
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 
FOR 

THE DEGREE OF MASTER OF SCIENCE 
IN

COMPUTER ENGINEERING

A SMART CITY INTELLIGENT ROUTING APPLICATION FOR 

WHEELCHAIR USERS USING K-MEANS CLUSTERING

A THESIS SUBMITTED TO 
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 
KOCAELİ UNIVERSITY

2020

FIRDAWS BAI FARUKH

BY

KOCAELİ



IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 
FOR 

THE DEGREE OF MASTER OF SCIENCE 
IN

COMPUTER ENGINEERING

A SMART CITY INTELLIGENT ROUTING APPLICATION FOR 

WHEELCHAIR USERS USING K-MEANS CLUSTERING

Thesis Defense Date: 17.08.2020

A THESIS SUBMITTED TO 

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 

KOCAELİ UNIVERSITY

...........................

...........................

...........................

Prof.Dr. Nevcihan DURU

Kocaeli UniversitySupervisor,

Assoc.Prof.Dr. Ahmet SAYAR

Kocaeli UniversityJury member,

Assoc.Prof.Dr. Tamer DAĞ

Kadir Has UniversityJury member,

FIRDAWS BAI FARUKH

BY



i 

 

 
 
 
 
PREFACE AND ACKNOWLEDGMENTS 

The main subject of this thesis was to provide a software solution for the transportation 
and movement problems faced by the wheelchair users in Izmit. The idea stemmed 
from my passion of both smart city applications and the inclusivity through ubiquitous 
accessibility phenomenon of our world. 
 
I could not have successfully completed my research without the confidence, support 
and guidance of my scholarly advisor, Prof. Dr. Nevcihan DURU for whom I have my 
most sincere gratitude.  
 
I would also like to acknowledge the contributions made by the Disabled and Elderly 
Services Branch Office of Izmit as well as by Gizem AYDIN, who both incorporated 
me into their daily activities, collaborated with me and allowed me the chance to ask, 
learn, observe, and understand the hardships of wheelchair users for my research. I 
also appreciate the scholarship and financial support provided by the Turks Abroad 
and Related Communities (YTB) institution of Turkey. 
 
And most importantly, I am grateful for my resilient mother, Shamim SULEIMAN 
who has been the greatest source of strength in my life and my sisters and brother 
whom we have braced this life together and have supported, guided, and advised me 
with love and understanding. Thank you all for your unwavering support.  

July, 2020 Firdaws FARUKH 
 
 

  



ii 

 

 
 
 
 
CONTENTS 

PREFACE AND ACKNOWLEDGMENTS ................................................................ i	
CONTENTS ................................................................................................................. ii	
TABLE OF FIGURES ................................................................................................ iv	
TABLES DIRECTORY ............................................................................................... v	
SYMBOLS AND ABBREVIATIONS ....................................................................... vi	
ÖZET .......................................................................................................................... vii	
ABSTRACT .............................................................................................................. viii	
INTRODUCTION ........................................................................................................ 1	
1.	 SMART CITIES ...................................................................................................... 4	

1.1.	 Defining Smart Cities ..................................................................................... 4	
1.2.	 Characteristics of Smart Cities ....................................................................... 5	

1.2.1.	 Smart economy ..................................................................................... 7	
1.2.2.	 Smart environment ............................................................................... 7	
1.2.3.	 Smart government ................................................................................ 7	
1.2.4.	 Smart living .......................................................................................... 8	
1.2.5.	 Smart mobility ...................................................................................... 9	
1.2.6.	 Smart people ......................................................................................... 9	

1.3.	 Indexing/Ranking of Smart Cities .................................................................. 9	
1.4.	 Examples of Smart Cities in Turkey ............................................................. 11	
1.5.	 Examples of Smart Cities in The World ....................................................... 18	

2.	 RELATED WORK ................................................................................................ 25	
2.1.	 Accessibility Issues for Wheelchair Users .................................................... 25	
2.2.	 Literature Review on Accessibility Solutions for Wheelchair Users ........... 27	
2.3.	 Solutions for Wheelchair Users in Izmit ....................................................... 34	

