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H.264 / AVC STANDART İÇİN 8x8 LUMA INTRA PREDICTION 

MODÜLÜNÜN UYGULANMASI 

ÖZET 

AVC, 2003 yılındaki ilk tanıtımı ve ilk olarak 2004 yılında AVC Fidelity Range 

Extension'ın tanıtılmasından bu yana, dijital televizyonlar üzerinden popülerlik 

kazanmış ve sürekli olarak DVD-Video, mobil TV, video konferans ve internet video 

akışı gibi alanlarda yaygın olarak kullanılmaktadır. ITU-T VCEG ve ISO / IEC 

MPEG'in Joint Video Team(JVT)'in ortak çabası olarak H.264 / MPEG4-AVC 

standardının piyasaya sürülmesinden sonra, HD TV gibi alanlarda yüksek kaliteli 

video kodlama talebi nedeniyle bir değişiklik çağrısı yapıldı. Bu, AVC Fidelity 

uzantısının 8x8 Intra prediction ve 8x8 transform gibi değişikliklerle sunulmasına yol 

açtı. 

Bu tezde, AVC FRExtCODEC'in çok önemli bir bileşeni olan 8x8 Luma Intra 

prediction tasarlandı. Bu amaçla verimli tasarım mimarileri ve bunların performans 

üzerindeki etkileri araştırıldı. Bu çalışmada, 4x4 Luma Intra tahmini ve 8x8 Luma 

Intra tahmini için daha önceden gerçekleştirilen iki tasarım referans olarak alınmıştır. 

Bunlar dönüşüm bloklarındaki Butterfly algoritmalarından, nicemleme bloğundaki 

DSP(Sayısal Sinyal İşleme)’lerden ve en iyi mod seçim bloklarında SAD (Mutlak 

Farkın Toplamı)’dan faydalanır. Tüm tasarımı önce test etmek ve algoritmaları daha 

iyi anlamak için MATLAB kullanıldı, daha sonra da tüm tasarım ZC70C kartı ile 

VHDL kullanılarak FPGA’de gerçeklendi.  

 

Anahtar Kelimeler: FPGA, H.264, İçi Kestirim, Kuantalama, Tamsayı DCT, 

VHDL, Video Kodlama. 
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IMPLEMENTATION OF 8x8 LUMA INTRA PREDICTION MODULE FOR 

H.264/AVC STANDARD 

ABSTRACT 

Since the introduction of  AVC in 2003 and  and first introduction of the AVC 

Fidelity Range Extension in 2004, it has gained popularity throughout the years with 

digital television, and it is continuously being used in areas like DVD-Video, mobile 

TV, video conferencing and internet video streaming. After the introduction of 

H.264/MPEG4-AVC standard as a collective effort of Joint Video Team (JVT) of 

ITU-T VCEG and ISO/IEC MPEG, there was a call for amendment due to the 

demand for the coding of higher-fidelity video in areas like HD TV. This led to the 

introduction of the AVC Fidelity extension with amendments like 8x8 Intra 

prediction and 8x8Transform. 

In this  thesis, a very important compant of the AVC FRExt  CODEC, the  8x8 Luma 

Intra predicion is designed, exploring efficient architectures and it’s effect on the 

design. This design is made, referencing two previous designs for  4x4 Luma 

Intraprediction and 8x8 Luma Intra prediction. These range from the the  the use of 

the bufferfly algorithms  in  the Transform Blocks,  DSPs (Digital Signal Processing)  

in the Quantization Block and SAD(Sum of Absolute Difference ) in the best mode 

selection blocks.  The whole design is first implemented in matlab for testing 

purposes   and better understanding of the algorithms, then implemented in FPGA 

using VDHL, targetting the ZC70C board. 

 

Keywords: FPGA, H.264, Integer DCT, Intra Prediction, Quantization, VHDL, 

Video Coding.
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INTRODUCTION 

Over the years, new image compression algorithms have been developed and 

existing ones have been greatly improved to achieve high quality videos, flexibility 

of implementation, and lower SNR. Even though HEVC has been recently developed 

and it is gaining popularity, AVC is still widely used in many systems today such as 

internet video streaming, television broadcasting, digital cinema applications and 4D 

medical image compression[1] as well because it offers higher efficiency in 

compression compared to previous standards[2]. This is due to its variety of issues, 

from the availability of different transform matrices, different prediction methods 

(Intra prediction and inter prediction), as well compression methods such as 

CABAC.H.264/AVC was developed by the ITU-T Video Coding Experts Group 

(VCEG) and ISO/IEC Moving Picture Experts Group (MPEG) [3]. It was officially 

accepted as an international standard in 2003 and since then, a number of additions 

have been made and of such was the introduction of the 8x8 Intra prediction 

officially known as the AVC Frext (Fidelity Extension) Standard. 

 Over the years, a variety of hardware implementations have been achieved for the 

AVC compression standards most especially for the 4x4 intra prediction. These 

implementations include fast prediction algorithms (best and fast prediction mode 

selection), motion estimation algorithms, as well as different transform algorithms. 

The hardware implementation is aimed at achieving high speed, lower power 

consumption, lower area occupation and flexibility.  These implementations have 

been done with FPGAs, ASICs, multimedia co-processors, and general-purpose 

processors. While general purpose processors have been unable to meet the 

requirements, multimedia co-processors have focused on smaller frame sizes. Hence, 

most hardware implementations are done on FPGA or ASICs due to their parallel 

processing architecture. However, due to the high cost of ASICs, FPGAS are 

generallypreferred[3].
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In this thesis, the design and implementation of 8x8 Luma Intra prediction which is 

part of the AVC/H.264 FRext standard is discussed. Some implementations are 

available but they cannot be used for real time video. This is because, in the attempt 

to reduce latency and processing time, some implementations [3] do not wait for 16 

lines of video before starting processing. Also, in order to improve flexibility, some 

implementations use 2D transform matrices as opposed to the 1D implementations 

that were later introduced to increase maximum frequency. The implementation 

presented in this thesis can be used for real time systems and also uses the 1D 

(butterfly algorithms).  The algorithm was first implemented in MATLAB for better 

understanding and testing purposes. The remaining part of the thesis consists of the 

Background, Efficient 8x8 Luma intra prediction Implementation, Results, 

Discussion and Conclusion. 
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1. BACKGROUND 

This chapter gives an overview about image processing and image compression, 

AVC compression for both the AVC standard and AVC FRExt standard. 

1.1. Image/Video Basics. 

A video is a composition of many frames/images. Every video has specifications 

such as Frame rate which is the number of frames per unit time, frame resolution 

which specifies the number of pixels used to represent each frame, pixel depth which 

specifies the number of pixels used to represent each pixel. 

1.1.1. Colour spaces 

Pixels usually indicate colour and brightness.  Depending on the type of image, a 

number or a set of numbers can be used to represent these properties. For 

monochrome images (YCbCr), one pixel used to represent brightness and for RGB 

formats, 3 different values are used to represent colour. Some of these colour spaces 

include: 

1.1.1.1. RGB colour space 

This colour space has three colour representations (Green, Red and Blue). The 

change in concentration in one of the colours reproduces a different colour. Video is 

typically captured and displayed using the RGB format but these components are 

highly correlated.  

1.1.1.2. YCbCr colour space 

This format is generally preferred in Digital Image processing. It has three 

components, Y (Luma), Cb (Blue chrominance), and Cr (Red chrominance). The 

human visual system is better matched to the luma (brightness) and chroma (hue and 

saturation) representations, rather than RGB.  

A visual representation of these different formats is shown in Figure 1.1.
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From the visual representation in, it can be seen that the Luma component has more 

information about the frame than other components. That is why most image 

processing operations are done on this component. The luma component(Y) can be 

calculated by a weighted average of the Red, Green and Blue components using 

equation 1.1. 

 

 Y = KrR + KgG + KbB                                                 (1.1) 

 

Where  Kr, Kg and Kb are weighting factors. 

 

Cb and Cr components are calculated using the equations 1.2 and 1.3 respectively. 

