
KOCAELI UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING

MASTER’S THESIS

IMPLEMENTATION OF 8x8 LUMA INTRA PREDICTION MODULE FOR H.264/AVC

STANDARD.

 BUNJI ANTOINETTE RINGNYU

 KOCAELI 2019

i

ACKNOWLEDGEMENTS

Firstly, I will like to thank The Turkish Government and Türkiye Bursları

Organisation (YTB) for giving me the opportunity to study in Turkey, gain

enormous experience and knowledge about new technologies. In addition, I will like

to thank the entire staff of the Department of Electronics and Communication

Engineering, Kocaeli University for their tireless efforts in imparting knowledge to,

and exposing us to new Technology.

Secondly, I will like to thank my supervisor, Prof.Dr. Ali Tangel, for helping me to

transition from studies in a less developed world to all what I have experienced so

far. With the guidance and courage he gave me, I was able to understand more on

research, and my stay at Kocaeli University has been very memorable, all thanks to

him. Also, I will like to thank Prof. Dr.Oğuzhan Urhan and Muhammed Aslam, for

introducing me to Image processing, and helping me to understand both basic and

complicated image processing algorithms. In addition, I will like to thank the entire

staff of KuanTek EleKtroniks and YongaTek, for helping me to understand FPGAs.

Last but not the least, I will to express immense gratitude to my dad, Bunji Mathias

Kimbi (RIP), whose only wish was always for me to be able to pursue my dreams.

Then, my beautiful mum Rachael Muncho Bunji, for her constant prayers, and words

of encouragements especially on bad days. Also, I will like to extend a word of thank

you to my sisters Bunji Beri(RIP), Bunji Dorothy, Bunji Maureen and BunjiGetrude,

and my brother Bunji Emmanuel and step-brother Mark Ngeh. They have been a

huge part of this journey and continue to inspire me every day. In addition to this, I

will like to extend words of gratitude to the Cameroonian community as well as the

International Community in Kocaeli.

January-2019 Antoinette Ringnyu BUNJI

ii

TABLE OF CONTENTS

PREFACE AND ACKNOWLEDGEMENTS ..i
TABLE OF CONTENTS ... ii

LIST OF FIGURES ... iv
ÖZET ... viii

ABSTRACT .. ix
INTRODUCTION .. 1

1. BACKGROUND .. 3
1.1. Image/Video Basics. .. 3

 1.1.1. Colour spaces ... 3
 1.1.1.1. RGB colour space ... 3

 1.1.1.2. YCbCr colour space .. 3
 1.1.2. Video formats ... 4

1.2. AVC / H.264 Coding Standard ... 4
 1.2.1. AVC/H.264 profiles and levels ... 5

 1.2.1.1. Profiles... 6
 1.2.1.2. Levels .. 8

 1.2.1.3. Chroma sampling formats .. 8
1.3. AVC/H.264 Encoder ... 9

 1.3.1. Prediction ... 9
 1.3.1.1. Inter prediction .. 9

 1.3.1.2. Intra prediction ...10
 1.3.2. Forward transform ...14

 1.3.2.1. Luma transform processes ..16
 1.3.2.2. Chroma transform process ..17

 1.3.3. Forward quantization ..18
 1.3.4. Inverse quantization ..19

 1.3.5. Inverse transform ..19
 1.3.5.1. Luma inverse transform process ...20

 1.3.5.2. Chroma inverse transform process ..22
 1.3.6. Deblocking filter...23

 1.3.7. Entropy coding ..23
1.4. AVC/H.264 Decoder ..24

2. OVERVIEW OF AVC/H.264 IMPLEMENTATIONS .. 25
3. 8X8 LUMA INTRA PREDICTION IMPLEMENTATION 28

3.1. Intra Prediction ...29
 3.1.1. H.2-4/AVC compatible intra-frame video encoder29

 3.1.2. Design of an 8x8 intra prediction module ...29
3.2. General System Control. ...30

 3.2.1. Storing incoming pixels ...31
 3.2.2. Modes implementation...31

 3.2.3. Loading data for processing ...33
3.3. Best Mode Selection ...34

3.4. Forward Transform ...35

iii

 3.5. Forward Quantization ..36

 3.6. Inverse Quantization ..38
 3.7. Inverse Transform ..40

 3.8. Reconstruction ...40
 3.9. Output Pixels ...41

4. RESULTS ... 42
 4.1. Synthesis Results ...42

 4.2. Simulation Results ...42
 4.3. The Output Frames ..48

5. DISCUSSION ... 49
6. CONCLUSIONS AND SUGGESTIONS .. 52

REFERENCES ... 53
PERSONAL PUBLICATIONS ... 57

BIBLIOGRAPHY ... 59

iv

LIST OF FIGURES

Figure 1.1. A representation of the YCbCr standard. .. 5

Figure 1.2. The General AVC Encoder and Decoder Block Diagram...................... 6

Figure 1.3. A block Diagram of the AVC/H.264 Encoder11

Figure 1.4. Inter prediction showing the frames used. ..11

Figure 1.5. The different block sizes for the AVC/H.264 Inter prediction12

Figure 1.6. The block diagram of Intra prediction the pixels to be used for

prediction (orange) and predicted area in grey. 12

Figure 1.7. The 16x16 Blocks, 8x8 blocks and 4x4 blocks for AVC Intra

prediction. .. 13

Figure 1.8. 4X4 Block and Reconstructed Neighbors. ..14

Figure 1.9. 4x4 Intra prediction modes ..15

Figure 1.10. 6X16 Intra prediction Modes ...15

Figure 1.11. Different blocksthat is used to create the residuals.16

Figure 1.12. T4 (4x4 Transform Matrix), H4(4x4 Hadamad Transform

Matrix), and H2(2x2 Hadamad Transform Matrix). 16

Figure 1.13. 8x8 Integer DCT Matrix. ..17

Figure 1.14. Default AVC Forward Integer DCT..17

Figure 1.15. AVC Frext(8x8) Forward Transform ..17

Figure 1.16. AVC 16X16 LumaTransform ...18

Figure 1.17. Chroma forward transform: 4:2:0 macroblock18

Figure 1.18. Chroma forward transform: 4:2:2 macroblock19

Figure 1.19. Sample output of Transform and Quantization with Qp =

4 and Qp 15, performed on an input, Residue. 20

Figure 1.20. Inverse Transformed and Inverse Quantization performed on data.21

Figure 1.21. Default AVC Inverse Forward Integer DCT 21

Figure 1.22. AVC 16X16 Luma Inverse Transform ...22

Figure 1.23. AVC Frext(8x8) Inverse Transform ...22

Figure 1.24. Chroma Inverse transform: 4:2:0 macroblock22

Figure 1.25. Chroma Inverse transform: 4:2:2 macroblock23

Figure 1.26. A block Diagram of the AVC/H.264 Decoder24

Figure 3.1. Modes of Prediction for 8x8 Luma Intra Predictions 28

Figure 3.2. Complete Block diagram of Frext Luma Prediction32

Figure 3.3. Order of Block processing in the implementation.33

Figure 3.4. The Single Port Block Rams used in the 8x8 Luma Intra

prediction ... 33

Figure 3.5. Modes that can be processed depending on the part of the

frame being processed .. 34

Figure 3.6. Results of the mode selection implementation.35

file:///C:/Users/Bunji/Desktop/Bunji/Thesis-edit-3_final_4.docx%23_Toc2769586

v

Figure 3.7. Four stage comparator to select best prediction mode35

Figure 3.8. Block Diagram of 1D Forward Transform. ..36

Figure 3.9. A sample of an 8X8 Matrix generated from the MF table37

Figure 3.10. The stages through which Forward Quantization is realized.................38

Figure 3.11. A sample of the 8x8 QI matrixes generated from the MI table.39

Figure 3.12. Shift adder for the Inverse Quantization using multiplexer to

select appropriate line. .. 40

Figure 3.13. The stages through which Inverse Quantization is realized.40

Figure 3.14. Block diagram of 1D Inverse Transform..41

Figure 4.1. Waveform for BRAMs (1 to 8) for the incoming pixels (first

eight lines on the wave form) and for reconstructed pixels

(last eight lines on the waveform). .. 43

Figure 4.2. Waveform for BRAMs (9 to 16) for the incoming pixels

(first eight lines on the wave form) and for reconstructed

pixels (last eight lines on the waveform) ... 44

Figure 4.3. Outputs of mode_predict block ..44

Figure 4.4. Outputs of the Sad_8 block ...45

Figure 4.5. The results of the first forward Transform ...45

Figure 4.6. The results of Quantization ..46

Figure 4.7. The results of the second forward transform ..46

Figure 4.8. The results of the inverse quantization ...46

Figure 4.9. The results of first inverse transform ...47

Figure 4.10. The results of second transform ..47

Figure 4.11. Original and predicted frames with Quantization Parameters

0, and 15 using 8x8 Luma Intra prediction ... 48

Figure 4.12 Original and predicted frames with Quantization Parameters

0, and 15 using 4x4 Luma Intra Prediction ... 48

vi

LIST OF TABLES

Table 1.1. Average bit-rate reduction compared to prior coding schemes 5
Table 1.2. Video Formats with their resolutions and areas of use. 6

Table 1.3. AVC/H.264 Original standard profiles 7
Table 1.4. AVC FRExt Standard profiles and their characteristics 8

Table 1.5. The different levels of the AVC/H.264 Standard 10
Table 1.6. Different modes of prediction with their respective angles13

Table 1.7. Different Intra prediction Block Sizes with the number of

Predictions per MB and number of possible predictions per

mode... 13
Table 1.8. Sampling formats with Chroma MB sizes and number of 4x4

Blocks. ... 15
Table 3.1. Equations used for calculating the Forward Integer DCT37

Table 3.2. The MF (Multiplication Factors) used for quantization

computation .. 38

Table 3.3. The storage of pre-calculated values in the LUTs...................................38
Table 3.4. The MF (Multiplication Factors) used for quantization

computation .. 39
Table 3.5. The MI used for inverse quantization computation41

Table 4.1. Synthesis Results for the independent blocks. ..42
Table 4.2. Synthesis Results for the for the complete block.43

Table 5.1. Synthesis Results for the independent blocks and for the

complete block.. 50

Table 5.2. Error of the Implemented Luma 8x8 Intraprediction and Luma

4x4 Intra prediction... 51

vii

ABBREVIATIONS

1D : 1 Dimension

2D : 2 Dimension

ASIC : Application-Specific Integrated Circuit

AVC : Advanced Video Coding

BRAM : Block RAM

CABAC : Context-Adaptive Binary Arithmetic Coding

CAVLC : Context-Adaptive Variable-Length Coding

CIF : Common Intermediate Format

chroma : Chrominance

CODEC : Coder/Decoder pair

DC : Mean (Prediction Mode)

