fading (i.e., channel attenuation due to path loss shadowing 

and scattering) between BSj and UEz in cell BSi. Built on above assumptions, the 

distance-dependent rate at UEz within cell BSi can be found by [13]:  
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RUEz
(Ki)= B (1-

αKmax

TcBc

) log
2

(

 1+

p
Mi

Ki
(Mi- Ki)

Bσ2

di(UEz)
+ ∑ {

dj(UEz)

di(UEz)
 p Mj}

J
j=1  

)

  (1.2) 

where B is the effective channel bandwidth (BW), α is the pilot reuse factor, Kmax is 

the maximum number of users that can be served simultaneously, which is assumed 

to be the same for all cells, αKmax is the number of pilot sequences, TcBc is the length 

of the channel coherence block interval as mentioned before, and Bσ2 is total noise 

power. Note that the pre-log factor (1-
αKmax

TcBc
)  accounts for rate loss due to necessary 

overhead for channel estimation. The term di(UEz) represents the path loss from the 

serving BS at origin cell BSi to UEz and the term dj(UEz) represents the path loss 

from interfering cell BSj to UEz inside the origin cell BSi. These terms depend on the 

simulation environment parameters such as cell radius, cell shape, tier size, i.e., the 

number of neighbors, and ULD model. Looking inside the logarithm, 
Bσ2

di(UEz)
 accounts 

for the average noise power that disturbs the received signal from the serving BS, 

∑ {
dj(UEz)

di(UEz)
 p Mj}

J
j=1  accounts for the average interference power from all neighbor 

interfering cells, where J is the number of neighbor interfering cells. The term p
Mc

Kc
 

represents the mean transmit power per user, and the ratio (p
Mi

Ki
) ∑ {

dj(UEz)

di(UEz)
 p Mj}

J
j=1⁄  is 

proportional to the SINR, and(Mi- Ki)  is the array gain of massive MIMO. Note that 

the BS handles a sum rate of ∑ RUEz
(k)

Kmax

k=1 . 

1.2. Modeling ULD 

People want to feel free to consume data in transit as in household. Increasing traffic 

congestion means people spends more time in cars; thereby more in-car mobile data 

demand to access information, social networks, and entertainment music and video 

services. Apart from that, driver assistance systems, usage-based insurance, 

navigation and real-time traffic status facilitate vehicles driving and make it more 

secure and comfortable. However, being connected is not the only requirement for 

future mobile services but also perceiving adequate quality of experience through 

civilian various time allocations in Figure 1.1. As a result, dimensioning mobile 

services demand based on user locations ultimately drive operators’ investments. 
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User location density and user mobility models are two key factors behind modelling 

ULD. For example, the land geographical features, such as coastlines, hilly lands, 

lakes, rivers, etc., and places with high population density (i.e., workplaces, highways, 

apartment complexes, stadiums, malls) both aggregate the users in confined areas 

and limit their mobility into specific patterns. 

 

Figure 1.1. The average civilian time allocation [18] 

In this work, ULD model defines a set of areas formed by a set of radii δ =

{δ1, δ2, … , δq}, where δ1 > δmin , δq < δmax and assigned a set of weighting 

factors γ = {γ1
,  γ

2
,…, γ

q
,γ

q+1}. Each weighting factor is a function of time so that it 

can take different values during the day. However, the sum of weighting factors at any 

time instant t is always unity, i.e.  ∑  γ = 1. The following symmetric example is used 

for simulations.  

Example 2.1. Suppose cell BSi is split up into three coverage areas by δi = {δ1, δ2} 

and these areas are assigned a set of weighting factors γ
i
= {γc

, γ
m
, γ

b}. Determine 

when ULD model takes the forms CF, middle focused (MF), BF and uniform. 

User density at each ring in cell BSi can be expressed as follows:  

37%

5%

16%

8%

2%

32%

Sleeping In the car At work

Outdoors Others Awake
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Ui={uc , um,ub}={
γ

c
 Kmax

Ac

 , 
γ

m
 Kmax

Am

, 
γ

b
 Kmax

Ab

} (1.3) 

where Ac=π(δ1
2
-δmin

2
 ) , Am=π(δ2

2
-δ1

2
) and Ab=3√3 δmax

2
2⁄ -πδ2

2
 are the areas of 

center, middle and boundary regions, respectively. The form of ULD is determined by 

the maximum value of user density set Ui as follows: 

max Ui ={

uc

um

ub

∅ 

  ,
  ,

  ,
  , 

  

Center-Focused
Middle-Focused

Boundary-Focused

Uniform Distribution

 (1.4) 

Note that when user densities are equal for all areas, ULD takes the form of uniform 

distribution. Figure 1.2 shows how cell BSi is divided up into three areas each with its 

own user density, Ui. 

 

Figure 1.2. Cell coverage area split into center, middle, and 
boundary regions 

To capture the ULD variation on hourly basis, we assume a daily user mobility pattern 

as illustrated in Figure 1.3. At night hours, the users generally show stationary 

behavior in residential areas which we call 1st aggregation area. In the morning, the 

users move to a 2nd aggregation area, such as workplace or campus area, and stay 

there for some hours.  