Cb = B – Y                       (1.2) 

Cr = R – Y                            (1.3) 

 

1.1.2. Video formats 

Each video format has specific resolutions and each format is used for specific 

applications.  For example, HD is used for high definition TV and 4CIF are used for 

standard Television. Table 1.2 shows the different formats, resolutions and areas 

used. 

1.2.  AVC / H.264 Coding Standard 

The AVC standard like other standards has both the encoding and the decoding 

block. The main parts of this Codec system as shown in Figure 1.2 which inlude 

prediction, transform/inverse transform, quantization/inverse quantization and 

reconstruction. These powerful techniques lead to the robustness, less decoder 

complexity and high coding efficiency of the AVC with respect to previous standards 

[7].  

This is evident from the data shown in Table 1.1, showing the performance 

comparison of AVC to MPEG2 and MPEG4 .From the block diagram, it can also be 

seen that the encoder has an internal decoder which is used in the concept of 

prediction. This is because pixels of predicted sub blocks or macro blocks are used to 
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predict subsequent blocks. Since AVC is a lossy compression method, there is 

generally some difference between the original frames and decoded frames.  

 

        Figure 1.1.   A representation of the YCbCr standard. a) The original 

Photo b) The Y or Luma   component  of the Photo c) The Cr (Red 

Chroma) component of the photo d) The Cb(Blue Chroma)  
component of the photo.  

Table 1.1.     Average bit-rate reduction compared to prior coding schemes 

Standard MPRG 4/ASP H.263/HLP MPEG-2 

H.264/AVC 38.62% 48.80% 64.46% 

MPEG 4/ ASP --- --- 42.95% 

H.263/HLP --- --- 30.61% 

 

1.2.1 AVC/H.264 profiles and levels 

AVC contains a rich set of video coding tools, and not all the tools are supposed to 

be used at the same time. For example sophisticated error resilience tools are not 

important for the networks with very little data corruption or loss. So, the tools can 

be implemented independently and the decoder decides on which set to use. Forcing 
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the decoder to implement all these tools at the same time can lead to unnecessary 

complexity. 

Table 1.2.    Video Formats with their  resolutions and areas of use. 

Format 

 

Resolution 

 

Areas of use 

Sub-QCIF  

 

128x96  

 

streaming video on mobile phones 

Quarter CIF 176x144 

 

Video Conferencing  

CIF 352x288 

 

closed circuit television, DVD or online video 

design 

4CIF 704x576 

 

Format for H.264/AVC, Video-on-demand or 

multimedia streaming services over ISDN, 

Broadcast over cable and satellite. 

720p 1280x720 

 

HD television channels broadcast 

1280x720HD 1920x1080 

 

Appropriate for High Definition television 

UHD 3840x2160 

 

 Specialized video Cameras for Military 

 

 

 

Due to this issue, the subsets (profile) of tools can be implemented at the same time. 

The profiles can be separated into two groups. 

1.2.1.1.   Profiles 

This section explains the profiles of the original standards and the profiles of the 

FRExt standard.  

Prediction Transform Quantization
Entropy 
Encode

Reconstruction
Inverse

Transform
Inverse 

Quantization

Entropy 
Decode

Inverse 
Quantization

Inverse
Transform

Reconstruction

Video in

Encoder

Decoder

Bit stream

Figure 1.2.  The General AVC Encoder and Decoder Block 
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a)  Profiles of the original standard 

The profiles of the original standard can be divided into three profiles, Baseline (BP), 

Extended (XP), and Main (MP). Table 1.3 gives a summary of the tools of each 

profile [5]. 

     Table 1.3.    AVC/H.264 Original standard profiles [5]. 

Coding Tools Baseline Main Extended 

I and P Slices X X X 

CAVLC X X X 

CABAC  X  

B Slices  X X 

Interlaced Coding (PicAFF, MBAFF)  X X 

Enh. Error Resil. (FMO, ASO, RS) X  X 

Further Enh. Error Resil (DP)   X 

SP and SI Slices   X 

 

a)  The profile of the FRExt Amendment 

The FRExt defines four new levels which are built on the previous main profile. 

these profiles are listed below: 

 High (HP) 

 High 10 (Hi10P) 

 High 4:2:2 (Hi422P) 

 High 4:4:4 (Hi444P) 

The four new profiles include 3 enhancements which are: 

 Adaptive macroblock-level switching between 8x8 and 4x4 transform block size. 

 Encoder-specified perceptual-based quantization scaling matrices. 

 Encoder-specified separate control of the quantization parameter for each chroma 

component. 
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The main characteristics of these profiles can be found in the Table 1.4  

1.2.1.2.   Levels 

Levels define the maximum data processing rate of a decoder. It puts constraints on 

some video parameters such as the maximum frame rate and the maximum frame 

size of a video. The Table 1.5 shows the characteristics of the different levels in 

AVC/H.264. 

  Table 1.4.    AVC FRExt Standard profiles and their characteristics [9] 

Coding Tools High High 10 High 

4:2:2 

High 

4:4:4 

Main Profile Tools X X X X 

4:2:0 Chroma Format X X X X 

8 Bit Sample Bit Depth X X X X 

8x8 vs. 4x4 Transform 

Adaptivity 

X X X X 

Quantization Scaling 

Matrices 

X X X X 

Separate Cb and Cr QP 

control 

X X X X 

Monochrome video format X X X X 

9 and 10 Bit Sample Bit 

Depth 

 X X X 

4:2:2 Chroma Format   X X 

11 and 12 Bit Sample Bit 

Depth 

   X 

4:4:4 Chroma Format    X 

Residual Color Transform    X 

Predictive Lossless Coding    X 

 

1.2.1.3.  Chroma sampling formats 

As mentioned in the previous sections, chroma samples contain less information 

about frames than the Luma sample. For this reason, representing chroma 

components with less data usually may give better results in some video compression 

applications. This is achieved as follows: Instead of using one Cb and one Cr pair for 

each Y component, same Cb and Cr pairs are used for more than one Y component.  

In the 4:4:4 sampling format, one Cb and one Cr pair is used for each luma 

component. In the 4:2:2 sampling format, chroma components are sampled by two in 



9 

 

the horizontal axis which means the same Cb and Cr components are used for each 

two horizontal neighbour luma components. In the 4:2:0 sampling format, which is 

the commonly used format, chroma components are sampled by two both in the 

horizontal and vertical directions. 

1.3. AVC/H.264 encoder 

The AVC/H.264 is a video compression standard which uses the macroblock system 

of processing previously used in the JPEG 2000. Each macroblock (MB) is 16x16 

pixels. The compression is done macroblock by macroblock until the entire frame is 

covered. The Figure 1.2 shows a detailed block diagram of an AVC/H.264 encoder. 

This encoder consists of the following main blocks prediction, motion estimation and 

compensation, transform and quantization, inverse transform and inverse 

quantization, entropy coding and reconstruction. These blocks are explained in detail 

below. 

1.3.1. Prediction 

In AVC/H.264, prediction is performed by using previously coded pixels to predict 

pixels of the current frame. The aim of this operation is to construct a prediction 

block as close as possible to the original block and send the difference (error or 

residual) between these blocks instead of the original block as opposed to what is 

done in JPEG 2000. If the error is small, that means the residual block contains less 

information, the bitrate to transmit the error will be less. So, the compression 

efficiency increases. There are two types of prediction in AVC, Inter prediction and 

Intra prediction. 

 

1.3.1.1.   Inter prediction  

Inter prediction uses previously decoded pixels in different frames to predict pixels 

of the current frame as shown in Figure 1.3. In AVC, several inter prediction block 

sizes are used. A macroblock can be divided into two 16x8 blocks or two 8x16 or 

four 8x8 blocks which are called as macroblock partitions. Further, an 8x8 

macroblock partition can be divided into two 4x8 blocks or two 8x4 blocks or four 
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4x4 blocks which are called as sub-macroblock partitions. A macroblock can be 

predicted using macroblock partitions from different frames. 