DCT : Discrete Cosine Transform

DDL : Diagonal-Down Left (Prediction Mode)

DDR : Diagonal-Down Right (Prediction Mode)

FPGA : Field-Programmable Gate Array

H : Horizontal (Prediction Mode)

H.264 : H.264/MPEG-4 Part 10 AVC (Advanced Video Coding)

HD : Horizontal Down (Prediction Mode)

HU : Horizontal Up (Prediction Mode)

HVS : Human Visual System

IDCT : Inverse Discrete Cosine Transform

IQ : Inverse Quantization

ISO : International Standards Organisation

ITU : International Telecommunication Union

JPEG : Joint Photographic Experts Group

Luma : Luminance

LUT : Look-Up-Table

MB : Macroblock

Q : Quantization

QCIF : Quarter Common Intermediate Format

Qp : Quantization Parameter

RAM : Random Access Memory

RDO : Rate Distortion Optimization

RGB : Red/Green/Blue (Color Space)

ROM : Read Only Memory

SAD : Sum Of Absolute Differences

SATD : Sum Of Absolute Transformed Difference

SNR : Signal-To-Noise Ratio

SSD : Sum Of Squared Difference

V : Vertical (Prediction Mode)

VHDL : VHSIC Hardware Description Language

VL : Vertical Left (Prediction Mode)

VR : Vertical Right (Prediction Mode)

viii

H.264 / AVC STANDART İÇİN 8x8 LUMA INTRA PREDICTION

MODÜLÜNÜN UYGULANMASI

ÖZET

AVC, 2003 yılındaki ilk tanıtımı ve ilk olarak 2004 yılında AVC Fidelity Range

Extension'ın tanıtılmasından bu yana, dijital televizyonlar üzerinden popülerlik

kazanmış ve sürekli olarak DVD-Video, mobil TV, video konferans ve internet video

akışı gibi alanlarda yaygın olarak kullanılmaktadır. ITU-T VCEG ve ISO / IEC

MPEG'in Joint Video Team(JVT)'in ortak çabası olarak H.264 / MPEG4-AVC

standardının piyasaya sürülmesinden sonra, HD TV gibi alanlarda yüksek kaliteli

video kodlama talebi nedeniyle bir değişiklik çağrısı yapıldı. Bu, AVC Fidelity

uzantısının 8x8 Intra prediction ve 8x8 transform gibi değişikliklerle sunulmasına yol

açtı.

Bu tezde, AVC FRExtCODEC'in çok önemli bir bileşeni olan 8x8 Luma Intra

prediction tasarlandı. Bu amaçla verimli tasarım mimarileri ve bunların performans

üzerindeki etkileri araştırıldı. Bu çalışmada, 4x4 Luma Intra tahmini ve 8x8 Luma

Intra tahmini için daha önceden gerçekleştirilen iki tasarım referans olarak alınmıştır.

Bunlar dönüşüm bloklarındaki Butterfly algoritmalarından, nicemleme bloğundaki

DSP(Sayısal Sinyal İşleme)’lerden ve en iyi mod seçim bloklarında SAD (Mutlak

Farkın Toplamı)’dan faydalanır. Tüm tasarımı önce test etmek ve algoritmaları daha

iyi anlamak için MATLAB kullanıldı, daha sonra da tüm tasarım ZC70C kartı ile

VHDL kullanılarak FPGA’de gerçeklendi.

Anahtar Kelimeler: FPGA, H.264, İçi Kestirim, Kuantalama, Tamsayı DCT,

VHDL, Video Kodlama.

ix

IMPLEMENTATION OF 8x8 LUMA INTRA PREDICTION MODULE FOR

H.264/AVC STANDARD

ABSTRACT

Since the introduction of AVC in 2003 and and first introduction of the AVC

Fidelity Range Extension in 2004, it has gained popularity throughout the years with

digital television, and it is continuously being used in areas like DVD-Video, mobile

TV, video conferencing and internet video streaming. After the introduction of

H.264/MPEG4-AVC standard as a collective effort of Joint Video Team (JVT) of

ITU-T VCEG and ISO/IEC MPEG, there was a call for amendment due to the

demand for the coding of higher-fidelity video in areas like HD TV. This led to the

introduction of the AVC Fidelity extension with amendments like 8x8 Intra

prediction and 8x8Transform.

In this thesis, a very important compant of the AVC FRExt CODEC, the 8x8 Luma

Intra predicion is designed, exploring efficient architectures and it’s effect on the

design. This design is made, referencing two previous designs for 4x4 Luma

Intraprediction and 8x8 Luma Intra prediction. These range from the the the use of

the bufferfly algorithms in the Transform Blocks, DSPs (Digital Signal Processing)

in the Quantization Block and SAD(Sum of Absolute Difference) in the best mode

selection blocks. The whole design is first implemented in matlab for testing

purposes and better understanding of the algorithms, then implemented in FPGA

using VDHL, targetting the ZC70C board.

Keywords: FPGA, H.264, Integer DCT, Intra Prediction, Quantization, VHDL,

Video Coding.

1

INTRODUCTION

Over the years, new image compression algorithms have been developed and

existing ones have been greatly improved to achieve high quality videos, flexibility

of implementation, and lower SNR. Even though HEVC has been recently developed

and it is gaining popularity, AVC is still widely used in many systems today such as

internet video streaming, television broadcasting, digital cinema applications and 4D

medical image compression[1] as well because it offers higher efficiency in

compression compared to previous standards[2]. This is due to its variety of issues,

from the availability of different transform matrices, different prediction methods

(Intra prediction and inter prediction), as well compression methods such as

CABAC.H.264/AVC was developed by the ITU-T Video Coding Experts Group

(VCEG) and ISO/IEC Moving Picture Experts Group (MPEG) [3]. It was officially

accepted as an international standard in 2003 and since then, a number of additions

have been made and of such was the introduction of the 8x8 Intra prediction

officially known as the AVC Frext (Fidelity Extension) Standard.

 Over the years, a variety of hardware implementations have been achieved for the

AVC compression standards most especially for the 4x4 intra prediction. These

implementations include fast prediction algorithms (best and fast prediction mode

selection), motion estimation algorithms, as well as different transform algorithms.

The hardware implementation is aimed at achieving high speed, lower power

consumption, lower area occupation and flexibility. These implementations have

been done with FPGAs, ASICs, multimedia co-processors, and general-purpose

processors. While general purpose processors have been unable to meet the

requirements, multimedia co-processors have focused on smaller frame sizes. Hence,

most hardware implementations are done on FPGA or ASICs due to their parallel

processing architecture. However, due to the high cost of ASICs, FPGAS are

generallypreferred[3].

2

In this thesis, the design and implementation of 8x8 Luma Intra prediction which is

part of the AVC/H.264 FRext standard is discussed. Some implementations are

available but they cannot be used for real time video. This is because, in the attempt

to reduce latency and processing time, some implementations [3] do not wait for 16

lines of video before starting processing. Also, in order to improve flexibility, some

implementations use 2D transform matrices as opposed to the 1D implementations

that were later introduced to increase maximum frequency. The implementation

presented in this thesis can be used for real time systems and also uses the 1D

(butterfly algorithms). The algorithm was first implemented in MATLAB for better

understanding and testing purposes. The remaining part of the thesis consists of the

Background, Efficient 8x8 Luma intra prediction Implementation, Results,

Discussion and Conclusion.

3

1. BACKGROUND

This chapter gives an overview about image processing and image compression,

AVC compression for both the AVC standard and AVC FRExt standard.

1.1. Image/Video Basics.

A video is a composition of many frames/images. Every video has specifications

such as Frame rate which is the number of frames per unit time, frame resolution

which specifies the number of pixels used to represent each frame, pixel depth which

specifies the number of pixels used to represent each pixel.

1.1.1. Colour spaces

Pixels usually indicate colour and brightness. Depending on the type of image, a

number or a set of numbers can be used to represent these properties. For

monochrome images (YCbCr), one pixel used to represent brightness and for RGB

formats, 3 different values are used to represent colour. Some of these colour spaces

include:

1.1.1.1. RGB colour space

This colour space has three colour representations (Green, Red and Blue). The

change in concentration in one of the colours reproduces a different colour. Video is

typically captured and displayed using the RGB format but these components are

highly correlated.

1.1.1.2. YCbCr colour space

This format is generally preferred in Digital Image processing. It has three

components, Y (Luma), Cb (Blue chrominance), and Cr (Red chrominance). The

human visual system is better matched to the luma (brightness) and chroma (hue and

saturation) representations, rather than RGB.

A visual representation of these different formats is shown in Figure 1.1.

4

From the visual representation in, it can be seen that the Luma component has more

information about the frame than other components. That is why most image

processing operations are done on this component. The luma component(Y) can be

calculated by a weighted average of the Red, Green and Blue components using

equation 1.1.

 Y = KrR + KgG + KbB (1.1)

Where Kr, Kg and Kb are weighting factors.

Cb and Cr components are calculated using the equations 1.2 and 1.3 respectively.

Cb = B – Y (1.2)

Cr = R – Y (1.3)

1.1.2. Video formats

Each video format has specific resolutions and each format is used for specific

applications. For example, HD is used for high definition TV and 4CIF are used for

standard Television. Table 1.2 shows the different formats, resolutions and areas

used.

1.2. AVC / H.264 Coding Standard

The AVC standard like other standards has both the encoding and the decoding

block. The main parts of this Codec system as shown in Figure 1.2 which inlude

prediction, transform/inverse transform, quantization/inverse quantization and

reconstruction. These powerful techniques lead to the robustness, less decoder

complexity and high coding efficiency of the AVC with respect to previous standards

[7].

This is evident from the data shown in Table 1.1, showing the performance

comparison of AVC to MPEG2 and MPEG4 .From the block diagram, it can also be

seen that the encoder has an internal decoder which is used in the concept of

prediction. This is because pixels of predicted sub blocks or macro blocks are used to

5

predict subsequent blocks. Since AVC is a lossy compression method, there is

generally some difference between the original frames and decoded frames.

 Figure 1.1. A representation of the YCbCr standard. a) The original

Photo b) The Y or Luma component of the Photo c) The Cr (Red

Chroma) component of the photo d) The Cb(Blue Chroma)
component of the photo.

Table 1.1. Average bit-rate reduction compared to prior coding schemes

Standard MPRG 4/ASP H.263/HLP MPEG-2

H.264/AVC 38.62% 48.80% 64.46%

MPEG 4/ ASP --- --- 42.95%

H.263/HLP --- --- 30.61%

1.2.1 AVC/H.264 profiles and levels

AVC contains a rich set of video coding tools, and not all the tools are supposed to

be used at the same time. For example sophisticated error resilience tools are not

important for the networks with very little data corruption or loss. So, the tools can

be implemented independently and the decoder decides on which set to use. Forcing

6

the decoder to implement all these tools at the same time can lead to unnecessary

complexity.