 

8 

 

(a) 

 

(b)  

Figure 1.3. Daily ULD scenarios a) Daily ULD variation 
characterized as BF, CF then BF b) Daily ULD variation 
characterized as CF, BF then CF 

In the evening, they return to the 1st aggregation area and the same behavior repeats 

at night. If the BS of the cell under study is closer to the 2nd aggregation area than the 
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1st one, then the daily ULD variation is characterized as BF, CF and lastly BF as shown 

in Figure 1.3 (a). On the contrary, the daily ULD variation is characterized as CF, BF 

then CF as shown in Figure 1.3 (b) when the BS is closer to the 1st aggregation area 

than the 2nd one. 

1.3. Data Traffic Demand 

Providing high speed connectivity is of high importance for mobile operators to score 

high user satisfaction. For this aim, mobile network resources are not dimensioned to 

account data traffic volume only but also to the type of connected devices, category 

of installed mobile application, average time users spend on mobiles. 

 

(a) 

 

(b) 

Figure 1.4. Ericsson world-wide mobile data traffic forecast [20] a) Split per 
device category b) Split per application category 

95%

5%

Smartphone Mobile PC/Router/Tablet

Video
73%

Others
12%

Social networking
8%

Software Download
3%

Web Browsing
2%

Audio
1%

File sharing
1%

Other
4%
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Presenting to Ericsson 2023 mobile date traffic forecast as shown in Figure 1.4, 

smartphones are anticipated to consume 94% of future date traffic while 4% 

contribution comes from others connected devices like mobile PCs, routers and 

tablets. Due to trends of new video formats such as 360-degree videos and users’ 

tendency to watch high definition (HD) 1080p and 720p videos, mobile video 

streaming gets the lion’s share at 73% of total traffic demand. According to Huawei 

Wireless X Labs, people will spend on mobile devices 3.5 hours and 5.5 hours per 

day by 2020 and 2025, respectively [22]. We adapt Eq.(1.5) from [18] for translating 

data traffic demand into BS date-rate as follows: 

RBS=Kmax ∑ ∑ ∑
1024

3
×8×Gi×Xi×Dj

30×24×AF×60
2
×10

6
kji

 
(1.5) 

where Kmax  is number of connected users at busy hour (BH), 1024
3
 is Bytes per GB, 

8 is bits per byte, Gi and Xi are the monthly data traffic demand in GB and the total 

traffic share of application category i, respectively, Dj is the ratio of users of device 

category j , 30 is days per month, 24 is hours per day, AF is activity factor defined as 

average time ratio users spend on mobile devices, 60
2
 is seconds per hour, 10

6
 is 

bits per Mb. 

1.4.Daily Data Traffic Load Model 

In [22], Nokia Bell-Labs maps all upcoming mobile services into five application 

categories: streaming, computing, gaming, communication and storage applications. 

For example, audios and videos belong to streaming application category, web 

services and application management lie under computing category, cloud-based 

backup and device-sync services are linked to storage application category. 

Communication application category includes services like voice over internet 

protocol (VoIP), video calls, instant messaging, emails and internet of things (IoT). 

The daily traffic demand variation of each application category results various daily 

BS loads.  As shown in Figure 1.5, the peak BS load for storage applications is around 

6:00 AM, while for communication and computing applications around 12:00 PM and 

04:00 PM, respectively, and for streaming and gaming applications around 09:00 PM 

and 10:00 PM, respectively. For sake of simplicity, in this study we assume BS load 

varies according to streaming application category only. However, same analysis can 

be carried out for other application categories.  
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Figure 1.5. Daily traffic distribution for 5 categories of mobile applications [22] 

In accordance to BS load variation, the number of active users varies at each time 

instant t. To capture and link both variations, we model the BS of cell under study as 

an M/G/m/m state dependent queue where users arrive according to a Poisson 

process with rate λ and treated in order of arrival. Users’ service times are 

independent and identically distributed with some general distribution function. Each 

cell BSi has m servers available and every newly arriving user immediately goes into 

service if there is a server available, and that user is lost if all servers are occupied. 

The steady state probability distribution of having k users at a time instance t, πi(k,st), 

is given by Eq. (1.6.a) 

πi(k,st)=

[
 
 
 
 [λmax

st

RUEz
(1)

]
k

k!f(k)f(k-1)… f(2)f(1)

]
 
 
 
 

 πi(0,st)  (1.6.a) 

πi
-1(0,st)=1+ ∑

(

 
 

[λmax
st

RUEz
(1)

]
m

m!f(m)f(m-1)… f(2)f(1)

)

 
 

Kmax

m=1

 (1.6.b) 