  Table 1.5.    The different levels of the AVC/H.264 Standard  [9] 

Level 

Number 

Typical 

Picture 

Size 

Typical 

frame rate 

Maximum 

compressed 

bit rate 

(for VCL) in 

Non-FRExt 

profiles 

Maximum 

number of 

reference 

frames for 

typical 

picture size 

1 QCIF 15 64 kbps 4 

1b QCIF 15 128 kbps 4 

1.1 CIF or QCIF 7.5 (CIF) / 

30 (QCIF) 

192 kbps 2 (CIF) / 9 

(QCIF) 

1.2 CIF 15 384 kbps 6 

1.3 CIF 30 768 kbps 6 

2 CIF 30 2 Mbps 6 

2.1 HHR (480i or 

576i) 

30 / 25 4 Mbps 6 

2.2 SD 15 4 Mbps 5 

3 SD 30 / 25 10 Mbps 5 

3.1 1280x720p 30 14 Mbps 5 

3.2 1280x720p 60 20 Mbps 4 

4 HD Formats 60p / 30i 20 Mbps 4 

4.1 (720p or 

1080i) 

60p / 30i 50 Mbps 4 

4.2 HD Formats 60p 50 Mbps 4 

5 (720p or 

1080i) 

72 135 Mbps 5 

5.1 1920x1080p 120 / 30 240 Mbps 5 

 

However, sub-macroblock partitions of a macroblock partition must be in the same 

frame. Figure 1.5 shows the inter prediction block sizes used in AVC [3]. If a 

macroblock is inter predicted, the reference frame index or indexes and motion 

vector or vectors must be signalled to the decoder side to properly construct the 

decoded picture. 

1.3.1.2.   Intra prediction 

As opposed to inter prediction, Intra prediction uses previously coded pixels in the 

current frame as shown in Figure 1.6. It uses predicted pixels on the top and left of 

the block to be predicted. There are three different blocks in AVC intra prediction, 
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4x4, 8x8 and 16x16 blocks are used for the luminance and 8x8 blocks used for 

chrominance and these blocks are explained in the subsequent sections.  

 

    Figure 1.3.   A block Diagram of the AVC/H.264 Encoder 

 

 

        Figure 1.4.  Inter prediction showing the frames used. 

i) Luma (luminance) intra prediction. 

For Luma intra prediction, 4x4, 8x8 and 16x16 block sizes are used. The different 

prediction modes used for the luma intra prediction can be seen in Table 1.6 with the 

direction in which the pixels are taken. The 8x8 blocks are derived from the 16x16 

blocks and the 4x4 blocks are derived from the 8x8 blocks. This can be seen in 

Figure 1.7. 
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         Figure 1.5.  The different block sizes for the AVC/H.264 Inter prediction [2] 

 

Figure 1.6.  The block diagram of Intra prediction, showing the block to be predicted 

(green) the pixels to be used for prediction (orange) and predicted area in grey. 

Figure 1.7  shows the different blocks of the AVC Luma Intra prediction. It also 

shows how the smaller blocks are derived from larger blocks. Table 1.7 shows the 

intra prediction blocks; number of prediction blocks in a macroblock and number of 

possible prediction modes. A detailed description of each prediction block size is 

presented in the next section. 

a)  4x4 Luma Intra Prediction 

This is performed using reconstructed top pixels and left pixels of every 4x4 block. 

The Fig.2.7  shows 4x4 blocks with pixels( a, b, …,p) to be predicted , the top 

pixels(M,A,…,H), and left pixels (I,J,…,L). . This definitely gives a more accurate 

prediction compared to the 16x16 but, it takes a high level of signalling to achieve 

this. There are nine modes for this prediction as shown in Figure 1.9. 

Predicted Blocks
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  Table 1.6.    Different modes of prediction with their respective angles  

Mode number Name Direction 

0 Vertical (V)  

1 Horizontal (H)  

2 Mean (DC)  

3 Diagonal down-left 

(DDL) 

45° 

4 Diagonal down-right 

(DDR) 

45 ° 

5 Vertical-right (VR) 26.6°  right of V 

6 Horizontal-down (HD) 26.6°  below H 

7 Vertical-left (VL) 26.6°  left of V 

8 Horizontal-up (HU) 26.6° up from H 

 

 

Figure 1.7.  The 16x16 Blocks, 8x8 blocks and 4x4 blocks for AVC Intra  

prediction. 

Table 1.7.  Different Intra prediction Block Sizes with the number of Predictions   

per MB and number of possible predictions per mode. 

Intra prediction 

block size 

Number of prediction 

blocks in a MB 

Number of possible 

prediction modes 

         16x16 luma 1 4 

         8x8 luma 4 9 

         4x4 luma 16 9 

 

b)  16x16 Luma Intra Prediction 

This prediction method uses 4 modes of prediction , verctical, horizontal, DC and 

planar. The vertical, horizontal and DC modes are similar to those of the 4X4 Luma 

Intra prediction. The Figure 1.10 shows a diagram of the four modes used for this 

prediction. The 16x16 block predicts the pixels of a complete macroblock at the 

same time. 

16
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3 4
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8
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1 2
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        Figure 1.8.  4X4 Block and Reconstructed Neighbors. 

c) 8x8Luma Intra prediction 

Since the 4x4 Luma produces better prediction results but having a problem of more 

signals involved in the implementation, 16x16 Luma Intra prediction solves the 

signalling problem but, the prediction is less accurate. The 8x8 Luma intra prediction 

introduces a part of the Frext Amendment which solves this problem. It is very 

similar to the 4x4 intra prediction, using the same equations with 8x8 blocks. More 

on this intra prediction block is presented in chapter 3. 

ii) Chroma (chrominance) 

Each chroma component of a macroblock is predicted from the previously encoded 

chroma samples above and/or to the left of the macroblock. One prediction block is 

generated for each chroma component. There are four possible intra prediction 

modes and they are very similar to the luma 16x16 intra prediction modes. The 

chroma Macroblock size varies with sampling format, and this can be seen in Table 

1.8, showing the MB sizes and number of 4x4 Blocks per MB. 

1.3.2. Forward transform 

At the level of this block, residuals are converted from spatial domain to the 

frequency domain. Residuals are formed by taking the difference between the 

predicted pixels and the original pixels, as presented in Figure.1.11 which shows the 

original pixels, predicted pixels and the difference (residuals). This reduces the 

spatial redundancy of the prediction error signal. Former standards used floating 

point 8x8 DCT transform. AVC uses integer DCT. This is advantageous because it 

reduces computational complexity especially at the level of hardware. Also, it 

reduces encoder/decoder mismatch. The transform in AVC is done using the 

equation 1.4. 
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             Figure 1.9.  4x4 Intra prediction modes [3] 

 

             Figure 1.10.  16X16 Intra prediction Modes [3] 

  Table 1.8.    Sampling formats with Chroma MB sizes and number of 4x4 Blocks. 

Sampling Format 
 

Chroma Macroblock Size 
 

Number of 4x4 Blocks 
 

4:2:0 8x8 4 

4:2:2 16x8 8 

4:4:4 16x16 16 

 

Y = CXC
T                                    

(1.4)                                 

       

where X is the residual input of the transform block and C is the transform. 
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          Figure 1.11.  Different blocksthat is used to create the residuals. a) the      

original block. b) the predicted block c) the residuals.  

In AVC, C can be 4x4 Luma transform matrix or 8x8 luma transform (for FRExt). 

When the intra prediction 16x16 is performed, then another hadamard transform is 

applied to the DC components of the 4x4 Luma transform output. These matrices are 

shown in Figure 1.12. 
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Figure 1.12.  T4 (4x4 Transform Matrix), H4(4x4 Hadamad Transform Matrix), and 

H2(2x2 Hadamad Transform Matrix). 

Initially, the Integer 4x4 DCT was part of AVC standard and it helped to reduce 

blocking and ringing artifacts. In July of 2004, the Fidelity Range Extensions 

(FRExt, Amendment I) was added to the H.264 standard with the introduction of the 

8x8 Integer DCT which is shown in Figure 1.13. It demonstrates higher code 

efficiency compared to the main H.264 standard [7]. 

1.3.2.1. Luma transform processes 

The default transform process is usually a 4x4 Luma Transform, unless 8x8 

Transform or 16x16 is selected. The Default 4x4 Luma Transform on an MB is a 

shown on Figure 1.14 [3]. If it is an 8x8 Transform, the block the block diagram 

Figure 1.15 shows how the Transform process is carried out, using the 8x8 

Transform matrix [3]. 

a. b. c. 
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         Figure 1.13.  8x8 Integer DCT Matrix. 