Table 1.2. Video Formats with their resolutions and areas of use.

Format

Resolution

Areas of use

Sub-QCIF

128x96

streaming video on mobile phones

Quarter CIF 176x144

Video Conferencing

CIF 352x288

closed circuit television, DVD or online video

design

4CIF 704x576

Format for H.264/AVC, Video-on-demand or

multimedia streaming services over ISDN,

Broadcast over cable and satellite.

720p 1280x720

HD television channels broadcast

1280x720HD 1920x1080

Appropriate for High Definition television

UHD 3840x2160

 Specialized video Cameras for Military

Due to this issue, the subsets (profile) of tools can be implemented at the same time.

The profiles can be separated into two groups.

1.2.1.1. Profiles

This section explains the profiles of the original standards and the profiles of the

FRExt standard.

Prediction Transform Quantization
Entropy
Encode

Reconstruction
Inverse

Transform
Inverse

Quantization

Entropy
Decode

Inverse
Quantization

Inverse
Transform

Reconstruction

Video in

Encoder

Decoder

Bit stream

Figure 1.2. The General AVC Encoder and Decoder Block

7

a) Profiles of the original standard

The profiles of the original standard can be divided into three profiles, Baseline (BP),

Extended (XP), and Main (MP). Table 1.3 gives a summary of the tools of each

profile [5].

 Table 1.3. AVC/H.264 Original standard profiles [5].

Coding Tools Baseline Main Extended

I and P Slices X X X

CAVLC X X X

CABAC X

B Slices X X

Interlaced Coding (PicAFF, MBAFF) X X

Enh. Error Resil. (FMO, ASO, RS) X X

Further Enh. Error Resil (DP) X

SP and SI Slices X

a) The profile of the FRExt Amendment

The FRExt defines four new levels which are built on the previous main profile.

these profiles are listed below:

 High (HP)

 High 10 (Hi10P)

 High 4:2:2 (Hi422P)

 High 4:4:4 (Hi444P)

The four new profiles include 3 enhancements which are:

 Adaptive macroblock-level switching between 8x8 and 4x4 transform block size.

 Encoder-specified perceptual-based quantization scaling matrices.

 Encoder-specified separate control of the quantization parameter for each chroma

component.

8

The main characteristics of these profiles can be found in the Table 1.4

1.2.1.2. Levels

Levels define the maximum data processing rate of a decoder. It puts constraints on

some video parameters such as the maximum frame rate and the maximum frame

size of a video. The Table 1.5 shows the characteristics of the different levels in

AVC/H.264.

 Table 1.4. AVC FRExt Standard profiles and their characteristics [9]

Coding Tools High High 10 High

4:2:2

High

4:4:4

Main Profile Tools X X X X

4:2:0 Chroma Format X X X X

8 Bit Sample Bit Depth X X X X

8x8 vs. 4x4 Transform

Adaptivity

X X X X

Quantization Scaling

Matrices

X X X X

Separate Cb and Cr QP

control

X X X X

Monochrome video format X X X X

9 and 10 Bit Sample Bit

Depth

 X X X

4:2:2 Chroma Format X X

11 and 12 Bit Sample Bit

Depth

 X

4:4:4 Chroma Format X

Residual Color Transform X

Predictive Lossless Coding X

1.2.1.3. Chroma sampling formats

As mentioned in the previous sections, chroma samples contain less information

about frames than the Luma sample. For this reason, representing chroma

components with less data usually may give better results in some video compression

applications. This is achieved as follows: Instead of using one Cb and one Cr pair for

each Y component, same Cb and Cr pairs are used for more than one Y component.

In the 4:4:4 sampling format, one Cb and one Cr pair is used for each luma

component. In the 4:2:2 sampling format, chroma components are sampled by two in

9

the horizontal axis which means the same Cb and Cr components are used for each

two horizontal neighbour luma components. In the 4:2:0 sampling format, which is

the commonly used format, chroma components are sampled by two both in the

horizontal and vertical directions.

1.3. AVC/H.264 encoder

The AVC/H.264 is a video compression standard which uses the macroblock system

of processing previously used in the JPEG 2000. Each macroblock (MB) is 16x16

pixels. The compression is done macroblock by macroblock until the entire frame is

covered. The Figure 1.2 shows a detailed block diagram of an AVC/H.264 encoder.

This encoder consists of the following main blocks prediction, motion estimation and

compensation, transform and quantization, inverse transform and inverse

quantization, entropy coding and reconstruction. These blocks are explained in detail

below.

1.3.1. Prediction

In AVC/H.264, prediction is performed by using previously coded pixels to predict

pixels of the current frame. The aim of this operation is to construct a prediction

block as close as possible to the original block and send the difference (error or

residual) between these blocks instead of the original block as opposed to what is

done in JPEG 2000. If the error is small, that means the residual block contains less

information, the bitrate to transmit the error will be less. So, the compression

efficiency increases. There are two types of prediction in AVC, Inter prediction and

Intra prediction.

1.3.1.1. Inter prediction

Inter prediction uses previously decoded pixels in different frames to predict pixels

of the current frame as shown in Figure 1.3. In AVC, several inter prediction block

sizes are used. A macroblock can be divided into two 16x8 blocks or two 8x16 or

four 8x8 blocks which are called as macroblock partitions. Further, an 8x8

macroblock partition can be divided into two 4x8 blocks or two 8x4 blocks or four

10

4x4 blocks which are called as sub-macroblock partitions. A macroblock can be

predicted using macroblock partitions from different frames.

 Table 1.5. The different levels of the AVC/H.264 Standard [9]

Level

Number

Typical

Picture

Size

Typical

frame rate

Maximum

compressed

bit rate

(for VCL) in

Non-FRExt

profiles

Maximum

number of

reference

frames for

typical

picture size

1 QCIF 15 64 kbps 4

1b QCIF 15 128 kbps 4

1.1 CIF or QCIF 7.5 (CIF) /

30 (QCIF)

192 kbps 2 (CIF) / 9

(QCIF)

1.2 CIF 15 384 kbps 6

1.3 CIF 30 768 kbps 6

2 CIF 30 2 Mbps 6

2.1 HHR (480i or

576i)

30 / 25 4 Mbps 6

2.2 SD 15 4 Mbps 5

3 SD 30 / 25 10 Mbps 5

3.1 1280x720p 30 14 Mbps 5

3.2 1280x720p 60 20 Mbps 4

4 HD Formats 60p / 30i 20 Mbps 4

4.1 (720p or

1080i)

60p / 30i 50 Mbps 4

4.2 HD Formats 60p 50 Mbps 4

5 (720p or

1080i)

72 135 Mbps 5

5.1 1920x1080p 120 / 30 240 Mbps 5

However, sub-macroblock partitions of a macroblock partition must be in the same

frame. Figure 1.5 shows the inter prediction block sizes used in AVC [3]. If a

macroblock is inter predicted, the reference frame index or indexes and motion

vector or vectors must be signalled to the decoder side to properly construct the

decoded picture.

1.3.1.2. Intra prediction

As opposed to inter prediction, Intra prediction uses previously coded pixels in the

current frame as shown in Figure 1.6. It uses predicted pixels on the top and left of

the block to be predicted. There are three different blocks in AVC intra prediction,

11

4x4, 8x8 and 16x16 blocks are used for the luminance and 8x8 blocks used for

chrominance and these blocks are explained in the subsequent sections.

 Figure 1.3. A block Diagram of the AVC/H.264 Encoder

 Figure 1.4. Inter prediction showing the frames used.

i) Luma (luminance) intra prediction.

For Luma intra prediction, 4x4, 8x8 and 16x16 block sizes are used. The different

prediction modes used for the luma intra prediction can be seen in Table 1.6 with the

direction in which the pixels are taken. The 8x8 blocks are derived from the 16x16

blocks and the 4x4 blocks are derived from the 8x8 blocks. This can be seen in

Figure 1.7.

12

 Figure 1.5. The different block sizes for the AVC/H.264 Inter prediction [2]

Figure 1.6. The block diagram of Intra prediction, showing the block to be predicted

(green) the pixels to be used for prediction (orange) and predicted area in grey.

Figure 1.7 shows the different blocks of the AVC Luma Intra prediction. It also

shows how the smaller blocks are derived from larger blocks. Table 1.7 shows the

intra prediction blocks; number of prediction blocks in a macroblock and number of

possible prediction modes. A detailed description of each prediction block size is

presented in the next section.

a) 4x4 Luma Intra Prediction

This is performed using reconstructed top pixels and left pixels of every 4x4 block.

The Fig.2.7 shows 4x4 blocks with pixels(a, b, …,p) to be predicted , the top

pixels(M,A,…,H), and left pixels (I,J,…,L). . This definitely gives a more accurate

prediction compared to the 16x16 but, it takes a high level of signalling to achieve

this. There are nine modes for this prediction as shown in Figure 1.9.

Predicted Blocks

13

 Table 1.6. Different modes of prediction with their respective angles

Mode number Name Direction

0 Vertical (V)

1 Horizontal (H)

2 Mean (DC)

3 Diagonal down-left

(DDL)

45°

4 Diagonal down-right

(DDR)

45 °

5 Vertical-right (VR) 26.6° right of V

6 Horizontal-down (HD) 26.6° below H

7 Vertical-left (VL) 26.6° left of V

8 Horizontal-up (HU) 26.6° up from H

Figure 1.7. The 16x16 Blocks, 8x8 blocks and 4x4 blocks for AVC Intra

prediction.

Table 1.7. Different Intra prediction Block Sizes with the number of Predictions

per MB and number of possible predictions per mode.

Intra prediction

block size

Number of prediction

blocks in a MB

Number of possible

prediction modes

 16x16 luma 1 4

 8x8 luma 4 9

 4x4 luma 16 9

b) 16x16 Luma Intra Prediction

This prediction method uses 4 modes of prediction , verctical, horizontal, DC and

planar. The vertical, horizontal and DC modes are similar to those of the 4X4 Luma

Intra prediction. The Figure 1.10 shows a diagram of the four modes used for this

prediction. The 16x16 block predicts the pixels of a complete macroblock at the

same time.