In Eq. (2.6) λmax is the maximum user arrival rate, st is the average data volume 

contribution by a single user at time instance t, f(k)=RUEz
(k)/RUEz

(1) is the rate at user 

state k normalized by user state 1, i.e. when BS serves a single user, πBSi
(0,st) is the 
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probability of BSi having no users, the number of servers in the queue is the same as 

the number of users and, lastly, Kmax is the maximum number of users the queue can 

serve, as will be derived in Section 2.1. The M/G/m/m queue is assumed to have a 

certain grade-of service (GoS) that corresponds to the blocking probability while 

serving the maximum number of users  Kmax at peak cell loading. The probabilities for 

other states can be derived by assuming λmax= Kmax and finding the maximum value 

of st,  smax, that is associated with πBSi
( Kmax, smax)=GoS. Then the value of 

πBSi
(k, smax) can be obtained for k=1,2,..,  Kmax. To calculate user steady state 

probabilities at different cell load conditions, we just need to use st= smax xt⁄ , where 

xt is the cell loading at time instant t. Note that RUEz
(k) for the above calculations is 

found using Eq. (1.2). Due to the requirements of transmitting cell information and 

connection control and management signaling, it is assumed that the minimum cell 

load is 10% [19]. User steady state probabilities at minimum, half and peak cell 

loadings; i.e. 10%, 50% and 100%, respectively, are shown in Figure 1.6. 

 

Figure 1.6. User steady state probabilities at 10%, 50% and 100% 
loadings    

1.5. BS Power Consumption Model 

The circuit power consumption model proposed in [17] gives realistic relations 

between the total consumed power at BS and the important dimensioning parameters 

(M, K,RUEz
). It also considers the dynamic efficiency characteristics of realistic PAs. 

In accordance with this model, the total DL baseband power can be approximated as: 
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Ptotal≈C0+C1Mi (1.7.a) 

C0= ∑ RUEz
(k)

Kmax

k=1

(PCOD+PDEC)+PSYN+
BKi

3

3TcBcLBS

+Poth (1.7.b) 

 C1 = PBS + 
BKi (2 + (TcBc)

−1)

LBS

+
3B Ki

2

LBS

+ PPA(p) (1.7.c) 

where ∑ RUEz
(k)

Kmax

k=1  is the total rate handled by the cell BSi as calculated in Eq. (1.2), 

PCOD and  PDEC are the power required for coding and decoding, respectively. PSYN 

is the power consumed by the local oscillator, LBS is cell BSi computational efficiency, 

PPA(p) is the total input power required for mean output transmission power p of a 

traditional power amplifier (TPA) as given in [24-26]: 

PPA(p)≈η-1√p∙ Pmax, PA (1.8) 

where η is the maximum TPA efficiency, Pmax,PA is the maximum output transmission 

power. Since the peak to average power ratio (PAPR) in latest technologies is around 

8 dB, Pmax,PA should be higher than the maximum mean output transmission power  

p
max

 at most by that amount. Another important absolute measure of energy to 

compare how much saving can be attained for one day is the average energy 

consumption (AEC) per BS coverage area expressed in units of kWh/km2 as follows: 

AECBS=∑
Ptotal(t) ×60×60

24 ×Coverage Area

24

t=1
 (1.9) 
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2.PROBLEM FORMULATION 

The EE (Mbit/Joule) is defined as system throughput per unit of energy consumption 

[16]. Accordingly, EE at BS-level is calculated as the ratio of sum rate handled by BS 

(Mbit/s) to the total consumed power (Joule/s). Now, by using Eq. (1.2) and Eq. (1.7), 

EE can be expressed as: 

EEi= 
Sum Rate

Total Consumed Power 
=

∑ RUEz
(k, Mi , Mj )

Kmax

k=1

Ptotal(Mi ,Ki)
 (2.1) 

As Eq. (2.1) shows, the achieved EE at cell BSi depends not only on its own number 

of antennas but also on the number of antennas of other interfering BSs. That is, the 

EE formula accounts for the asymmetrical multi-cell environment, which in turn forms 

an intractable joint optimization problem. To facilitate EE maximization analysis, we 

assume that the multi-cell environment is symmetrical in terms of cell loading, ULD 

model and BS configurations. Built on these assumptions, the number of antennas for 

all cells will be the same so that Eq. (2.1) can be simplified by setting Mj= Mi to 

become:  

EEi=
∑ RUEz

(k, Mi) 
Kmax

k=1

Ptotal(Mi ,Ki)
 (2.2) 

Now, the optimal number of antennas for all user states,  Mopt, can be found by 

maximizing EE for a certain ULD model formed as below: 

Mopt(k) =  arg max:
Mi

∑ RUEz
(k,Mi )

Kmax
k=1

Ptotal(Mi , Ki)
 

(2.3) 

Subject to:  Mi ≥ ⌈
Pc

Pmax,PA

 10
0.8⌉ , Mi ≥ k + 1  

In Eq.(2.3), the first constraint sets the minimum number of antennas by keeping 

PAPR of the transmitted signal at 8 dB. The second one comes from applying ZF 

precoding technique at the BS. A weighted-average value of Mopt at a certain cell 

loading condition xt can be calculated as: 
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Mavg
(t) = ⌈∑ πBSi

(k, smax xt⁄ ) ∙

Kmax

k=1

Mopt(k)⌉ (2.4) 

As a rule of thumb, systems should be dimensioned at most critical conditions. For 

this study, operating on maximum cell loading and BF ULD is the most challenging 

case. Therefore, to cope with this case, we start by dimensioning a fixed antenna 

system operating at the most energy-efficient values of M and K. By using Eq. (2.2) 

within a reasonable range of M and K, we search for the number of antennas and 

users that yield maximum EE. Let us denote these reference values by (Kmax ,Mmax). 