 

        Figure 1.14.Default AVC Forward Integer DCT [3] 

If the 16X16 Luma Intra Prediction is selected, the default Transform is first 

performed on the 4x4 blocks of the predicted pixels. Then, a second transform, the 

Hadamad is performed on the DC components. 

 

         Figure 1.15.  AVC Frext(8x8) Forward Transform [3] 

This is because these DC components are highly correlated and the second transform 

improves the coding performance. Figure 1.16 shows how the transform for the 

16x16 Luma is performed [2]. 

1.3.2.2. Chroma transform process 

The chroma transform process is performed just like the 16x16 Luma Transform. 

The only difference is a 2x2 Hadamad Transform is performed on the DC 
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components of the blocks. Since the size of the MB and the number of 4x4 blocks 

depends on the sampling format, the Hadamad Transform for each sample is 

different.  For the 4.2.0 format, it has 8x8 Cr MB and 8x8 Cb MB. This transform is 

performed by applying the default 4x4 Transform on four 4x4 blocks that make up 

the MB, then the DC components are further transformed using the 2x2 Hadamad 

Tranform as shown in Figure 1.17  [3]. 

 

 

     Figure 1.16.  AVC 16X16 LumaTransform [3] 

The 4.2.2 sample format has 8x16 MB Cb and 8x16 Cr MB. Just like the other 

formats, the 4x4 default transform is first performed on the 4x4 blocks of the MB 

and then the DC components are transformed using 2x4 Hadamad Transforms as 

shown in Figure 1.18.  The 4.4.4 sample format has 16x16 MB Cr and 16x16 MB 

Cb. Hence, the prediction is sameas that of the 16x16 Luma Transform. 

 

         Figure 1.17.  Chroma forward transform: 4:2:0 macroblock [3] 

1.3.3. Forward quantization 

After transform, quantization is performed to reduce precision of the transform 

coefficients according to a quantization parameter. At the level of the quantization 

block, intentional errors are added to the system. This helps to increase the 
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compression performance with a reasonable distortion. If the quantization step size 

increases, more quantized coefficients will be zero which means less data to 

represent. This leads to keeping only a few coefficients for efficient representation 

and results in more distortion. More details on AVC/H.264 Quantization are found in 

chapter 3.  A  representation of the effects of these processes are shown in Figure 

1.19. 

 

 

Figure 1.18.  Chroma forward transform: 4:2:2 macroblock [3]. 

It can be seen from the figure that, Transform processes give rise to the largest 

positive element (DC) and the AC components. Then, quantization reduces most of 

the values to zero and when the Qp increases, more quantized coefficients become 

zero, hence less data to represent.  

1.3.4. Inverse quantization 

The inverse quantization does the opposite operation of the quantization process; that 

is, multiplying by a quantization parameter and more on Quantization can be found 

in Chapter 3. Figure 1.20 shows the output of inverse quantization and inverse 

transform. It can be seen that, the error in the final output increases as Quantization 

parameter increases. 

1.3.5. Inverse transform 

The reverse of the forward Transform block is performed at the level of this block 

and it is realized with the equation 1.5.  
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Residue                                   Transform 

 

Quantization with Qp 4                            Quantization with Qp 15 

Figure 1.19.  Sample output of Transform and Quantization with Qp = 4 and Qp 15, 

performed on an input, Residue. 

X   =  C
T
YqC                                 (1.5)                                                                                                                                                                                   

Where C is one of the matrices in Figure.1.12  and Yq is the inverse quantization. In 

addition to inverse transform process, rounding is also done at the level of this block 

to get the final output (in the range (-255,255). Just like the forward transform 

process, the inverse transform process is carried out depending on the Intra 

prediction block size and these are illustrated in section 1.3.5.1. 

1.3.5.1.  Luma inverse transform process 

The default inverse transform same is also uses the 4x4 Block, so it uses the 4x4 

integer DCT, and follows the block diagram in Figure 1.21 [3]. 
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Inverse Quantization with Qp = 15                   Inverse Quantization with Qp = 4 

 

Inverse Transform for Qp = 15                        Inverse Transform for Qp = 4 

Figure 1.20.  Inverse Transformed and Inverse Quantization performed on data. 

 

                 Figure 1.21.  Default AVC Inverse Forward Integer DCT [3] 

If the 16x16 Luma is selected then, DC coefficients first undergo the Hadamad 

transform then together with the other AC coefficients undergo inverse DCT as 

shown in Figure 1.22. 
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 Figure 1.22.   AVC 16X16 Luma Inverse Transform [3] 

If the 8x8 Luma Intra prediction is selected, then the outputs of the inverse quantized 

coefficients undergo the 8x8 Integer DCT, as shown in Figure 1.23. 

 

          Figure 1.23.   AVC Frext(8x8) Inverse Transform [3] 

1.3.5.2.  Chroma inverse transform process 

Just like the chroma forward transform, the inverse transform depends on the sample. 

For the 4.2.0, the inverse transform also has 8x8 Cr MB and 8x8 Cb MB.  The 

Hadamad transform is performed on the DC coefficients, then the default Integer 

DCT is performed on the output of the Hadamad together with AC coefficients as 

shown in Figure 1.24. For the 4.2.2 sample, the same procedure is carried out except 

that, 2x4 Hadamad Transform is carried out as shown in Figure 1.25 

 

 

    Figure 1.24.  Chroma Inverse transform: 4:2:0 macroblock [2] 
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 Figure 1.25.  Chroma Inverse transform: 4:2:2 macroblock [2] 

Since the 4.4.4 sample has 16X16 MB, it follows the same procedure as that of 

16X16 Luma Intra predictions. 

1.3.6. Deblocking filter 

Although the filter block is an optional block, it greatly affects the quality of the 

decoded photo by improving its subjective visual and objective quality, by reducing 

blocking distortion [9]. This filter is applied after the inverse transform at the level of 

the encoders (before reconstruction and pixel storage for future use) and in the 

decoder (for reconstruction and displaying of macroblock). The filtered image is 

used for motion-compensated prediction of future frames and this can improve 

compression performance. The deblocking filter adjusts its strength depending on the 

compression mode of the macroblock (for both intra prediction and inter prediction), 

the quantization parameter, motion vector, frame or field coding decision and the 

pixel values. The effect of the filter is decreased when the quantization step size is 

decreased and completely shuts off when the quantization step size is very small [9]. 

The vertical edges are first filtered, then the horizontal edges and the bottom row and 

right column of a macroblock are filtered when decoding the corresponding adjacent 

macroblocks. 

1.3.7. Entropy coding 

This is the last stage of video compression before the bit stream is sent to the 

decoder. After the transform and quantization is performed, most coefficients 

become zero. The entropy coding helps to prevent the continuous transmission of 

these zeros and other recurrent elements. It is a lossless compression technique and 

there are generally two techniques used in AVC.  
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 Context-based adaptive variable length coding (CAVLC)or the quantized 

transform residues after ordering them by ZigZag scanning 

 context-based adaptive binary arithmetic coding (CABAC) has a higher 

compression performance but unlike CAVLC, it is not supported in all H.264 profile 

like baseline and extended profiles 

1.4. AVC/H.264 decoder 

The AVC decoder converts the bit stream (output received form the encoder) into 

frames. The bit stream is first entropy decoded, then inverse quantized, inverse 

transformed then reconstructed according to the parameters of the encoder in 

accordance with the profiles. The block diagram of the AVC Decoder is shown in 

Figure 1.26. 

 

Figure 1.26.  A block Diagram of the AVC/H.264 Decoder
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2. OVERVIEW OF AVC/H.264 IMPLEMENTATIONS 

Since the introduction of the AVC/H.264 standard in 2004 and the addition of the 

Fidelity Range Extensions in 2008, so much hardware related research has been 

done. The aim of these is to achieve the three most import aspects of every digital 

design. That is, speed(architectures that perfrom faster), low power consumption and 

low area. Some of those implementations are stated and briefly explained in this 

chapter. 