16

16

1

3 4

2

8

8

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

4

4

14

 Figure 1.8. 4X4 Block and Reconstructed Neighbors.

c) 8x8Luma Intra prediction

Since the 4x4 Luma produces better prediction results but having a problem of more

signals involved in the implementation, 16x16 Luma Intra prediction solves the

signalling problem but, the prediction is less accurate. The 8x8 Luma intra prediction

introduces a part of the Frext Amendment which solves this problem. It is very

similar to the 4x4 intra prediction, using the same equations with 8x8 blocks. More

on this intra prediction block is presented in chapter 3.

ii) Chroma (chrominance)

Each chroma component of a macroblock is predicted from the previously encoded

chroma samples above and/or to the left of the macroblock. One prediction block is

generated for each chroma component. There are four possible intra prediction

modes and they are very similar to the luma 16x16 intra prediction modes. The

chroma Macroblock size varies with sampling format, and this can be seen in Table

1.8, showing the MB sizes and number of 4x4 Blocks per MB.

1.3.2. Forward transform

At the level of this block, residuals are converted from spatial domain to the

frequency domain. Residuals are formed by taking the difference between the

predicted pixels and the original pixels, as presented in Figure.1.11 which shows the

original pixels, predicted pixels and the difference (residuals). This reduces the

spatial redundancy of the prediction error signal. Former standards used floating

point 8x8 DCT transform. AVC uses integer DCT. This is advantageous because it

reduces computational complexity especially at the level of hardware. Also, it

reduces encoder/decoder mismatch. The transform in AVC is done using the

equation 1.4.

15

 Figure 1.9. 4x4 Intra prediction modes [3]

 Figure 1.10. 16X16 Intra prediction Modes [3]

 Table 1.8. Sampling formats with Chroma MB sizes and number of 4x4 Blocks.

Sampling Format

Chroma Macroblock Size

Number of 4x4 Blocks

4:2:0 8x8 4

4:2:2 16x8 8

4:4:4 16x16 16

Y = CXC
T

(1.4)

where X is the residual input of the transform block and C is the transform.

16

 Figure 1.11. Different blocksthat is used to create the residuals. a) the

original block. b) the predicted block c) the residuals.

In AVC, C can be 4x4 Luma transform matrix or 8x8 luma transform (for FRExt).

When the intra prediction 16x16 is performed, then another hadamard transform is

applied to the DC components of the 4x4 Luma transform output. These matrices are

shown in Figure 1.12.




























1221

1111

1221

1111

4T




























1111

1111

1111

1111

4H 











11

11
2H

Figure 1.12. T4 (4x4 Transform Matrix), H4(4x4 Hadamad Transform Matrix), and

H2(2x2 Hadamad Transform Matrix).

Initially, the Integer 4x4 DCT was part of AVC standard and it helped to reduce

blocking and ringing artifacts. In July of 2004, the Fidelity Range Extensions

(FRExt, Amendment I) was added to the H.264 standard with the introduction of the

8x8 Integer DCT which is shown in Figure 1.13. It demonstrates higher code

efficiency compared to the main H.264 standard [7].

1.3.2.1. Luma transform processes

The default transform process is usually a 4x4 Luma Transform, unless 8x8

Transform or 16x16 is selected. The Default 4x4 Luma Transform on an MB is a

shown on Figure 1.14 [3]. If it is an 8x8 Transform, the block the block diagram

Figure 1.15 shows how the Transform process is carried out, using the 8x8

Transform matrix [3].

a. b. c.

17

















































361012121063

48844884

612310103126

88888888

103126612310

84488448

121063361012

88888888

H

 Figure 1.13. 8x8 Integer DCT Matrix.

 Figure 1.14.Default AVC Forward Integer DCT [3]

If the 16X16 Luma Intra Prediction is selected, the default Transform is first

performed on the 4x4 blocks of the predicted pixels. Then, a second transform, the

Hadamad is performed on the DC components.

 Figure 1.15. AVC Frext(8x8) Forward Transform [3]

This is because these DC components are highly correlated and the second transform

improves the coding performance. Figure 1.16 shows how the transform for the

16x16 Luma is performed [2].

1.3.2.2. Chroma transform process

The chroma transform process is performed just like the 16x16 Luma Transform.

The only difference is a 2x2 Hadamad Transform is performed on the DC

18

components of the blocks. Since the size of the MB and the number of 4x4 blocks

depends on the sampling format, the Hadamad Transform for each sample is

different. For the 4.2.0 format, it has 8x8 Cr MB and 8x8 Cb MB. This transform is

performed by applying the default 4x4 Transform on four 4x4 blocks that make up

the MB, then the DC components are further transformed using the 2x2 Hadamad

Tranform as shown in Figure 1.17 [3].

 Figure 1.16. AVC 16X16 LumaTransform [3]

The 4.2.2 sample format has 8x16 MB Cb and 8x16 Cr MB. Just like the other

formats, the 4x4 default transform is first performed on the 4x4 blocks of the MB

and then the DC components are transformed using 2x4 Hadamad Transforms as

shown in Figure 1.18. The 4.4.4 sample format has 16x16 MB Cr and 16x16 MB

Cb. Hence, the prediction is sameas that of the 16x16 Luma Transform.

 Figure 1.17. Chroma forward transform: 4:2:0 macroblock [3]

1.3.3. Forward quantization

After transform, quantization is performed to reduce precision of the transform

coefficients according to a quantization parameter. At the level of the quantization

block, intentional errors are added to the system. This helps to increase the

19

compression performance with a reasonable distortion. If the quantization step size

increases, more quantized coefficients will be zero which means less data to

represent. This leads to keeping only a few coefficients for efficient representation

and results in more distortion. More details on AVC/H.264 Quantization are found in

chapter 3. A representation of the effects of these processes are shown in Figure

1.19.

Figure 1.18. Chroma forward transform: 4:2:2 macroblock [3].

It can be seen from the figure that, Transform processes give rise to the largest

positive element (DC) and the AC components. Then, quantization reduces most of

the values to zero and when the Qp increases, more quantized coefficients become

zero, hence less data to represent.

1.3.4. Inverse quantization

The inverse quantization does the opposite operation of the quantization process; that

is, multiplying by a quantization parameter and more on Quantization can be found

in Chapter 3. Figure 1.20 shows the output of inverse quantization and inverse

transform. It can be seen that, the error in the final output increases as Quantization

parameter increases.

1.3.5. Inverse transform

The reverse of the forward Transform block is performed at the level of this block

and it is realized with the equation 1.5.

20

Residue Transform

Quantization with Qp 4 Quantization with Qp 15

Figure 1.19. Sample output of Transform and Quantization with Qp = 4 and Qp 15,

performed on an input, Residue.

X = C
T
YqC (1.5)

Where C is one of the matrices in Figure.1.12 and Yq is the inverse quantization. In

addition to inverse transform process, rounding is also done at the level of this block

to get the final output (in the range (-255,255). Just like the forward transform

process, the inverse transform process is carried out depending on the Intra

prediction block size and these are illustrated in section 1.3.5.1.

1.3.5.1. Luma inverse transform process

The default inverse transform same is also uses the 4x4 Block, so it uses the 4x4

integer DCT, and follows the block diagram in Figure 1.21 [3].

21

Inverse Quantization with Qp = 15 Inverse Quantization with Qp = 4

Inverse Transform for Qp = 15 Inverse Transform for Qp = 4

Figure 1.20. Inverse Transformed and Inverse Quantization performed on data.

 Figure 1.21. Default AVC Inverse Forward Integer DCT [3]

If the 16x16 Luma is selected then, DC coefficients first undergo the Hadamad

transform then together with the other AC coefficients undergo inverse DCT as

shown in Figure 1.22.

22

 Figure 1.22. AVC 16X16 Luma Inverse Transform [3]

If the 8x8 Luma Intra prediction is selected, then the outputs of the inverse quantized

coefficients undergo the 8x8 Integer DCT, as shown in Figure 1.23.

 Figure 1.23. AVC Frext(8x8) Inverse Transform [3]

1.3.5.2. Chroma inverse transform process

Just like the chroma forward transform, the inverse transform depends on the sample.

For the 4.2.0, the inverse transform also has 8x8 Cr MB and 8x8 Cb MB. The

Hadamad transform is performed on the DC coefficients, then the default Integer

DCT is performed on the output of the Hadamad together with AC coefficients as

shown in Figure 1.24. For the 4.2.2 sample, the same procedure is carried out except

that, 2x4 Hadamad Transform is carried out as shown in Figure 1.25

 Figure 1.24. Chroma Inverse transform: 4:2:0 macroblock [2]

23

 Figure 1.25. Chroma Inverse transform: 4:2:2 macroblock [2]

Since the 4.4.4 sample has 16X16 MB, it follows the same procedure as that of

16X16 Luma Intra predictions.

1.3.6. Deblocking filter

Although the filter block is an optional block, it greatly affects the quality of the

decoded photo by improving its subjective visual and objective quality, by reducing

blocking distortion [9]. This filter is applied after the inverse transform at the level of

the encoders (before reconstruction and pixel storage for future use) and in the

decoder (for reconstruction and displaying of macroblock). The filtered image is

used for motion-compensated prediction of future frames and this can improve

compression performance. The deblocking filter adjusts its strength depending on the

compression mode of the macroblock (for both intra prediction and inter prediction),

the quantization parameter, motion vector, frame or field coding decision and the

pixel values. The effect of the filter is decreased when the quantization step size is

decreased and completely shuts off when the quantization step size is very small [9].

The vertical edges are first filtered, then the horizontal edges and the bottom row and

right column of a macroblock are filtered when decoding the corresponding adjacent

macroblocks.

1.3.7. Entropy coding

This is the last stage of video compression before the bit stream is sent to the

decoder. After the transform and quantization is performed, most coefficients

become zero. The entropy coding helps to prevent the continuous transmission of

these zeros and other recurrent elements. It is a lossless compression technique and

there are generally two techniques used in AVC.

24

 Context-based adaptive variable length coding (CAVLC)or the quantized

transform residues after ordering them by ZigZag scanning

 context-based adaptive binary arithmetic coding (CABAC) has a higher

compression performance but unlike CAVLC, it is not supported in all H.264 profile

like baseline and extended profiles

1.4. AVC/H.264 decoder

The AVC decoder converts the bit stream (output received form the encoder) into

frames. The bit stream is first entropy decoded, then inverse quantized, inverse

transformed then reconstructed according to the parameters of the encoder in

accordance with the profiles. The block diagram of the AVC Decoder is shown in

Figure 1.26.

Figure 1.26. A block Diagram of the AVC/H.264 Decoder

25

2. OVERVIEW OF AVC/H.264 IMPLEMENTATIONS

Since the introduction of the AVC/H.264 standard in 2004 and the addition of the

Fidelity Range Extensions in 2008, so much hardware related research has been

done. The aim of these is to achieve the three most import aspects of every digital

design. That is, speed(architectures that perfrom faster), low power consumption and

low area. Some of those implementations are stated and briefly explained in this

chapter.