The fixed antenna system operates Mmax antennas whatever changes occur in cell 

loading, number of active users or ULD model. As stated in Sections 1.2 and 1.4, the 

ULD model and cell load fluctuate all the time. For this reason, adopting any fixed 

resource allocation technique will be inefficient in terms of EE. Therefore, we seek a 

dynamic resource allocation strategy to attain a more energy-efficient massive MIMO 

design. 

2.1. Optimum Number of Antennas for Maximum EE Algorithm 

We propose an EE optimization strategy that tackles the users varying behaviors and 

allocates BS resources adaptably. The strategy runs an algorithm to find the optimal 

number of antennas that matches the instantaneous system conditions: cell loading, 

ULD model, and the number of active users. The algorithm starts by setting the 

number of antennas at all BSs, Mi, to Mmax which is the value designed for the fixed 

antenna system. Then, it iteratively updates Mi by the weighted-average optimal 

number of antennas, Mavg, for the cell under study until its value converges. At this 

point, the optimal number of antennas, Mopt, corresponding to all user states is 

identical for all cells. Note that the iterations are carried out only for the cell under 

study since all cells are assumed symmetrical in all configurations. The parameters, 

initialization and computation of the proposed strategy are outlined in Figure 2.1. The 

EE in Eq. (2.2) represents a quasi-concave function of the number of users and the 

number of antennas but currently there is no closed form expression for optimal 

number of antennas, Mopt, that maximizes EE at each user’s state, k. However, since 

Mi and k are integer values, the algorithm searches extensively for Mi that maximizes 

EE over each user state using Eq.(2.3). As can be noted, this step is computationally 

the most expensive part in the algorithm. Therefore, the algorithm’s time complexity 

can be approximated to the order of O(n2), where n2 denotes size of Mi×k matrix. 
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Obtaining Mopt by a more time-efficient way is beyond the scope of this thesis and 

hence left for future work. 

Initialization: 

Mavg ← Mmax 

Computation: 

do { 

Mi ← Mavg 

for all users’ states k ∈ [1 , Kmax] do 

Mopt(k) ←  
∑ R(k,Mi )k

Ptotal(Mi , Ki)
Mi     

arg max:
 

subject to: Mi ≥ Mmin, Mi ≥ k + 1 

end for 

Mavg ← ⌈∑ πBSi
(k, st) ∙

Kmax

k=1 Mopt(k)⌉   

} 

while ( Mj  ≠ Mavg)  

Figure 2.1. Adaptive antenna system at maximum EE 
Algorithm 

2.2. Optimal Number of Antennas for Guaranteed QoS Requirements 

In this study, we propose two criteria to master the quality of service (QoS) and 

improve the user-rate loss results in EE optimization Figure 2.1. First, maintaining a 

minimum amount of average user-rate on BS level, RBS. Second, assuring a ratio of 

users (QUE) getting a guaranteed amount of data rate. In both criteria, the BS 

resources i.e. optimal number of antennas, Mopt, are upscaled gradually as shown in 

Figure 2.2 until the QoS requirements are fulfilled. In the 1st criteria, the optimal 

weighted-average user-rate, Ropt is dimensioned to approach the guaranteed BS 

average user-rate, i.e. RBS,  which is also can be used as a performance metric to 

evaluate overall DL speed. In contract, the 2nd criteria improve DL date rate from user 

prospective. It starts by finding the percent of users getting data rate higher than a 

minimum guaranteed data rate, Qopt, results from Figure 2.1. Then, it employs more 

BS antennas until percent of users satisfying guaranteed date rate reached i.e. QUE. 

Note that all dimensioned values in Figure 2.1. are prerequisites to start both criteria 

in Figure 2.2. 
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.Initialization: 

Run Algorithm {Figure 2.1} 

Ropt ← ⌊∑ πBSi
(k, st) ∙

Kmax

k=1 R(k,Mopt(k) )⌋  

RBS ← RBS,min  

Computation: 

while ( Ropt < RBS) 

do { 

for all users’ states k ∈ [1 , Kmax] do 

Mopt(k) ← Mopt(k) + ci subject to: Mopt ≤ Mmax 

end for 

Ropt ← ⌈∑ πBSi
(k, st) ∙

Kmax

k=1 R(k,Mopt(k) )⌉  

} 

(a) 

Initialization: 

Run Algorithm {Figure 2.1} 

RUE ← RUE,min  

QUE ← QUE,min  

Qopt ← ⌈
∑ ki

Kmax
i=1

Kmax
⌉ subject to: R(ki,Mopt(ki) ) ≥ RUE   

Computation: 

while (Qopt < QUE) 

do { 

for all users’ states k∈[1 ,Kmax] do 

Mopt(k) ← Mopt(k) + ci subject to: Mopt ≤ Mmax 

end for 

Qopt ← ⌈
∑ ki

Kmax
i=1

Kmax
⌉  subject to: R(ki,Mopt(ki) ) ≥ RUE  

} 

 (b) 