H.264/AVC, adopts rate-distortion optimization(RDO) technique to obtain the best 

intra and inter prediction, while maximizing visual quality and minimizing 

therequired bitrate. However, full RDO calculations, searches for optimal motion 

vectors for all block sizes, and the multiple references frame procedure considerably 

increase its computational complexity. In order to reduce the complexity, [7]  

proposes a new approach for both inter- and intra-mode decisions and implementing 

with JM, that takes into account the two effective parameters, image content type and 

thequantization parameter. The fast inter-prediction mode decision approach uses 

split/merge procedure based on correlation of motion vectors and motion details of 

video objects. With this proposition, encoding time is decreased by reducing the 

number of modes used for prediction. Apart from using the standard equations, 

implementations like [9] , pixels within a block are a weighted sum of neighbouring 

pixels according to the n-th order of the Markove Linear Model. These pixels are 

obtained using the least-squares estimates of the reconstructed pixels. This method 

improves the compression for images that are rich in directional structures. Apart 

from implementing the fast prediction techniques, some implementations like [10], 

explore parallelism and pipelining techniques. These techniques enhance the speed 

and reduce the area.  Most of these implementations mention very little or nothing 

about the transform and quantization blocks which affect the overall performance of 

the encoder, but [11] gives a detailed implementation of the Intra prediction, using all 

block sizes of an AVC Frext Intra prediction, using SAD for the best mode selection 

and it reduces the total number or clock cycles compared to
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other designs, to complete one MB. More designs and implementations of the AVC 

Intra prediction can be found in the references [12, 13, 14, 15, 16, 17, and 18]. 

 

Transform, Quantization, Inverse Quantization and Inverse Transform are very 

important blocks of the AVC/H.264 CODEC, used as part of the reconstruction loop 

of the encoder and the decoder. The Integer DCT and Integer IDCT blocks for AVC  

are realised through matrix multiplication, and this is realised in this standard using 

the bufferly  algorithm(1D implementation), to reduce complexity. The work 

presented in [19,20]  sees the effect these different implementations (1D and 2D) 

have on the forward Integer DCT for both 4x4 Integer DCT and 8x8 Integer DCT. 

The 1D method reduces resource utilization and can be seen from [21] that use this 

method to implement the 8x8 forward Integer DCT and replaces large multipliers 

with adders and shifters for the 8x8 Quantization. 

Also, [22]  uses the butterfly method to calculate the 8x8 Forward Transform, but 

uses multipliers and shifters instead of adders and it  helps reduce the complexity of 

the design. Some designs like   [24], use reconfigurable multipliers for the transform 

and quantization implementations. Since it uses only one multiplier, cost can be 

considerably reduced. In the 4x4 AVC Encoder, Integer DCT and Hadamad DCT are 

used. These matrices increase area, and to reduce this, implementations like [25], 

propose a method that derives the Integer DCT coefficients from the Hadamad 

Coefficients. More work on the blocks can be found in the references, [26, 27]. 

 

Even though the decoder has many common blocks with the Encoder; some 

researches  have  also been done to make the decoder blocks less complex. Just like 

many other implementations, [28] implements 4x4 luma prediction modes using the 

required equations and the same is done for 16x16 Luma and 8x8 Chroma. The main 

aspect of this design that reduces complexity is calculating repetitive equations and 

making them available as signals. [29] Implementation uses two parallel pipelines, 

for 4x4 Block prediction and the other pipeline used to prepare data for MB loops 

and can achieve higher throughputs than other designs.  

 

In order to reduce the artefacts caused by partition of a frame into Blocks, the 

deblocking filter is required by the standard to reduce these effects. These artefact 
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effects are more evident at lower data rates as shown by [30]. Instead of using the 

traditional filter required by the standard, [31] uses histogram statistics to analyse the 

correlation between offset and filtering performance which is mostly found at the 

position of three offsets. Then, the best offset can be searched for minimum SAE 

among the three candidates. This method reduces the number of computations and 

improves image quality. Due to the high data dependency in deblocking filters, 

parallelization can be complicated, but  [32] overcomes the problems then exploits 

the implicit parallelism and reduces the synchronization overhead using the TILE64 

platform.



28 

 

3. 8X8 LUMA INTRA PREDICTION IMPLEMENTATION 

Though the H.264 standard was revolutionary to image/video compression, there was 

need to improve the standards in the terms of quality and resolution. This led to the 

introduction of   a new amendment to the standard called the Fidelity Range 

Extensions (FRExt, Amendment I). These high profiles in Table 1.4 that were 

introduced with these amendments support all the features and tools of the main 

standard. Two main coding tools too were introduced, 8X8 Transform and 8x8 

Intraprediction. For Inter prediction, no new amendments are made but  macroblocks 

larger than 8x8 are allowed to be coded by 8x8 Transform. For the high profiles, 8x8 

Intra prediction is introduced which  is just an extension of the 4x4 İntra prediction 

used in the main standard. It also has 9 modes of prediction and neighboring 

reconstructed reference pixels. The diagram in Figure 3.1  shows the different modes, 

as extension of the 4x4 intra prediction modes.  

 

     

Figure 3.1.  Modes of Prediction for 8x8 Luma Intra Predictions [35]
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When the 8x8 Luma Intra prediction is ussed, the 8x8 Forward and Inverse 

Transform, and Forward and Inverse Quantization must also be used according to the 

amendment. This new intra prediction can  improve I-Frame coding efficiency 

significantly. 

3.1.   Intra Prediction 

This design is based on two previous designs [2] and [3]. A brief review of the 

implementations, their advantages and shortcomings are explained below. 

3.1.1. H.2-4/AVC compatible intra-frame video encoder [2] 

This implementation is of the AVC/H.264 compatible Intra-frame video encoder, 

using 4x4 Luma Intra predictions, 16x16 Luma Intra predictions and 8x8 Chroma 

Intra predictions. 

The main advantages of this implementation are: 

1. It is a real-time implementation following the full specifications of the 

AVC/H.264 standard, having optional blocks like the Deblocking filter and can 

actually be used in the encoder. 

2. Instead of using simple best mode selection algorithms like SAD, SSD, SADT, 

Rate Distortion Optimization is used because it is a complexity mode decision 

algorithm. 

The short-comings of this implementation are: 

1. For this real-time design to be complete, the 8x8 Luma intra prediction is not 

available. 

2. It also tackles only the 4.2.0 chroma sample. 

3.1.2. Design of an 8x8 intra prediction module [3] 

This implementation is for 8x8 Luma Intra prediction for the FRExt standard. The 

main improvement of this implementation is to load 4x4 pixels in one clock cycle, 

instead of waiting for eight lines of pixels (half Macroblock) or sixteen lines of 

pixels (Macroblocks) to start loading pixels for best mode selection.  For the best 
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mode selection, it also uses a simple SAD (Sum of Absolute Difference) method. 

Some of the main advantages of this implementation are stated below.  

1. Given the fact that most equations are repeated for the prediction of one 8x8 

block, most of the calculations are made available as signals, hence just reused. 

One of the main uses of this method is to reduce implementation time. 

The main disadvantages are stated below: 

1. Even though it loads 4x4 blocks of pixels, the signalling for this is too much, 

which complicates the design. 

2. Also, there is very little presented about the implementation of Transform, 

Quantization, Inverse Quantization, and Inverse Transform. So, it cannot be 

fully known if 2D or 1D (Butterfly) was used for transform and if DSPs were 

used for Quantization and Inverse Quantization as clearly stated in our design. 

 

The design implemented in this thesis solves some of the problems raised by the 

designs above and makes use of some of the aspects of the designs.  Some of these 

are explained below: 

3.2.   General  System  Control. 

The general controller shows all the modules that make up the complete design, and 

how the blocks communicate with each other. The complete block diagram can be 

seen in Figure 3.2.The luma controller block stores all the incoming pixels in Block 

RAMs, generates signals and addresses to read and write pixels from and to Block 

RAMS. Also, it contains a shift register to shift read pixels to be sent to prediction 

models. The module also determines when every prediction mode is enabled with 

respect to the lines of frames being loaded. 