H.264/AVC, adopts rate-distortion optimization(RDO) technique to obtain the best

intra and inter prediction, while maximizing visual quality and minimizing

therequired bitrate. However, full RDO calculations, searches for optimal motion

vectors for all block sizes, and the multiple references frame procedure considerably

increase its computational complexity. In order to reduce the complexity, [7]

proposes a new approach for both inter- and intra-mode decisions and implementing

with JM, that takes into account the two effective parameters, image content type and

thequantization parameter. The fast inter-prediction mode decision approach uses

split/merge procedure based on correlation of motion vectors and motion details of

video objects. With this proposition, encoding time is decreased by reducing the

number of modes used for prediction. Apart from using the standard equations,

implementations like [9] , pixels within a block are a weighted sum of neighbouring

pixels according to the n-th order of the Markove Linear Model. These pixels are

obtained using the least-squares estimates of the reconstructed pixels. This method

improves the compression for images that are rich in directional structures. Apart

from implementing the fast prediction techniques, some implementations like [10],

explore parallelism and pipelining techniques. These techniques enhance the speed

and reduce the area. Most of these implementations mention very little or nothing

about the transform and quantization blocks which affect the overall performance of

the encoder, but [11] gives a detailed implementation of the Intra prediction, using all

block sizes of an AVC Frext Intra prediction, using SAD for the best mode selection

and it reduces the total number or clock cycles compared to

26

other designs, to complete one MB. More designs and implementations of the AVC

Intra prediction can be found in the references [12, 13, 14, 15, 16, 17, and 18].

Transform, Quantization, Inverse Quantization and Inverse Transform are very

important blocks of the AVC/H.264 CODEC, used as part of the reconstruction loop

of the encoder and the decoder. The Integer DCT and Integer IDCT blocks for AVC

are realised through matrix multiplication, and this is realised in this standard using

the bufferly algorithm(1D implementation), to reduce complexity. The work

presented in [19,20] sees the effect these different implementations (1D and 2D)

have on the forward Integer DCT for both 4x4 Integer DCT and 8x8 Integer DCT.

The 1D method reduces resource utilization and can be seen from [21] that use this

method to implement the 8x8 forward Integer DCT and replaces large multipliers

with adders and shifters for the 8x8 Quantization.

Also, [22] uses the butterfly method to calculate the 8x8 Forward Transform, but

uses multipliers and shifters instead of adders and it helps reduce the complexity of

the design. Some designs like [24], use reconfigurable multipliers for the transform

and quantization implementations. Since it uses only one multiplier, cost can be

considerably reduced. In the 4x4 AVC Encoder, Integer DCT and Hadamad DCT are

used. These matrices increase area, and to reduce this, implementations like [25],

propose a method that derives the Integer DCT coefficients from the Hadamad

Coefficients. More work on the blocks can be found in the references, [26, 27].

Even though the decoder has many common blocks with the Encoder; some

researches have also been done to make the decoder blocks less complex. Just like

many other implementations, [28] implements 4x4 luma prediction modes using the

required equations and the same is done for 16x16 Luma and 8x8 Chroma. The main

aspect of this design that reduces complexity is calculating repetitive equations and

making them available as signals. [29] Implementation uses two parallel pipelines,

for 4x4 Block prediction and the other pipeline used to prepare data for MB loops

and can achieve higher throughputs than other designs.

In order to reduce the artefacts caused by partition of a frame into Blocks, the

deblocking filter is required by the standard to reduce these effects. These artefact

27

effects are more evident at lower data rates as shown by [30]. Instead of using the

traditional filter required by the standard, [31] uses histogram statistics to analyse the

correlation between offset and filtering performance which is mostly found at the

position of three offsets. Then, the best offset can be searched for minimum SAE

among the three candidates. This method reduces the number of computations and

improves image quality. Due to the high data dependency in deblocking filters,

parallelization can be complicated, but [32] overcomes the problems then exploits

the implicit parallelism and reduces the synchronization overhead using the TILE64

platform.

28

3. 8X8 LUMA INTRA PREDICTION IMPLEMENTATION

Though the H.264 standard was revolutionary to image/video compression, there was

need to improve the standards in the terms of quality and resolution. This led to the

introduction of a new amendment to the standard called the Fidelity Range

Extensions (FRExt, Amendment I). These high profiles in Table 1.4 that were

introduced with these amendments support all the features and tools of the main

standard. Two main coding tools too were introduced, 8X8 Transform and 8x8

Intraprediction. For Inter prediction, no new amendments are made but macroblocks

larger than 8x8 are allowed to be coded by 8x8 Transform. For the high profiles, 8x8

Intra prediction is introduced which is just an extension of the 4x4 İntra prediction

used in the main standard. It also has 9 modes of prediction and neighboring

reconstructed reference pixels. The diagram in Figure 3.1 shows the different modes,

as extension of the 4x4 intra prediction modes.

Figure 3.1. Modes of Prediction for 8x8 Luma Intra Predictions [35]

29

When the 8x8 Luma Intra prediction is ussed, the 8x8 Forward and Inverse

Transform, and Forward and Inverse Quantization must also be used according to the

amendment. This new intra prediction can improve I-Frame coding efficiency

significantly.

3.1. Intra Prediction

This design is based on two previous designs [2] and [3]. A brief review of the

implementations, their advantages and shortcomings are explained below.

3.1.1. H.2-4/AVC compatible intra-frame video encoder [2]

This implementation is of the AVC/H.264 compatible Intra-frame video encoder,

using 4x4 Luma Intra predictions, 16x16 Luma Intra predictions and 8x8 Chroma

Intra predictions.

The main advantages of this implementation are:

1. It is a real-time implementation following the full specifications of the

AVC/H.264 standard, having optional blocks like the Deblocking filter and can

actually be used in the encoder.

2. Instead of using simple best mode selection algorithms like SAD, SSD, SADT,

Rate Distortion Optimization is used because it is a complexity mode decision

algorithm.

The short-comings of this implementation are:

1. For this real-time design to be complete, the 8x8 Luma intra prediction is not

available.

2. It also tackles only the 4.2.0 chroma sample.

3.1.2. Design of an 8x8 intra prediction module [3]

This implementation is for 8x8 Luma Intra prediction for the FRExt standard. The

main improvement of this implementation is to load 4x4 pixels in one clock cycle,

instead of waiting for eight lines of pixels (half Macroblock) or sixteen lines of

pixels (Macroblocks) to start loading pixels for best mode selection. For the best

30

mode selection, it also uses a simple SAD (Sum of Absolute Difference) method.

Some of the main advantages of this implementation are stated below.

1. Given the fact that most equations are repeated for the prediction of one 8x8

block, most of the calculations are made available as signals, hence just reused.

One of the main uses of this method is to reduce implementation time.

The main disadvantages are stated below:

1. Even though it loads 4x4 blocks of pixels, the signalling for this is too much,

which complicates the design.

2. Also, there is very little presented about the implementation of Transform,

Quantization, Inverse Quantization, and Inverse Transform. So, it cannot be

fully known if 2D or 1D (Butterfly) was used for transform and if DSPs were

used for Quantization and Inverse Quantization as clearly stated in our design.

The design implemented in this thesis solves some of the problems raised by the

designs above and makes use of some of the aspects of the designs. Some of these

are explained below:

3.2. General System Control.

The general controller shows all the modules that make up the complete design, and

how the blocks communicate with each other. The complete block diagram can be

seen in Figure 3.2.The luma controller block stores all the incoming pixels in Block

RAMs, generates signals and addresses to read and write pixels from and to Block

RAMS. Also, it contains a shift register to shift read pixels to be sent to prediction

models. The module also determines when every prediction mode is enabled with

respect to the lines of frames being loaded.

The blocks Transform, Quantization, Inverse transform and Inverse quantization

carry out their respective operations and more on these blocks is explained below.

The mode predict block carries out prediction and sends the results to the SAD_8

which then determines which of the predictions has the lowest sum of absolute

difference (best prediction mode) and sends the results of the best prediction mode

to the transform block. The reconstruction block stores all the reconstructed pixels,

31

reads the top and left reconstructed pixels for prediction and also reads pixels to be

sent out. Finally, the reconstructed pixels (frames) are sent to the output with the help

of the pixels out block.

3.2.1. Storing incoming pixels

16 lines of buffer are used to store incoming pixels (one pixel per one clock cycle). 8

of these lines store first eight lines of a set of MBs and the next eight lines (9 to 16)

store the last eight lines of every MB. This structure simplifies the control of the

block RAMS for the reading of pixels for processing. Unlike the 4x4 implementation

explained above, the processing of the MBs starts after 8 lines of pixels have been

loaded. This is because, instead of processing the one macroblock before processing

the next, we processed half Mbs all across before processing the other half MB. This

method is possible because a block uses only top and left reconstructed pixels for its

own prediction and the order of processing is as shown in Figure 3.3. The

reconstructed pixels are also stored in Block Rams, so 16 RAMS are used to store

these reconstructed pixels. This is as shown in the block diagram in Figure 3.4. The

first 8 lines of every Macroblock are stored in the Block 1.The second 8 lines of the

Macroblocks are stored in Block 2.

The first 8 lines of the reconstructed MBs are stored in Block 3 and the second 8

lines of the reconstructed MBs are stored in the Block 4. The first reconstructed

pixels are released after 16 lines of pixels have been loaded. When prediction is

being done on pixels on Block 1, then pixels are being released from Block 3 and

when prediction is being done on Block 2, the pixels of Block 4 are being released.

3.2.2. Modes implementation

From the Figure 3.1 showing the different modes of prediction, and as it was earlier

on stated, the prediction modes used reconstructed pixels from the top and left of the

block. But, it can be realised that, for the top of every frame and the left of the frame,

some of the pixels are not available for all the modes to be used. So, for the top of the

frame, only Horizontal, DC and DC UP can be used. For the left of every frame,

Vertical, DC and some others can be used. But for the other parts of the frame, all

other modes can be used and the details of this can be shown in Figure 3.5.This

32

selection takes one clock cycle. The waveform below shows the selection of modes

to set, depending on the part of frame being loaded for processing. From the wave, it

can be seen that, there is a signal MB_cnt. This signal keeps track of the sets of MB

being processed. It can be seen that, for the first 8x8 block, mode2_0 is enabled and

for the remaining 8x8 blocks of the top of the image, mode1, mode2_2 and mode8.

For the 8x8 blocks on the left of the image, only mode0, mode2_1, mode3 and

mode7. The remaining modes are used only at the centre of the image as required.

 Figure 3.2. Complete Block diagram of Frext Luma Prediction

In total, there are 32 block RAMs used, 16 to store incoming pixels and 16 to store

predicted reconstructed pixel.