Figure 2.2. Adaptive antenna system with guaranteed QoS 
Algorithms a) Guaranteed Average User-rate at BS b) 
Guaranteed percent of users satisfying certain data rate 
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2.3. Algorithms Complexity Analysis  

Considering the user-rate is proportional to the number of BS antennas and R(k, 

Mopt)<RBS|UE<R(k, Mmax) enable us to adopt some root-finding methods; thereby; 

lower number of iterations. In this work we use interval-halving method i to update 

Mopt(k) by variable step size ci. It considerably leads to a high-speed processing and 

time-efficient calculation.  
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3. NUMERICAL ANALYSIS 

In this work, the simulation environment consists of 19 hexagonal cells as illustrated 

in Figure 3.1, where the pilot reuse factor is set to 1/1. Using Monte-Carlo insertion 

method, we distribute 10000 test points in the area bounded between the circle of 

radius δmin=35m and the cell edge according to ULD models formed by sets δ and γ 

as specified in Section 1.2. The path distance from each interfering BS to each test 

point is calculated according to the wrap-around algorithm that helps us discard 

boundary effects when the interfering BS is out of the first tier of neighboring BSs [24]. 

For clarity, we assume all cells are symmetrical in ULD and cell loading variations, as 

well as BS configurations. That is, all cells will experience the same level of interfering 

power at any time instance t. Under those circumstances and using the parameters 

shown in Table 1, some of which are taken from [13] and [17], we carried out the 

analysis until it reached convergence point, where all cells have the same optimal 

average number of antennas. 

 

Figure 3.1. Network coverage area where cell under study is surrounded by 18 
identical cells 
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Table 3.1. Network simulation parameters 

Reference Parameters 

Parameter Value 

Number of cells 19 

Number of test points 10000 

Cell Radius: δmax 500 m 

Minimum distance: δmin 35 m 

Bandwidth 20 MHz 

Total noise power: Bσ2 -96 dBm 

Path loss model 10
-3.53 ‖d‖3.76⁄  

Channel coherence time: Tc 10 ms 

Channel coherence BW: Bc 180 kHz 

Coherence Block: TcBc 1800 symbols 

BS average transmit power 20 W 

Maximum PA efficiency: η 80% 

PA maximum output transmission 
power: Pmax, PA 

6 dB 

Local oscillator power: PSYN 2 W 

BS circuit power: PBS 1 W 

Other power: Poth 18 W 

Power for data coding: PCOD 0.1 W ⁄ (Gbit/s) 

Power for data decoding: PDEC 0.8 W ⁄ (Gbit/s) 

Power for backhaul traffic: PBT 0.25 W ⁄ (Gbit/s) 

Computational efficiency at BSs: LBS 12.8 Gflops / W 

M/G/m/m queue GoS: 0.2% 
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Table 3.2. Illustration of CF, Uniform and BF ULD models 
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3.1.Optimum Number of Antennas for Maximum EE 

To study the effects of different ULD models on optimal number of antenna allocation, 

we form three ULD models, namely, BF, Uniform, and CF, by dividing the cell into 

three coverage areas and employing the sets shown in Table 3.2. Then, we run the 

proposed strategy in Section 2.1 to determine the optimal number of antennas, Mopt, 

for each ULD model at 10%, 50% and 100% cell loading conditions. The relation 

between Mopt and the number of active users, Ki, is almost linear and depends on the 

ULD model and cell loading simultaneously. Indeed, ULD model provides a major 

contribution in determining Mopt while cell loading provides a minor one. However, the 

role of cell loading variation decreases dramatically as the ULD model moves from 

BF to CF distribution. 

 

Figure 3.2. Relation between number of antennas (M) and number of users (K) for 
BF, uniform and CF ULD models at 10%, 50% and 100% cell loadings 

Note that the optimal number of antennas has an upper bound, Mmax and a lower 

bound Mmin. As found in Section 2.1, the upper bound is 228 antennas, which is used 

to operate the baseline fixed antenna system without considering any variations of 

cell loading, ULD model, or number of active users. The lower bound arises from two 

limitations. The first one is that each BS radiates at a fixed average transmission 

power Pc=20 W and distributes this power equally among all antennas. The second 

limitation is that the PAPR of the transmitted signal must be around 8 dB, which 

compels the PAs to operate within mean output transmission power 0.087≤p≤0.630. 

Complying with these conditions, the lower bound of the optimal number of antennas 
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is set to ⌈20 0.630⁄ ⌉=32 antennas. The effects of different ULD models on the 

allocation of optimal number of antennas for all user states at minimum, half and peak 

cell loadings are illustrated in Figure 3.2. 

3.2. Adaptive Versus Fixed Antenna Systems 

To evaluate the pros and cons of adaptive and fixed antenna allocation strategies, we 

examine their average number of antennas, EE, and user-rates on ULD models 

illustrated in Table 3.1. The fixed antenna system represents a conventional BS puts 

all antennas in operation regardless of any change in ULD or network loading. 

Number of antennas in fixed systems is planned to cope with peak BS load on BF 

ULD model. i.e. busy-hour traffic and poorest radio conditions. 