The blocks Transform, Quantization, Inverse transform and Inverse quantization 

carry out their respective operations and more on these blocks is explained below. 

The mode predict block carries out prediction  and sends the results to the SAD_8 

which then determines which of the predictions has the lowest sum of absolute 

difference (best prediction mode) and sends the results of the best prediction  mode 

to the transform block. The reconstruction block stores all the reconstructed pixels, 
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reads the top and left reconstructed pixels for prediction and also reads pixels to be 

sent out. Finally, the reconstructed pixels (frames) are sent to the output with the help 

of the pixels out block. 

3.2.1. Storing incoming pixels 

16 lines of buffer are used to store incoming pixels (one pixel per one clock cycle). 8 

of these lines store first eight lines of a set of MBs and the next eight lines (9 to 16) 

store the last eight lines of every MB. This structure simplifies the control of the 

block RAMS for the reading of pixels for processing. Unlike the 4x4 implementation 

explained above, the processing of the MBs starts after 8 lines of pixels have been 

loaded. This is because, instead of processing the one macroblock before processing 

the next, we processed half Mbs all across before processing the other half MB. This 

method is possible because a block uses only top and left reconstructed pixels for its 

own prediction and the order of processing is as shown in Figure 3.3. The 

reconstructed pixels are also stored in Block Rams, so 16 RAMS are used to store 

these reconstructed pixels. This is as shown in the block diagram in Figure 3.4. The 

first 8 lines of every Macroblock are stored in the Block 1.The second 8 lines of the 

Macroblocks are stored in Block 2. 

The first 8 lines of the reconstructed MBs are stored in Block 3 and the second 8 

lines of the reconstructed MBs are stored in the Block 4. The first reconstructed 

pixels are released after 16 lines of pixels have been loaded. When prediction is 

being done on pixels on Block 1, then pixels are being released from Block 3 and 

when prediction is being done on Block 2, the pixels of Block 4 are being released. 

3.2.2.   Modes implementation 

From the Figure 3.1 showing the different modes of prediction, and as it was earlier 

on stated, the prediction modes used reconstructed pixels from the top and left of the 

block. But, it can be realised that, for the top of every frame and the left of the frame, 

some of the pixels are not available for all the modes to be used. So, for the top of the 

frame, only Horizontal, DC and DC UP can be used. For the left of every frame, 

Vertical, DC and some others can be used. But for the other parts of the frame, all 

other modes can be used and the details of this can be shown in Figure 3.5.This 
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selection takes one clock cycle. The waveform below shows the selection of modes 

to set, depending on the part of frame being loaded for processing. From the wave, it 

can be seen that, there is a signal MB_cnt. This signal keeps track of the sets of MB 

being processed. It can be seen that, for the first 8x8 block, mode2_0 is enabled and 

for the remaining 8x8 blocks of the top of the image, mode1, mode2_2 and mode8. 

For the 8x8 blocks on the left of the image, only mode0, mode2_1, mode3 and 

mode7. The remaining modes are used only at the centre of the image as required. 

 

 

  Figure 3.2.  Complete Block diagram of  Frext Luma Prediction 

In total, there are 32 block RAMs used, 16 to store incoming pixels and 16 to store 

predicted reconstructed pixel. 

Inv_
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       Figure 3.4.  The Single Port Block Rams used in the 8x8 Luma Intra prediction 

3.2.3. Loading data for processing 

8 pixels are loaded from the single port block rams in one clock cycle, therefore 64 

pixels loaded in 8 clock cycles. These pixels are loaded to a shift register to facilitate 

the loading and storing processes.  Also in order to load reconstructed pixels, the left 

pixels are less complicated because before the reconstructed pixels are stored in the 

Block Rams (Blocks 3 and 4) of the Figure 3.4, the left pixels are extracted, stored in 

a flip flop and used in the next prediction sequence.  As for the top reconstructed 

pixels, when the prediction of block 2 in Figure 3.4, is taking place and the release of 

the reconstructed pixels of line 1 of block 4 taking place, the pixels of line block 4 

are also loaded for on-going prediction. The same cycle repeats itself when 

prediction of Block 1 is taking place and release of the pixels stored in block 3. 

Figure 3.3.  Order of Block processing in the implementation. 
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After 8 lines of pixels have been stored in the block Rams, then the loading of pixels 

starts, depending on which part of the MB is being processed. A signal bram_cnt_ff, 

which determines which block  

RAM is being loaded with pixels, is also used to determine which pixels are being 

processed. When bram_cnt_ff is greater than 8, then pixels in the block RAMs 

numbers 1 to 8 are being processed and vice versa. 

3.3. Best Mode Selection 

After the modes to be predicted are selected, the prediction is done and it takes one 

clock cycle. Then for the best mode to be selected, the Sum of Absolute Difference 

(SAD) is used to calculate the best mode. The mode with the lowest SAD (minimal 

error,) is the best mode.  SAD is calculated using equation 3.1. and is achieved in 4 

clock cycles.  For this to be achieved, a four stage comparator system is used, as 

shown in Figure 3.7. The lowest decides which of the modes will be used to make 

residue values available for subsequent blocks.  

 

 

Figure 3.5.   Modes that can be processed depending on the part of the frame     

being processed 
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8

1y

m

8

1x

m 


                        (3.1) 

The residue is then used as the input to the Transform block, for the process to be 

continued. 

All modes
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0
2
3
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4: Diagonal Down-Right

5: Vertical Right

     6 : Horizontal Down

     7 : Vertical Left

     6 : Horizontal Up
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Figure 3.6.   Results of the mode selection implementation. 

 

3.4. Forward Transform 

In the FRExt amendment, the 8x8 Integer DCT is used. Unlike other 

implementations that use 2D matrix multiplication or 2D fuller adders’ 

implementation, the 1D butterfly method was chosen for this implementation. This is 

because, based on our earlier project done on these different 8x8 Integer DCT 

architectures, the 1D is preferable because expensive multipliers are not used and it 

achieves a higher operating frequency compared to the other implementations. The 

1- D 8x8 Integer transform is implemented in 3 stages using the equations in the 

Table 3.1. 

 

Figure 3.7.   Four stage comparator to select best prediction mode 

comp

comp

comp

comp

V
H

DDL
DDR

VR
VL

HD
HU

comp

comp

comp

comp

DC

Minimum 
SAD(Best Mode)



36 

 

The 1D 8x8 integer DCT is accomplished with VDHL by first applying the butterfly 

to the columns, then taking a transpose. Secondly, the butterfly is applied to the rows 

and the final transpose is taken. This is as shown on the block diagram in Figure 3.8. 

 

       Figure 3.8.  Block Diagram of 1D Forward Transform. 

Hence, complete forward transform is accomplished in 6 clock cycles. 

 

3.5. Forward Quantization 

Quantization and post-scaling is generally achieved using the equations below. This 

is the point after which lossy compression is achieved. The loss of insignificant data 

starts from this point depending upon the parameter known as Quantization 

Parameter (QP). This process is achieved by using the equations below: 

Zij|         =  (|Yij|.MF + f) >>qbits                       (3.2) 

sign(Zij) =  sign(Yij)                           (3.3) 

qbits      =  15 + (P mod 6)                         (3.4) 

 

Where >> represents the shift right operation, and Y is the output of forward 

transform. According to the software model, f is 2
qbits/3

 for intra blocks or 2
qbits/6

 for 

inter blocks. MF stands for multiplication factor and every MF depends on the 

quantization parameter as shown on the Table 3.2 

Since the values of f change only when Qp changes, they are pre-calculated and 

stored in look up tables. So, there is a look up table that stores 51 values of   f, and 

just selected when the QP changes. The same method is applied to qbits calculation 

such that, instead of calculating them any time Qp changes, they are also pre-

calculated and stored in the LUT and just selected when needed 
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    Table 3.1.     Equations used for calculating the Forward Integer DCT 
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  Figure 3.9.  A sample of an 8X8 Matrix generated 

from the MF table 

Finally, the values of MF are also stored in the look up table and just one row 

selected for processing when QP changes. This storage of values in the look up table 

is illustrated in Table.3.3. The Forward Quantization block is implemented in four 

clock cycles but only three of the clock cycles directly affect the prediction time. 