Inv_

active_frame_in
luma_valid_in

luma_valid_out

active_frame_out
luma_controller

reconstruct pixel_out luma_outenable
luma_in

intrapred_top_module

mode_predict

sad_8 trans_8 quant_8

invtrans_8 inv_quant8

33

 Figure 3.4. The Single Port Block Rams used in the 8x8 Luma Intra prediction

3.2.3. Loading data for processing

8 pixels are loaded from the single port block rams in one clock cycle, therefore 64

pixels loaded in 8 clock cycles. These pixels are loaded to a shift register to facilitate

the loading and storing processes. Also in order to load reconstructed pixels, the left

pixels are less complicated because before the reconstructed pixels are stored in the

Block Rams (Blocks 3 and 4) of the Figure 3.4, the left pixels are extracted, stored in

a flip flop and used in the next prediction sequence. As for the top reconstructed

pixels, when the prediction of block 2 in Figure 3.4, is taking place and the release of

the reconstructed pixels of line 1 of block 4 taking place, the pixels of line block 4

are also loaded for on-going prediction. The same cycle repeats itself when

prediction of Block 1 is taking place and release of the pixels stored in block 3.

Figure 3.3. Order of Block processing in the implementation.

34

After 8 lines of pixels have been stored in the block Rams, then the loading of pixels

starts, depending on which part of the MB is being processed. A signal bram_cnt_ff,

which determines which block

RAM is being loaded with pixels, is also used to determine which pixels are being

processed. When bram_cnt_ff is greater than 8, then pixels in the block RAMs

numbers 1 to 8 are being processed and vice versa.

3.3. Best Mode Selection

After the modes to be predicted are selected, the prediction is done and it takes one

clock cycle. Then for the best mode to be selected, the Sum of Absolute Difference

(SAD) is used to calculate the best mode. The mode with the lowest SAD (minimal

error,) is the best mode. SAD is calculated using equation 3.1. and is achieved in 4

clock cycles. For this to be achieved, a four stage comparator system is used, as

shown in Figure 3.7. The lowest decides which of the modes will be used to make

residue values available for subsequent blocks.

Figure 3.5. Modes that can be processed depending on the part of the frame

being processed

|y)(x,Predy)Orig(x,|)PredSAD(Orig,
8

1y

m

8

1x

m 


 (3.1)

The residue is then used as the input to the Transform block, for the process to be

continued.

All modes

1,2,8

0
2
3
7

2

0: vertical

1:Horizontal

2: DC

3: Diagonal Down-left

4: Diagonal Down-Right

5: Vertical Right

 6 : Horizontal Down

 7 : Vertical Left

 6 : Horizontal Up

35

Figure 3.6. Results of the mode selection implementation.

3.4. Forward Transform

In the FRExt amendment, the 8x8 Integer DCT is used. Unlike other

implementations that use 2D matrix multiplication or 2D fuller adders’

implementation, the 1D butterfly method was chosen for this implementation. This is

because, based on our earlier project done on these different 8x8 Integer DCT

architectures, the 1D is preferable because expensive multipliers are not used and it

achieves a higher operating frequency compared to the other implementations. The

1- D 8x8 Integer transform is implemented in 3 stages using the equations in the

Table 3.1.

Figure 3.7. Four stage comparator to select best prediction mode

comp

comp

comp

comp

V
H

DDL
DDR

VR
VL

HD
HU

comp

comp

comp

comp

DC

Minimum
SAD(Best Mode)

36

The 1D 8x8 integer DCT is accomplished with VDHL by first applying the butterfly

to the columns, then taking a transpose. Secondly, the butterfly is applied to the rows

and the final transpose is taken. This is as shown on the block diagram in Figure 3.8.

 Figure 3.8. Block Diagram of 1D Forward Transform.

Hence, complete forward transform is accomplished in 6 clock cycles.

3.5. Forward Quantization

Quantization and post-scaling is generally achieved using the equations below. This

is the point after which lossy compression is achieved. The loss of insignificant data

starts from this point depending upon the parameter known as Quantization

Parameter (QP). This process is achieved by using the equations below:

Zij| = (|Yij|.MF + f) >>qbits (3.2)

sign(Zij) = sign(Yij) (3.3)

qbits = 15 + (P mod 6) (3.4)

Where >> represents the shift right operation, and Y is the output of forward

transform. According to the software model, f is 2
qbits/3

 for intra blocks or 2
qbits/6

 for

inter blocks. MF stands for multiplication factor and every MF depends on the

quantization parameter as shown on the Table 3.2

Since the values of f change only when Qp changes, they are pre-calculated and

stored in look up tables. So, there is a look up table that stores 51 values of f, and

just selected when the QP changes. The same method is applied to qbits calculation

such that, instead of calculating them any time Qp changes, they are also pre-

calculated and stored in the LUT and just selected when needed

37

 Table 3.1. Equations used for calculating the Forward Integer DCT



































34313431

45424542

34313431

12101210

34313431

45424542

34313431

1210110 2

kfkfkfkfkfkfkfkf

kfkfkfkfkfkfkfkf

kfkfkfkfkfkfkfkf

kfkfkfkfkfkfkfkf

kfkfkfkfkfkfkfkf

kfkfkfkfkfkfkfkf

kfkfkfkfkfkfkfkf

kfkfkfkfkfkfkfkf

QF

 Figure 3.9. A sample of an 8X8 Matrix generated

from the MF table

Finally, the values of MF are also stored in the look up table and just one row

selected for processing when QP changes. This storage of values in the look up table

is illustrated in Table.3.3. The Forward Quantization block is implemented in four

clock cycles but only three of the clock cycles directly affect the prediction time.

During the PARAM_SEL state the parameters (appropriate Multiplication factors in

accordance with the QF matrix) are selected from lut_1 depending on the

Quantization parameter. This is achieved when the enable is HIGH, so does not

affect the prediction directly.

38

Table 3.2. The MF (Multiplication Factors) used for quantization computation

QPmod6 (i, j)

 MF0

(i, j)

 MF1

(i, j)

 MF2

(i, j)

 MF3

(i, j)

 MF4

(i, j)

 MF5

0 13107 11428 20972 12222 16777 15481

1 11916 10826 19174 11058 14980 14290

2 10082 8943 15978 9675 12710 11985

3 9362 8228 14913 8931 11984 11295

4 8192 7346 13159 7740 10486 9777

5 7282 6428 11570 6830 9118 8640

During the first clock cycle (MULT state), multiplication and sign bit extraction

operations are carried with their results stored in flip-flops and the operation Yij|.MF

+ f is performed. For the second clock cycle (BIT_SHIFT state), right shift

operations are achieved selecting the qbits value form the lut_2.

Table 3.3. The storage of pre-calculated values in the LUTs

Qp 0 1 2 .… 49 50 51

qbits(Qp) 16 16 16 … 24 24 24

f(Qp) 10923 10923 10923 … 2796203 2796203 2796203

MF(Qp) Line0 Line1 Line2 … Line0 Line1 Line2

Finally, during the third clock cycle (add_sign state), the 2’s operation is performed

to restore the original sign of the quantized pixels. The block diagram in Figure 3.10

shows the states through which quantization is achieved.

Figure 3.10. The stages through which Forward Quantization is realized.

3.6. Inverse Quantization

The inverse quantization is achieved using the equation 3.4.

INITIALIZATION PARAM_SEL MULT BIT_SHIFT

39

Wij = Zij.Vij.2
floor (QP/6)

 (3.4)

Where Zij are the quantized pixels and Vij are the rescaling factors which are shown

on Table 3.4.

Unlike the Quantization block, the values of the matrix are not stored in look up

tables. A series of multiplexers are used to implement the matrix selection with the

quantization parameter as control signal and this selection is in accordance with the

sample QI matrix in Fig.4.11. This block is achieved in 2 clock cycles and the first

clock cycle achieves the Zij.Vij part of the equation. Instead of using DSPs, adders

are used for this implementation as the Quantization block. During the second clock

cycle, multiplication by 2
floor (QP/6)

 is achieved by using an adder and multiplexer. The

floor (QP/6) value changes as Qp changes with the multiples of 6. That is, for Qp

values 0 to 5, floor (QP/6) is same, same goes for 6 to 12 and the pattern continues

and this multiplexer decides on how the addition is done depending on the QP value.

The block diagram showing the stages through which inverse quantization is

achieved is shown in Figure 3.14.

Table 3.4. The MF (Multiplication Factors) used for quantization computation

QPmod6 (i, j)

 MI0

(i, j)

 MI1

(i, j)

 MI2

(i, j)

 MI3

(i, j)

 MI4

(i, j)

 MI5

0 20 19 25 18 24 32

1 22 21 28 19 26 35

2 26 24 33 23 31 42

3 28 26 35 25 33 45

4 32 30 40 28 38 51

5 36 34 46 32 43 58

The whole block is implemented with the block diagram in Figure 3.12.



































34313431

45424542

34313431

12101210

34313431

45424542

34313431

1210110 2

kikikikikikikiki

kikikikikikikiki

kikikikikikikiki

kikikikikikikiki

kikikikikikikiki

kikikikikikikiki

kikikikikikikiki

kikikikikikikiki

QI

 Figure 3.11. A sample of the 8x8 QI matrixes generated from the MI table.

40

Figure 3.12. Shift adder for the Inverse Quantization using multiplexer to select

appropriate line.

Figure 3.13. The stages through which Inverse Quantization is realized.

3.7. Inverse Transform

The inverse transform is calculated using the equations in Table 3.5 and achieved

with the butterfly algorithm in 6 clock cycles.

3 clock cycles for the first inverse transform and 3 clock cycles for the second

inverse transform. The equations for each stage are shown on the table below: The

block diagram in Figure 3.15 shows the stages involved in the inverse transform

calculation

3.8. Reconstruction

The reconstruction is done by adding the output of the inverse transform block to the

output of the best predicted mode. In order to achieve this, the best predicted mode is

stored in a flip flop and changes when a new prediction mode is taking place. This

addition takes place in one clock cycle. The reconstructed pixels are stored in Block

RAMs, so there is a total of 16 Block RAMS used to store the reconstructed pixels.

INITIALIZATION PARAM_MULT F_MULT

41

Just like the storage of the incoming pixels, the first 8 lines are used for the storage

of reconstructed first 8 lines of a set of MBs and the last 8 lines are used for the

reconstructed last 8 lines of every MB.

 Table 3.5. The MI used for inverse quantization computation

.