 

Figure 3.3. Number of antennas of fixed and adaptive systems 

As can be seen in Figure 3.3, fixed system has a constant number of antennas (in 

black dot-slash line) over all network loadings and it’s reached only by adaptive 

antenna system on BF ULD model at 100% network load. Adaptive antenna system 

reacts differently against network loading in accordance to ULD model. It operates 

around 2.15, 1.33 and 0.34 additional antennas per each 1% increment of network 

loading at BF, Uniform and CF ULD model, respectively. Similarly, adaptive system 

lowers number of antennas at different speeds as network loading decrease. These 

speed coefficients represent the slops of adaptive system at different ULD models. 

This result shows the significance of considering ULD models in adaptive antenna 

system design. 
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The relation between network loading and EE of fixed and adaptive antenna systems 

on BF, Uniform and CF ULD models is shown in Figure 3.4. Generally, All EE curves 

grow continuously as network approach its peak load at 100%. That is because both 

systems are basically designed to be on most energy efficient condition at maximum 

load. For fixed antennas system, the EE curves have negligible differences between 

ULD models except a slight lower value for BF ULD on peak load. The convergence 

of EE curves (blue lines) for fixed and adaptive systems on BF ULD model obviously 

reflects their meeting in number of antennas (black and red lines) at higher network 

loading in Figure 3.3. The EE of adaptive antenna system at Uniform and CF ULD 

models (red and green solid lines, respectively) is relatively higher their respective EE 

curves (red and green dashed lines) fixed antenna system. Adaptive antenna system 

at CF ULD model has the highest EE growth since it always operates lowest number 

of on antennas as network loading increase to peak conditions. 

 

Figure 3.4. EE of fixed and adaptive antenna systems 

In Figure 3.5, the average user-rates offered by fixed and adaptive antennas systems 

are shown by solid and dashed lines, respectively. Clearly, fixed antenna systems 

deliver better user-rates then adaptive systems. Fixed antenna system also provides 

different user-rates, though same number of antennas are employed in each one. 

This is simply due to the various ULD modes. As depicted, for fixed antenna systems 

the average user-rate of Uniform ULD model (red dashed line) is higher than BF (blue 

dashed line) and lower than CF ULD models (green dashed line). Similarly, for 

adaptive antenna systems the average user-rate of Uniform ULD model (red sold line) 

is higher than BF (blue solid line) and lower than CF ULD models (green solid line). 
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Figure 3.5. Average user-rate of fixed and adaptive antenna systems 

3.3. EE Gain and User-Rate Loss Trade-Off 

For the same ULD models used in Section 3.2 and illustrated in  Table 3.1, we 

benchmark the fixed and adaptive antenna systems by relative metrics for EE gain 

and user-rate loss. EE gain as shown in Eq. (3.1) is simply the ratio of energy 

efficiency saving by adaptive system over the EE of conventional fixed antenna 

system. Similarly, the user-rate loss is the ratio of user-rate dropping by adaptive 

system over the user-rate of conventional fixed antenna system as shown in Eq. (3.2).  

EEGain=
EEAdaptive- EEFixed

EEFixed

 (3.1) 

RLoss =
RFixed − EEAdaptive

EEFixed

 (3.2) 

It is clear from Figure 3.6 that the obtainable EE gain for ULD models decreases at 

different trends as network loading increases, which is understandable as both 

systems are in the most energy-efficient state at peak network load. For the same 

reason, the user-rate losses decrease with varying speeds as the network loading 

increases as shown in Figure 3.7. Results show that the adaptive antenna system has 

a mean EE gain of 47%, 113% and 222% at the cost of 34%, 48% and 42% mean 

user-rate loss over the fixed antenna system for BF, uniform and CF ULD models, 

respectively. 
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Figure 3.6. EE gain of adaptive antenna system on different ULD models 

 

Figure 3.7. User-rate loss of adaptive antenna systems on different ULD modes 

For the case when ULD is BF, the EE gain and user-rate loss diminish toward zero 

as the network approaches its 100% loading, where the configurations of adaptive 

and fixed antenna systems are going to be the same. The reason behind these results 

is the favorable propagation (aka the degree of freedom) in massive MIMO systems. 

In other words, when the ULD varies from BF to CF, the quality of radio conditions 

gets better, and the system obtains more channels that are independent. This 

variation can be exploited to reduce the number of antennas, thereby achieving a 
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more energy-efficient operation. The results obtained here emphasize the importance 

of considering ULD variation in dimensioning massive MIMO systems. 

3.4. ULD Variation Effects on Fixed Antenna System Design  

To examine the fixed antenna system design values (Kmax, Mmax), we form a ULD 

Model that varies from CF to BF by using the sets δ={400} and Γ =

{(1,0), (0.9,0.1), (0.8,0.2) . . . (0,1)}. This ULD model splits the cell coverage area into 

two regions, cell center area, enclosed by concentered circles of radii 35 m and 400 

m, and cell boundary area, that lies from 400 m to cell border at radius of 500 m. 