During the PARAM_SEL state the parameters (appropriate Multiplication factors in 

accordance with the QF matrix) are selected from lut_1 depending on the 

Quantization parameter. This is achieved when the enable is HIGH, so does not 

affect the prediction directly. 
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Table 3.2.    The MF (Multiplication Factors) used for quantization computation 

QPmod6 (i, j) 

 MF0 

(i, j) 

 MF1 

(i, j) 

 MF2 

(i, j) 

 MF3 

(i, j) 

 MF4 

(i, j) 

 MF5 

0 13107 11428 20972 12222 16777 15481 

1 11916 10826 19174 11058 14980 14290 

2 10082 8943 15978 9675 12710 11985 

3 9362 8228 14913 8931 11984 11295 

4 8192 7346 13159 7740 10486 9777 

5 7282 6428 11570 6830 9118 8640 

 

During the first clock cycle (MULT state), multiplication and sign bit extraction 

operations are carried with their results stored in flip-flops and the operation Yij|.MF 

+ f is performed. For the second clock cycle (BIT_SHIFT state), right shift 

operations are achieved selecting the qbits value form the lut_2. 

 

Table 3.3.    The storage of pre-calculated values in the LUTs 

Qp 0 1 2 .… 49 50 51 

qbits(Qp) 16 16 16 … 24 24 24 

f(Qp) 10923 10923 10923 … 2796203 2796203 2796203 

MF(Qp) Line0 Line1 Line2 … Line0 Line1 Line2 

 

Finally, during the third clock cycle (add_sign state), the 2’s operation is performed 

to restore the original sign of the quantized pixels. The block diagram in Figure 3.10 

shows the states through which quantization is achieved. 

 

 

 

Figure 3.10.  The stages through which Forward Quantization is realized. 

3.6. Inverse Quantization 

The inverse quantization is achieved using the equation  3.4. 

INITIALIZATION PARAM_SEL        MULT BIT_SHIFT
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Wij = Zij.Vij.2
floor (QP/6)

                           (3.4) 

Where Zij are the quantized pixels and Vij are the rescaling factors which are shown 

on Table 3.4. 

Unlike the Quantization block, the values of the matrix are not stored in look up 

tables. A series of multiplexers are used to implement the matrix selection with the 

quantization parameter as control signal and this selection is in accordance with the 

sample QI matrix in Fig.4.11. This block is achieved in 2 clock cycles and the first 

clock cycle achieves the Zij.Vij part of the equation. Instead of using DSPs, adders 

are used for this implementation as the Quantization block. During the second clock 

cycle, multiplication by 2
floor (QP/6)

 is achieved by using an adder and multiplexer. The 

floor (QP/6)   value changes as Qp changes with the multiples of 6. That is, for Qp 

values 0 to 5, floor (QP/6)   is same, same goes for 6 to 12 and the pattern continues 

and this multiplexer decides on how the addition is done depending on the QP value. 

The block diagram showing the stages through which inverse quantization is 

achieved is shown in Figure 3.14. 

 

Table 3.4.    The MF (Multiplication Factors) used for quantization computation 

QPmod6 (i, j) 

 MI0 

(i, j) 

 MI1 

(i, j) 

 MI2 

(i, j) 

 MI3 

(i, j) 

 MI4 

(i, j) 

 MI5 

0 20 19 25 18 24 32 

1 22 21 28 19 26 35 

2 26 24 33 23 31 42 

3 28 26 35 25 33 45 

4 32 30 40 28 38 51 

5 36 34 46 32 43 58 

 

The whole block is implemented with the block diagram in Figure 3.12. 
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 Figure 3.11.  A sample of the 8x8 QI matrixes generated from the MI table. 
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Figure 3.12.  Shift adder for the Inverse Quantization using multiplexer to select 

appropriate line. 

 

 

 

Figure 3.13.  The  stages through which Inverse Quantization is realized. 

3.7. Inverse Transform 

The inverse transform is calculated using the equations in Table 3.5 and achieved 

with the butterfly algorithm in 6 clock cycles.  

3 clock cycles for the first inverse transform and 3 clock cycles for the second 

inverse transform. The equations for each stage are shown on the table below: The 

block diagram in Figure 3.15 shows the stages involved in the inverse transform 

calculation 

3.8. Reconstruction 

The reconstruction is done by adding the output of the inverse transform block to the 

output of the best predicted mode. In order to achieve this, the best predicted mode is 

stored in a flip flop and changes when a new prediction mode is taking place.  This 

addition takes place in one clock cycle. The reconstructed pixels are stored in Block 

RAMs, so there is a total of 16 Block RAMS used to store the reconstructed pixels. 

INITIALIZATION PARAM_MULT F_MULT
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Just like the storage of the incoming pixels, the first 8 lines are used for the storage 

of reconstructed first 8 lines of a set of MBs and the last 8 lines are used for the 

reconstructed last 8 lines of every MB.   

    Table 3.5.    The MI used for inverse quantization computation 

 

. 

 

         Figure 3.14.  Block diagram of 1D Inverse Transform 

3.9. Output pixels 

At the level of this block, reconstructed pixels are sent from the system. As 

mentioned in the processes above, the release of pixels starts when the first pixel of 

the 17
th
 line of the frame starts loading. When the pixels of the first eight lines of the 

sets of frames are loading, the pixels of the first eight frames of the reconstructed 

pixels are also being released. Also, when the last eight lines (9 to 16) of the frames 

are loading, the last eight lines of the reconstructed pixels are also release
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4. RESULTS 

The results are presented in three main groups; synthesis, simulation and visual 

results. 

4.1.  Synthesis Results 

The synthesis results for the independent blocks are also presented in Table ‘.1 and 

results of the completed design are presented in Table 4.2. This is because, the blocks 

can also be used in other designs are independent IPs or modules. It takes a total of 

22 clock cycles for one 8X8 block to be predicted; hence it takes a total of 88 clock 

cycles for one MB to be predicted. 

Table 4.1   Synthesis Results for the independent blocks. 

BLOCK LUT FF DSPs BUFG 

 

Maximum 

Frequency 

Sad_8 

(SAD 

calculation) 

9018 1425   ---  1 200MHz 

Forward  

Transform 

8155 4848   ---   1 200MHz 

Forward 

Quantization 

4802 2538 62   1 200MHz 

Inverse 

Quantization 

1906 1885   ---  1 200MHz 

Inverse 

 Transform 

11429 5784   ---  1 200MHz 

Complete Block 

Design 

  ---   ---   ---   --- 195 MHz 

 

4.2.   Simulation Results 

This section contains the waveforms for the main blocks of the design. The wave 

form in Figure 4.1 shows the loading of incoming pixels, for the first eight lines of 

the frames and also the release of predicted pixels. The first eight lines are for 

incoming pixels, enable and write and the last eight lines on the graph are for 
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released pixels enable.  This same procedure for the release and loading of pixels for 

lines 9 to 16 is shown on Figure 4.2. For lines BRAMs 8 and 16 (last lines Figure 4.1 

and Figure 4.2), it can be seen that, the read enable is also HIGH after the 

reconstructed pixels have been loaded. These are the reconstructed pixels that are 

used for further prediction of future blocks. The signals to enable prediction modes 

in accordance with the design that is, enabling only some modes for the top part of 

the frame and for the left part of the frame are as shown in Figure 4.6. 

       Table 4.2.     Synthesis Results for the for the complete block. 

Resource 

 

Utilization Available Utilization 

LUT 38016 218600 17.39% 

LUT RAM 8 70400 0.01 

FF 19351 437200 4.43 

BRAM 16 545 2.94 

DSP 62 900 6.89 

IO 23 362 6.35 

BUFG 1 32 3.13 

 

 

 

Figure 4.1.  Waveform for BRAMs (1 to 8) for the incoming pixels (first eight lines 

on the wave form) and for reconstructed pixels (last eight lines on the waveform). 

The waveform showing the predicted pixels is shown in Figure 4.3. It can be seen 

that, in accordance with Figure 4.8, not all prediction modes are active at the same 

time. They can only be active at the same time when pixels of the middle of the 

frame (luma_in (W-8, L-8)) are being loaded. The Figure 4.4 shows the outputs of 
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inputs and outputs of SAD block. It can be seen that, the output (best prediction 

mode and the corresponding residue) are available after 4 clock cycles. 