 Figure 3.14. Block diagram of 1D Inverse Transform

3.9. Output pixels

At the level of this block, reconstructed pixels are sent from the system. As

mentioned in the processes above, the release of pixels starts when the first pixel of

the 17
th
 line of the frame starts loading. When the pixels of the first eight lines of the

sets of frames are loading, the pixels of the first eight frames of the reconstructed

pixels are also being released. Also, when the last eight lines (9 to 16) of the frames

are loading, the last eight lines of the reconstructed pixels are also release

42

4. RESULTS

The results are presented in three main groups; synthesis, simulation and visual

results.

4.1. Synthesis Results

The synthesis results for the independent blocks are also presented in Table ‘.1 and

results of the completed design are presented in Table 4.2. This is because, the blocks

can also be used in other designs are independent IPs or modules. It takes a total of

22 clock cycles for one 8X8 block to be predicted; hence it takes a total of 88 clock

cycles for one MB to be predicted.

Table 4.1 Synthesis Results for the independent blocks.

BLOCK LUT FF DSPs BUFG

Maximum

Frequency

Sad_8

(SAD

calculation)

9018 1425 --- 1 200MHz

Forward

Transform

8155 4848 --- 1 200MHz

Forward

Quantization

4802 2538 62 1 200MHz

Inverse

Quantization

1906 1885 --- 1 200MHz

Inverse

 Transform

11429 5784 --- 1 200MHz

Complete Block

Design

 --- --- --- --- 195 MHz

4.2. Simulation Results

This section contains the waveforms for the main blocks of the design. The wave

form in Figure 4.1 shows the loading of incoming pixels, for the first eight lines of

the frames and also the release of predicted pixels. The first eight lines are for

incoming pixels, enable and write and the last eight lines on the graph are for

43

released pixels enable. This same procedure for the release and loading of pixels for

lines 9 to 16 is shown on Figure 4.2. For lines BRAMs 8 and 16 (last lines Figure 4.1

and Figure 4.2), it can be seen that, the read enable is also HIGH after the

reconstructed pixels have been loaded. These are the reconstructed pixels that are

used for further prediction of future blocks. The signals to enable prediction modes

in accordance with the design that is, enabling only some modes for the top part of

the frame and for the left part of the frame are as shown in Figure 4.6.

 Table 4.2. Synthesis Results for the for the complete block.

Resource

Utilization Available Utilization

LUT 38016 218600 17.39%

LUT RAM 8 70400 0.01

FF 19351 437200 4.43

BRAM 16 545 2.94

DSP 62 900 6.89

IO 23 362 6.35

BUFG 1 32 3.13

Figure 4.1. Waveform for BRAMs (1 to 8) for the incoming pixels (first eight lines

on the wave form) and for reconstructed pixels (last eight lines on the waveform).

The waveform showing the predicted pixels is shown in Figure 4.3. It can be seen

that, in accordance with Figure 4.8, not all prediction modes are active at the same

time. They can only be active at the same time when pixels of the middle of the

frame (luma_in (W-8, L-8)) are being loaded. The Figure 4.4 shows the outputs of

44

inputs and outputs of SAD block. It can be seen that, the output (best prediction

mode and the corresponding residue) are available after 4 clock cycles.

Figure 4.5 shows the output of the first (Forward) Transform block is available 3

clock cycles later after the residue is available. Also 3 clock cycles later after the first

forward transform, the results of the second forward transform are available as

shown in Figure 4.6. When transform process is done, quantization starts with

selection of appropriate values for the MF

Figure 4.2. Waveform for BRAMs (9 to 16) for the incoming pixels (first eight lines

on the wave form) and for reconstructed pixels (last eight lines on the waveform)

Figure 4.3. Outputs of mode_predict block

matrix, the quantization process itself which takes and the whole process takes 3

clock cycles as shown in Figure 4.7. The Inverse Quantization takes 2 clock cycles as

45

shown in Figure 4.8.When the results of the inverse quantization are available, the

first inverse transform’s process starts and lasts for 3 clock cycles as shown in Figure

4.9. After that, the second inverse transform takes place and lasts for 3 clock cycles

as shown in Figure 4.10. After Inverse Transform, the reconstruction process takes 1

clock cycle.

Figure 4.4. Outputs of the Sad_8 block

Figure 4.5. The results of the first forward Transform

46

 Figure 4.6. The results of Quantization

 Figure 4.7. The results of the second forward transform

Figure 4.8. The results of the inverse quantization

47

 Figure 4.9. The results of first inverse transform

Figure 4.10. The results of second transform

48

The output frames

The sample of output frames is shown in Figure 4.11 with different Quantization

parameters.

Figure 4.11. Original and predicted frames with Quantization Parameters 0, and 15

using 8x8 Luma Intra prediction

Also, the output of a Luma 4x4 intraprediction is shown in Figure 4.12.

 Figure 4.12. Original and predicted frames with Quantization Parameters 0, and 15

using 4x4 Luma Intra Prediction

49

5. DISCUSSION

The implementation of 8x8 luma presented in this project achieves a higher

maximum frequency (195 MHz) compared to [4] with a maximum frequency of

129.34 MHz and [3] with the maximum frequency not specified.

The presented design uses 16 BRAMs for the storage of incoming pixels and

reconstructed pixels, while [4] uses more since its prediction starts after 16 lines have

been loaded. Compared to other designs, this design uses more flip-flops. This is

partly caused by the fact that, other designs store all reconstructed pixels in BRAMs

but, the presented design stores only top reconstructed pixels in BRAMs and left in

Flip-flops. For the total number of processing clock cycles for one MB, the

implemented design uses 88 clock cycles and [4] uses 72 clock cycles For both

blocks, the total number of clock cycles will increase in real time implementations

due to the addition of extra blocks like the Deblocking filter and the use of more

efficient algorithms for best mode selection. Also, our design uses more DSPs

because part of the Quantization block is designed without shift adders. Table 5.1

gives a more detailed comparison between the three different implementations.

The total number of clock cycles for processing one MB is lower of [4] and this

could partly be because of the Transform block and Quantization blocks

implemented. Nothing is mentioned in [4] about the Transform, Quantization,

Inverse Transform and Inverse Quantization blocks. That is, 2D implementations

could have been are used for the Transform and fewer clock cycles used for

quantization block implementations.

Though our design achieves a high maximum frequency, it can be improved by using

a more accurate efficient mode selection algorithm like RDO also used in the JM

reference software. (Sorting algorithms). Also, the Quantization block can be

implemented with shift adds operators like in [23] instead of using DSPs, even

though DSPs make the design less complicated. Our design uses the butterfly

algorithm which is very efficient according to the analysis done in [20] and [21].

50

Table 5.1. Synthesis Results for the independent blocks and for the complete block.

Property Implemented

Design

8x8 Luma

Design [4]

H.264

Intra-

Frame

Video

Encoder

[3]

An Efficient

Intra

Prediction

Hardware

[30]

High

Through-

Put and

Low

Complexit

y H.264

[20]

Maximu

m

Frequenc

y

195 MHz 129.34 Not

mentioned

70MHz 94MHz

Clock

Cycles

used to

Process

one MB

88 72 -- 384 48

Number

of LUTs

38016 26109 -- -- 4465

Number

of Flip

flops

19351 -- -- -- 2412

Number

of lines

available

before

predictio

n starts

8 16 16 16 Not

mentioned

Best

Mode

Selection

Used

Sum of

Absolute

Difference

(SAD)

Sum of

Absolute

Difference

(SAD)

Rate

Distortion

Optimizati

on (RDO)

Not

mentioned

Sum of

Absolute

Difference

(SAD)

Integer

DCT

algorith

m used

Buffer Fly

Algorithm

Not

mentioned

Buffer Fly

Algorithm

Not

mentioned

Not

mentioned

Quantiza

tion and

Inverse

Quantiza

tion

Blocks

DSPs for

Quantization

Not

mentioned

Improved

Multiplier

s for

Quantizati

on

Not

mentioned

Not

mentioned

51

The butterfly can be improved by using the pipe lining architectures (pipeline

architectures). Also, Quantization and Inverse Quantization blocks can still be

implemented with multipliers using efficient multiplication algorithms like the one

used in [3].

Even though this design reduces the complexity for the storage of predicted pixels

(incoming and predicted pixels), uses fewer number of BRAMs used, achieves a high

maximum frequency, it still uses more resources compared to other designs.

The comparison between the outputs of the Luma 8x8 and Luma 4x4 intra

predictions can be seen in Table 6.2. The mean square error is calculated by using

the formula

MSE
1

MN
∑∑ (I(x,y) I'(x,y))2

N

x 1

M

y 1

Table 5.2. Error of the Implemented Luma 8x8

Intraprediction and Luma 4x4 Intra prediction

Prediction mode Qp = 0 ,MSE Qp = 15, MSE

Luma 8x8 36.0054 36.2290

Luma 4x4
0.0155 1.0587

The error of the 8x8 intra prediction is larger than that of the 4x4 luma intra

prediction. This is because, the prediction matrix is larger and relationship with

reconstructed neighbouring pixels is not fully explored. Compared to the Luma 4x4,

signalling is less and the prediction is less complicated.

5.1

52

6. CONCLUSIONS AND SUGGESTIONS

A less complex 8 × 8 luminance intra prediction module, which is part of the

H.264/AVC CODEC, is implemented with respect to the specifications of the

standard. The block-based prediction module exploits similarities between

neighbouring image samples in the same video frame to reduce redundancy and

compress the video.

The intra prediction block is made less complicated by first prediction half of all the

macro blocks before predicting all the other halves. This doe not only reduce

complexity but also enables prediction to start after 8 lines of incoming pixels have

been loaded into the Block Rams. The Forward and Inverse Transform Blocks use

the butterfly algorithm which enables processing to done only by shift adders.

Forward Quantization uses DSPs which increases the percentage of resources used.

The Inverse Quantization block does not use Look up tables and implemented only

with a series of Multiplexers and Shift adders. This reduces complexity but, the

number of LUT used sharply increases. The frequency of the entire system is less

than the frequency of the individual blocks, due to the primitive best mode selection

algorithm used.

Even though this block can be used in a CODEC design and the individual designs

can also be used in designs, it can be improved mainly by changing the mode

selection algorithm, improving the butterfly using pipelining, avoidance of DSPs in

the Quantization block and the introduction of a Deblocking filter to remove

artefacts.

53

REFERENCES

[1] Sanchez V., Nasiopoulos P. and Abugharbieh R., Lossless Compression Of

4D Medical Images Using H.264/AVC,II. International Conference on

Acoustics, Speech, and Signal Processing, Toulouse, France, 14-19 May 2006.

[2] Richardson I.E., Video Coding for next Generation Multimedia. 2 ed., John

Wiley & Sons Ltd, West Sussex, United Kingdom, 2003.