 

Figure 3.8. Fixed antenna system design parameters (Kmax, Mmax) versus center-to-
boundary users’ ratio 

The maximum number of users that can be served, Kmax decreases sharply and the 

corresponding number of antennas Mmax increases rapidly as shown in Figure 3.8. In 

fact, these pairs of (Kmax, Mmax) correspond to the most energy-efficient operating 

points that describe the system capacity, (Kmax) and BS resources requirements, 

(Mmax). On the other hand, the user-rate at center and boundary regions (green and 

red curves) improves while the overall EE (blue curve) degrades as shown in Figure 

3.9. Reversely, i.e. when ULD model transforms from BF to CF, the system capacity 

increases and BS resources requirements decreases while the user-rate at center 

and boundary regions degrades and the overall EE improves. 
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Figure 3.9. EE and average user-rate versus center-to-boundary users’ ratio 

3.5. Average Hourly Energy Consumption 

As indicated in Section 3.3, adaptive system achieves more energy efficient operation 

by deactivating certain number of antennas at each network loading state. To capture 

the cost saving of such design, we need to analyze the effects of ULD variation in a 

time frame of 24 hours. Therefore, we examine the fixed and adaptive antenna 

systems on two ULD scenarios as illustrated in Figure 1.3. In both scenarios, the 

coverage area of cell under study is divided into three regions by the set of radii 

δ={200,  400} m to as presented in Figure 1.2. Then, we assign the weighting factors 

γ
A
 and γ

B
 as shown in Table 3.3. As is noticed from Figure 3.10, on average 144 of 

227 and 108 of 232 antennas can be turned off during 24 hours for scenario-A and 

scenario-B, respectively. The results conclusively show that almost 60% and 50% of 

active antennas are deactivated every day at scenario-A and scenario-B, respectively, 

with the help of adaptive antenna system. Such a decrement is calculated to greatly 

conserve the total network energy consumption and consequently, reduce operator’s 

OpEx. An appropriate metric to evaluate the amount of energy savings is the AEC as 

in Eq. (1.9). As demonstrated in Figure 3.11, approximately 51% and 36% of average 

consumed energy of fixed antenna system can be saved at scenarios A and B, 

respectively, by adopting adaptive antenna allocation strategy that copes with ULD 

variation and network loading simultaneously.   



 

29 

 

Figure 3.10. Number of Antennas vs. Hours of the day 

 

Figure 3.11. Energy consumption of fixed and adaptive systems 

Table 3.3. Daily ULD scenarios 

 
Time (Hour in a day) 

 
01 – 07 08 –  09 10 –  19 20 –  21 22 –  24 
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γ
A
 (0.1, 0.2, 0.7) (0.6, 0.2, 0.2) (0.8, 0.1, 0.1) (0.6, 0.2, 0.2) (0.1, 0.2, 0.7) 

γ
B
 (0.7, 0.2, 0.1) (0.2, 0.2, 0.6) (0.1, 0.1, 0.8) (0.2, 0.2, 0.6) (0.7, 0.2, 0.1) 
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3.6. Number of Antennas for BS GDR Level 

As we observed in Figure 3.3, adaptive system hires additional 1.3 antennas at each 

increment of 1% of network loading on Uniform ULD model. The ultimate purpose of 

that design was to ensure system operating on maximum possible EE state 

regardless of user-rate loss. So, the BS was offering a best-effort user-rate. In this 

section, we apply algorithm (b) shown in Figure 2.2 to control user-rate loss at BS 

level and to retain EE somehow on optimal standing. The QoS target is set to keep a 

guaranteed data rate (GDR) at BS whatever variations in network loading or ULD 

model. As video and audio traffic have around 74% share of mobile data traffic 

forecast [20], we assumed mobile applications are split into two main categories, 

streaming and non-streaming applications. Then, we assume four scenarios for ratio 

of streaming applications that can considered as different user traffic profiles. By 

applying Eq.(1.5), we get four amounts of average user-rate at BS level as shown in 

Table 3.4. 

Table 3.4. Mobile data traffic forecast [18-20] 
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Connected Users Split 

per Device Category 

Mobile Data Split 

per App 

Category 

(GB/month) 

Streaming Application 

Ratio 

25% 50% 75% 100% 

Smartphones 95% 
Streaming 

traffic 
38,1 Average User-rate (Mbps) 

96 10% 

Mobile PCs, 

Tablets & 

Routers 

5% 

Non-

streaming 

Traffic 

4,8 43 71 98 126 

For the sake of clarity, in below we present the simulation results for Uniform ULD 

model only. The results for BF and CF ULD models are presented in Appendix-A. The 

average number of antennas in Figure 3.12 increases noticeably as BS GDR level 

goes up. As can be seen also, the upper limit is the number of antenna at fixed system. 

The red curve belongs to adaptive antenna system for maximum EE and best-effort 

user rate as resulted by Figure 2.1. For 43 Mbps GDR level, the average number of 

antennas has the same values over all network loads as in red curve. Back to Figure 

3.5, the average user rate for Uniform ULD model is always above the 43 Mbps GDR 

level. This means that adaptive system set number of antennas driven by Figure 2.1 

as lower limits to maintain optimum EE whenever possible. As result of that, red and 

green curves are exchangeable in near upcoming analysis. 
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Figure 3.12. Number of antennas for Uniform ULD at various BS GDR levels 

The BS average user-rates that come out of GDR BS levels, are displayed in Figure 

3.13. For 128 and 98 Mbps GDR levels, the adaptive system provides BS average 

user-rates (magenta and cyan dashed lines) lower than GDR level when network 

loading higher than 40% and 80%, respectively. This is due to the fact, number of 

antenna cannot go beyond fixed system design as already shown in Figure 3.12. At 

71 Mbps GDR level, the BS average user rate (blue curve) starts to deviate from best 

effort user-rate (green line) at network loading 60% and upwards. This illustrates how 

adaptive system activates additional antennas to recover user-rate loss when BS 

average user-rate drops below GDR level.  