Figure 4.5 shows the output of the first (Forward) Transform block is available 3 

clock cycles later after the residue is available. Also 3 clock cycles later after the first 

forward transform, the results of the second forward transform are available as 

shown in Figure 4.6. When transform process is done, quantization starts with 

selection of appropriate values for the MF  

 

 

Figure 4.2.  Waveform for BRAMs (9 to 16) for the incoming pixels (first eight lines 

on the wave form) and for reconstructed pixels (last eight lines on the waveform) 

 

 

Figure 4.3.  Outputs of mode_predict block 

matrix, the quantization process itself which takes  and the whole process takes  3 

clock cycles as shown in Figure 4.7. The Inverse Quantization takes 2 clock cycles as  
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shown in Figure 4.8.When the results of the inverse quantization are available, the 

first inverse transform’s process starts and lasts for 3 clock cycles as shown in Figure 

4.9. After that, the second inverse transform takes place and lasts for 3 clock cycles 

as shown in Figure 4.10.  After Inverse Transform, the reconstruction process takes 1 

clock cycle. 

 

Figure 4.4. Outputs of the Sad_8 block 

 

 

Figure 4.5. The results of the first forward Transform 
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      Figure 4.6. The results of Quantization 

 

 

 Figure 4.7. The results of the second forward transform 

 

 

Figure 4.8.  The results of the inverse quantization 
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   Figure 4.9.  The results of first inverse transform 

 

 

Figure 4.10.  The results of  second transform 
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The output frames 

The sample of output frames is shown in Figure 4.11 with different Quantization 

parameters. 

 

 

 

 

 

 

 

Figure 4.11.  Original and predicted frames with Quantization Parameters 0, and 15 

using 8x8 Luma  Intra prediction 

Also, the output of a Luma 4x4 intraprediction is shown in Figure 4.12. 

       

 

 

 

 

 

  Figure 4.12.  Original and predicted frames with Quantization Parameters 0, and 15     

using 4x4 Luma Intra Prediction
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5. DISCUSSION 

The implementation of 8x8 luma presented in this project achieves a higher 

maximum frequency (195 MHz) compared to [4] with a maximum frequency of 

129.34 MHz   and [3]   with the maximum frequency not specified.  

The presented design uses 16 BRAMs for the storage of incoming pixels and 

reconstructed pixels, while [4] uses more since its prediction starts after 16 lines have 

been loaded. Compared to other designs, this design uses more flip-flops. This is 

partly caused by the fact that, other designs store all reconstructed pixels in BRAMs 

but, the presented design stores only top reconstructed pixels in BRAMs and left in 

Flip-flops. For the total number of processing clock cycles for one MB, the 

implemented design uses 88 clock cycles and [4] uses 72 clock cycles For both 

blocks, the total number of clock cycles will increase in real time implementations 

due to the addition of extra blocks like the Deblocking filter and the use of more 

efficient algorithms for best mode selection. Also, our design uses more DSPs 

because part of the Quantization block is designed without shift adders. Table 5.1 

gives a more detailed comparison between the three different implementations. 

The total number of clock cycles for processing one MB is lower of [4] and this 

could partly be because of the Transform block and Quantization blocks 

implemented. Nothing is mentioned in [4] about the Transform, Quantization, 

Inverse Transform and Inverse Quantization blocks. That is, 2D implementations 

could have been are used for the Transform and fewer clock cycles used for 

quantization block implementations.  

Though our design achieves a high maximum frequency, it can be improved by using 

a more accurate efficient mode selection algorithm like RDO also used in the JM 

reference software. (Sorting algorithms). Also, the Quantization block can be 

implemented with shift adds operators like in [23] instead of using DSPs, even 

though DSPs make the design less complicated. Our design uses the butterfly 

algorithm which is very efficient according to the analysis done in [20] and [21]. 
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Table 5.1.   Synthesis Results for the independent blocks and for the complete block. 

Property Implemented 

Design 

8x8 Luma 

Design [4] 

H.264 

Intra-

Frame 

Video 

Encoder 

[3] 

An Efficient 

Intra 

Prediction 

Hardware 

[30] 

High 

Through-

Put and 

Low 

Complexit

y H.264 

[20] 

Maximu

m 

Frequenc

y 

195 MHz 129.34 Not 

mentioned 

70MHz  94MHz  

Clock 

Cycles 

used to 

Process 

one MB 

88 72 -- 384 48 

Number 

of LUTs 

38016 26109 -- -- 4465 

Number 

of Flip 

flops 

19351 -- -- -- 2412 

Number 

of lines 

available 

before 

predictio

n starts 

8 16 16 16 Not 

mentioned 

 

Best 

Mode 

Selection 

Used 

Sum of 

Absolute 

Difference 

(SAD) 

Sum of 

Absolute 

Difference 

(SAD) 

Rate 

Distortion 

Optimizati

on (RDO) 

Not 

mentioned 

Sum of 

Absolute 

Difference 

(SAD) 

 

Integer 

DCT 

algorith

m used 

Buffer Fly 

Algorithm 

Not 

mentioned 

Buffer Fly 

Algorithm 

Not 

mentioned 

Not 

mentioned 

Quantiza

tion and 

Inverse 

Quantiza

tion 

Blocks 

 

DSPs for 

Quantization 

Not 

mentioned 

Improved 

Multiplier

s for 

Quantizati

on 

Not 

mentioned 

Not 

mentioned 
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The butterfly can be improved by using the pipe lining architectures (pipeline 

architectures). Also, Quantization and Inverse Quantization blocks can still be 

implemented with multipliers using efficient multiplication algorithms like the one 

used in [3]. 

Even though this design reduces the complexity for the storage of predicted pixels 

(incoming and predicted pixels), uses fewer number of BRAMs used, achieves a high 

maximum frequency, it still uses more resources compared to other designs. 

The comparison between the outputs of the Luma 8x8 and Luma 4x4 intra 

predictions can be seen in Table 6.2.  The mean square error is calculated by using 

the formula 

 

MSE 
1

MN
∑∑ (I(x,y) I'(x,y))2

N

x 1

M

y 1

 

 

 

 

Table 5.2.    Error of the Implemented Luma 8x8 

Intraprediction and    Luma 4x4 Intra prediction 

Prediction mode Qp  = 0 ,MSE Qp  = 15, MSE 

Luma 8x8 36.0054 36.2290 

Luma 4x4 
0.0155 1.0587 

 

The error of the 8x8 intra prediction is larger than that of the 4x4 luma intra 

prediction. This is because, the prediction matrix is larger and relationship with 

reconstructed neighbouring pixels is not fully explored. Compared to the Luma 4x4, 

signalling is less and the prediction is less complicated.

5.1 
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6. CONCLUSIONS AND SUGGESTIONS 

A less complex 8 × 8 luminance intra prediction module, which is part of the 

H.264/AVC CODEC, is implemented with respect to the specifications of the 

standard. The block-based prediction module exploits similarities between 

neighbouring image samples in the same video frame to reduce redundancy and 

compress the video. 

 

The intra prediction block is made less complicated by first prediction half of all the 

macro blocks before predicting all the other halves. This doe not only reduce 

complexity but also enables prediction to start after 8 lines of incoming pixels have 

been loaded into the Block Rams. The Forward and Inverse Transform Blocks use 

the butterfly algorithm which enables processing to done only by shift adders. 

Forward Quantization uses DSPs which increases the percentage of resources used. 

The Inverse Quantization block does not use Look up tables and implemented only 

with a series of Multiplexers and Shift adders. This reduces complexity but, the 

number of LUT used sharply increases. The frequency of the entire system is less 

than the frequency of the individual blocks, due to the primitive best mode selection 

algorithm used. 

 

Even though this block can be used in a CODEC design and the individual designs 

can also be used in designs, it can be improved mainly by changing the mode 

selection algorithm, improving the butterfly using pipelining, avoidance of DSPs in 

the Quantization block and the introduction of a Deblocking filter to remove 

artefacts. 
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