[3] Günay Ömer, Design of H.264/AVC Compatible Intra-Frame Video Encoder

on FPGA Programmable Logic Devices, Master Degree Thesis, Middle East

Technical University, The Graduate School of Natural and Applied Sciences,

Ankara,2014, 12617751.

[4] Kim Trønnes, Design of an 8x8 Intra Prediction Module, Master Degree

Thesis, Norwegian University of Science and Technology, Department of

Electronics and Telecommunications, 2014.

[5] Sullivan Gary J., Topiwala Pankaj N., The H.264/AVC Advanced Video

Coding Standard: Overview and Introduction to the Fidelity Range Extensions,

Optical Science and Technology, the SPIE 49
th
 Annual Meeting, Denver

Colorado, United States, 2-6 August 2004.

[6] Amer I., Wael Badawy, Graham Jullien, A High-Performance Hardware

Implementation of The H.264Simplified 8x8 Transformation and Quantization,

International Conference on Acoustics, Speech, and Signal Processing,

Philadelphia, PA, USA , 23-23 March 2005.

[7] Jafari Mehdi, Kasaei Shohreh, Fast Intra- and Inter-Prediction Mode Decision

in H.264 Advanced Video Coding, 10th IEEE Singapore International

Conference on Communication Systems, Singapore, Singapore, 30 Oct.-1 Nov.

2006

[8] Richardson Iain E. G., H.264 and MPEG-4 Video Compression, 1st ed., John

Wiley & Sons Ltd, West Sussex, United Kingdom ,2004.

[9] Garcia Diogo Caetano, De Queiroz Ricardo L., Least-Squares Directional

Intra Prediction in H.264/AVC, IEEE SIGNAL PROCESSING LETTERS,

2010, 17(10), 831 - 834.

54

[10] Muralidha P., Vasundhara Devi R., Ramarao C.B., Murthy N.S., An Efficient

Architecture for H.264 Intra Prediction Mode Decision Algorithm, Recent

Researches in Communications, Automation, Signal Processing,

Nanotechnology, Astronomy and Nuclear Physics, Cambridge, UK, 20-22

February 2011.

[11] Kibum Suh, An Efficient Architecture of Intra Prediction and TQ/IQIT

Module of Video Encoder, Indian Journal of Science and Technology, 2016,

9(43), 352-355.

[12] IMRAN ULLAH KHAN, ANSARI M. A., Overview and Implementation of

Intra predictions for H.264/AVC Video CODEC, International Journal of

Electronics and Communication Engineering, 2014, 3(4), 177-186.

[13] Al-Jammas Mohammed H., Hamdoon Noor N., FPGA Implementation of

Intra Frame for H.264/AVC Based DC Mode, International Journal of

Computer Engineering and Information Technology, 2017, 9(11), 264–270.

[14] Patel Jignesh, Suthar Haresh, Gadit Jagrut, VHDL Implementation of H.264

Video Coding Standard, International Journal of Reconfigurable and

Embedded Systems 2012, 1(3), 95-102.

[15] Adda Chahrazed, Benyamina Abou Elhassen, Design of the H264 application

and Implementation on Heterogeneous Architectures, International Journal of

Computer Applications, 2017, 180 (7).

[16] Loukil Hassen, Werda Imen, Masmoudi Nouri, Atitallah Ahmed Ben,

Kadionik Patrice, FPGA Design of an Intra 16 × 16 Module for H.264/AVC

Video Encoder, Circuits and Systems, 2010, 1, 18-29.

[17] Bharathi S.H, Nagabhushana Raju K., Ramachandran S., Implementation of

Horizontal and Vertical Intra prediction Modes for H.264 Encoder,

International Journal of Electronics and Communication Engineering, 2011,

4(1), 105-114.

[18] Orlandić Milica, Svarstad Kjetil, A High-Throughput and Low-Complexity

H.264/AVC Intra 16×16 Prediction Architecture for HD Video Sequences,

21st Telecommunications Forum Telfor (TELFOR), Belgrade, Serbia, 26-28

Nov. 2013.

[19] Ringnyu B., Tangel A., Implementation Of Forward 8x8 Integer DCT For

H.264/AVC Frext., The Eurasia Proceedings of Science, Technology,

Engineering & Mathematics , 2017, 1(1), 353- 358.

[20] Ringnyu B., Tangel A.,, Implementation of Different Architectures of forward

4×4 integer DCT for H.264/AVC encoder, 10th International Conference on

Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 30 Nov.-2

Dec. 2017.

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8255768
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8255768

55

[21] Park Jeoong Sung, Ogunfunmi Tokunbo, A New Hardware Implementation Of

The H.264 8x8 Transform And Quantization, International Conference on

Acoustics, Speech and Signal Processing, Taipei, Taiwan ,. 19-24 April 2009

[22] Ozgur Tasdizen, Ilker Hamzaoglu,A High Performance and Low-Cost

Hardware Architecture for H.264 Transform and Quantization Algorithms,13th

European Signal Processing Conference, Antalya, Turkey, 4-8 Sept. 2005.

[23] Nadeem Muhammad, Wong Stephan, Kuzmanov Georgi,An Efficient

Realization of Forward Integer Transform in H.264/AVC Intra-frame Encoder,

International Conference on Embedded Computer Systems: Architectures,

Modeling and Simulation, Samos, Greece, 19-22 July 2010.

[24] Lubobya Charles S., Dlodlo Mqele M., Jager Gerhard De. , Ferguson Keith

L., Optimization of 4x4 Integer DCT in H.264/AVC Encoder, The 14
th

annual Southern Africa Telecommunication Networks and Applications

Conference, East London, South Africa,4-7 September 2011.

[25] Marques1 R., Silva1 V., Faria1 S., Navarro1 A., Assuncao P., Fast Conversion

of H.264/AVC Integer Transform Coefficients into DCT Coefficients

,Proceedings of the International Conference on Signal Processing and

Multimedia Applications, Setúbal, Portugal, August 7-10, 2006.

[26] Logashanmugam.E, Ramachandran.R, An Efficient Hardware Architecture for

H.264 Transform and Quantization Algorithms, International Journal of

Computer Science and Network Security, 2008, 8(6), 300-3012.

[27] Atitallah Ben, Loukil H., Kadionik P., Masmoudi N., Advanced Design of

TQ/IQT Component for H.264/AVC Based on SoPC Validation, WSEAS

Transactions on circuit and systems, 2012, 11 (7), 211-223.

[28] Sahin E. and Hamzaoglu I.,An Efficient Intra Prediction Hardware

Architecture for H.264 Video Decoding,10th Euromicro Conference on Digital

System Design Architectures, Methods and Tools (DSD 2007), Lubeck,

Germany, 29-31 Aug. 2007.

[29] He Xun, Zhou Dajiang, Zhou Jinjia, Goto Satoshi, High profile intra

prediction architecture for H.264, International SoC Design Conference

(ISOCC), Busan, South Korea, 22-24 November 2009.

[30] Raja Gulistan, Mirza Muhammad Javed, In-loop Deblocking Filter for

H.264/AVC Video,2
nd

 International Symposium on Communications,

Control and Signal Processing, Marrakech, Morocco, 13-15 March 2006,

235-240.

[31] Hsia Shih-Chang, Hsu Wei-Chih, Lee Sheng-Chieh, Low-complexity high-

quality adaptive deblocking filter for H.264/AVC system, Signal Processing:

Image Communication, 2012, 27(7), 749-759.

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7077326
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7077326
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4341432
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4341432
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:%22Xun%20He%22&newsearch=true&sortType=newest
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:%22Dajiang%20Zhou%22&newsearch=true&sortType=newest
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:%22Jinjia%20Zhou%22&newsearch=true&sortType=newest
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:%22Satoshi%20Goto%22&newsearch=true&sortType=newest
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5410748
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5410748
https://www.sciencedirect.com/science/journal/09235965
https://www.sciencedirect.com/science/journal/09235965
https://www.sciencedirect.com/science/journal/09235965/27/7

56

[32] Yan Chenggang et al, Parallel Deblocking Filter For H.264/AVC Implemented

On Tile64 Platform, IEEE International Conference on Multimedia and Expo,

Barcelona, Spain, 11-15 July 2011.

[33] S. Kwon, A. Tamhankar and K.R. Rao, Overview of H.264 / MPEG-4 Part

10, Visual Communication and Image Representation, 2006, 17, 186-216.

[34] Chen Yi-Hau, Tsai Chen-Han, Chen Yu-Jen, Chen Liang-Gee, Algorithm and

architecture design for intra prediction in H. 264/AVC high profile, Picture

Coding Symposium, Lisboa, Portugal, 7-9 November 2007.

[35] https://www.intechopen.com/books/signal-processing/spatial-prediction-in-

the-h-264-avc-frext-coder-and-its-optimization, (Date Visited: 1
st
 August

2018).

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5997811

57

PUBLICATIONS AND WORKS

[1] Ringnyu B. A., Tangel A., Implementation of Different Architectures of

forward 4×4 integer DCT for H.264/AVC encoder, 10th International

Conference on Electrical and Electronics Engineering (ELECO), Bursa,

Turkey, 30 Nov.-2 Dec. 2017.

[2] Ringnyu B. A., Tangel A, Implementation of Forward 8x8 Integer DCT for

H.264/AVC FRExt, The Eurasia Proceedings of Science, Technology,

Engineering & Mathematics, 2017, 1(1), 353 – 358.

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Bunji%20Antoinette%22&searchWithin=%22Last%20Name%22:%22Ringnyu%22&newsearch=true&sortType=newest
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Ali%22&searchWithin=%22Last%20Name%22:%22Tangel%22&newsearch=true&sortType=newest
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8255768
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8255768
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Bunji%20Antoinette%22&searchWithin=%22Last%20Name%22:%22Ringnyu%22&newsearch=true&sortType=newest
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Ali%22&searchWithin=%22Last%20Name%22:%22Tangel%22&newsearch=true&sortType=newest

58

BIBLIOGRAPHY

Antoinette was born in Kumbo, in the Nothwest Region of Cameroon on the 6
th

February 1991. She did her primary education in Tabenken , secondary and high

school in Kumbo. In 2010, she was admitted to the Faculty of Engineering and

Technology, University of Buea to study Electrical and Electronics Engineering.

While studying there, she carried out internships at Matrix Telecoms where she

eventually worked after graduation in December 2014. In 2015, she was awarded the

Turkish Government scholarship, and studied the Turkish Language for one

academic year. In September 2016, she started her course work at the Department of

Electronics and Communications Engineering at Kocaeli University, Turkey. She did

an Internship at YongaTek Elektroniks, where she started working on FPGAs. From

April 2018, she has been interning at Kuantek Elektroniks, still working on FPGAs.

In January 2019, she completed an MSC in Electronics and Communication

Engineering.