 

Figure 3.13. BS average user-rate for Uniform ULD at various BS GDR levels 
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3.7. Number of Antennas at User Satisfaction Level 

Before we move to analysis of algorithm (b) shown in Figure 2.2, it is worthwhile to 

present the percent of users getting data rate equal or higher than GDR levels as 

already found in Section 3.6 . As can be seen form Figure 3.14, the ratio of users 

satisfying BS GDR levels decreases steadily as network loading approach 100%. To 

control such decrement, we introduce the 2nd QoS requirement to maintain certain 

ratio of users gets GDR level as shown in Table 3.5. The considered ratios are aligned 

with results in Figure 3.14, to obtain meaningful results. 

Table 3.5. User satisfaction scenarios 

Scenario GDR Level (Mbps) 
Percent of users satisfying 

GDR level 

1 43 80% 

2 71 60% 

3 98 40% 

4 126 20% 

 

Figure 3.14. Percent of users satisfying GDR levels at Uniform ULD 

As shown in Figure 3.15, the average number of antennas (all curves) this time is 

dimensioned to maintain a ratio of users exceeding the GDR level. Aside from 

pervious analysis for Figure 3.12, number of antennas for scenario 4 (20% of users 

get 126 Mbps GDR or more) in magenta line is lower than number of antennas for 

scenario 3 (40% of users get 98 Mbps GDR or more) in cyan line. 
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Figure 3.15. Number of antennas for Uniform ULD at various user satisfaction levels 

In this context, the BS average user-rates as shown in Figure 3.16 do not evaluate 

adaptive system performance as they represent the user-rate for overall users in cell 

under study while Algorithm (b) shown in Figure 2.2 enhance the user-rate for certain 

portion of users.  In Figure 3.17, we can see how users stratification maintained up to 

certain levels over all network loads in accordance to QoS requirements in Table 3.5. 

 

Figure 3.16. BS average user-rate for Uniform ULD at various user satisfaction levels 
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Figure 3.17. Guaranteed percent of users satisfying GDR levels at Uniform ULD 
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4.CONCLUSION 

In this study, we investigate the effects of daily ULD variation on the energy efficiency 

of a massive MIMO system. For that purpose, we proposed several ULD models and 

examined the optimum number of antennas that maximizes EE in all user states under 

different cell loading conditions. These models divide the hexagonal cell into certain 

number of areas and distribute users hourly inside each one according to statistical 

ULD model. Each BS is modelled as an M/G/m/m queue, where user steady state 

probabilities are distributed with respect to average user-rates. The cells are assumed 

symmetrical in all aspects. Therefore, the analysis is carried out over the cell under 

study only by using EE optimization algorithm to obtain the optimal number of 

antennas that maximizes EE at each user state at the cost of rate loss. We have found 

that the considerable impact on optimal antenna allocation is associated with ULD 

variation rather than daily load profile and the relation between the number of 

antennas and the number of users is almost linear. To make a fair comparison, we 

assume a baseline system that operates by a fixed number of antennas that 

corresponds to the highest EE at minimum center-to-boundary users’ ratio and, 

concurrently, maximal cell load. For dynamic ULD models, adaptive antenna systems 

can achieve 47%, 113%, and 222% EE gain over fixed ones at the cost of 19%, 35% 

and 35% rate losses for BF, Uniform, and CF models, respectively. Since the analysis 

was carried out over a cell load range of 10-100% while 34% of daily load profile hours 

are below half-cell loading condition, these results show that ULD models significantly 

outperform the baseline system. In a 24-hour analysis framework, the simulation 

results show that one third of the active antennas can be turned off and consequently 

up to 50% of consumed energy can be conserved after adopting cell load adaptive 

antenna system with ULD. For fairness, this work has been carried out by modelling 

ULD in a reasonable way and actual users may not follow proposed ULD models. In 

addition, the symmetrical condition may not hold for a coverage area of radius 4 km. 

Nevertheless, the same procedures can be carried under real conditions if a detailed 

radio description and traffic statistics are provided. 
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Appendix A: Adaptive Antenna System at BF and CF ULD Models 

 

Figure 4.1. Number of antennas for BF ULD at various BS GDR levels 

 

Figure 4.2. BS average user-rate for BF ULD at various BS GDR levels 
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Figure 4.3. Percent of users satisfying GDR levels at BF ULD 

 

Figure 4.4. Number of antennas for CF ULD at various BS GDR levels 
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Figure 4.5. Average user-rate for CF ULD at various BS GDR levels 

 

Figure 4.6. Percent of users satisfying GDR levels at CF ULD 
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