3.	 TECHNICAL DETAILS ....................................................................................... 41	
3.1.	 Flutter Framework ........................................................................................ 41	
3.2.	 Firebase ......................................................................................................... 43	
3.3.	 Google APIs .................................................................................................. 44	
3.4.	 PostgreSQL Database ................................................................................... 45	
3.5.	 General Transit Feed Specification (GTFS) ................................................. 46	
3.6.	 Quantum Geographical Information System Desktop .................................. 48	
3.7.	 PgRouting ..................................................................................................... 49	
3.8.	 K-Means Clustering and The Scikit-Learn Library ...................................... 50	
3.9.	 Node.JS ......................................................................................................... 54	

4.	METHOD .............................................................................................................. 56	
4.1.	 Mobile Application Development using Flutter Framework ........................ 59	
4.2.	 Node.JS Backend Route Recommendation Processing ................................ 59	

4.2.1.	 Google Firebase ................................................................................. 60	
4.2.2.	 Bus route querying ............................................................................. 61	
4.2.3.	 Walk directions using Google APIs ................................................... 62	

4.3.	 Sidewalk Mapping ........................................................................................ 63	
4.4.	 Smart Sidewalk Routing using PGRouting .................................................. 66	
4.5.	 Application Workflow .................................................................................. 69	



iii 

 

4.6.	 Collection of Data ......................................................................................... 75	
4.7.	 K-means Clustering and Smart Route Recommendation ............................. 80	

5.	 FINDINGS AND DISCUSSION .......................................................................... 85	
5.1.	 Clustering Results ......................................................................................... 86	
5.2.	 Route Recommendation Analysis ................................................................. 91	
5.3.	 Discussion ..................................................................................................... 95	

6.	 CONCLUSION AND RECOMMENDATIONS .................................................. 98	
REFERENCES ......................................................................................................... 100	
PUBLICATIONS AND WORKS ............................................................................ 106	
BIOGRAPHY .......................................................................................................... 107	
 
  



iv 

 

 
 
 
 
TABLE OF FIGURES 

Figure 1.1.	 Boyd Cohen’s smart city wheel ............................................................ 6	
Figure 1.2.	 20 minute neighborhood concept ....................................................... 19	
Figure 1.3.	 Smart parking systems in Santander ................................................... 21	
Figure 1.4.	 An example of a centralized heating system ...................................... 23	
Figure 1.5.	 An example of a centralized cooling system ...................................... 24	
Figure 2.1.	 An example of an obstructed ramp ..................................................... 35	
Figure 2.2.	 An inaccessible ramp from one side in Izmit ..................................... 36	
Figure 4.1.	 User registration flowchart ................................................................. 56	
Figure 4.2.	 Route request process flowchart ......................................................... 57	
Figure 4.3.	 Sidewalk and ramps map of Izmit from OSM .................................... 64	
Figure 4.4.	 Sidewalk mapping of pilot area .......................................................... 65	
Figure 4.5.	 An example screenshot of AccessMap ............................................... 65	
Figure 4.6.	 A snapshot of the PostGIS table contents of imported sidewalk 

map ..................................................................................................... 67	
Figure 4.7.	 Before node and After node ............................................................... 68	
Figure 4.8.	 User profile, Main screen, and Search screen examples .................... 70	
Figure 4.9.	 Before and After route request ........................................................... 71	
Figure 4.10.	 Route request outcome ....................................................................... 73	
Figure 4.11.	 Color-coded Directions and Rating Dialog ........................................ 74	
Figure 4.12.	 a) Number of users based on gender and wheelchair type b) 

Distribution of age per gender c) Distribution of age per 
wheelchair type ................................................................................... 76	

Figure 4.13.	 Silhouette Coefficient method output. ................................................ 83	
Figure 5.1.	 Elbow method graph of SSE against K for 20 users .......................... 86	
Figure 5.2.	 K-Means clustering result ................................................................... 87	
Figure 5.3.	 Distribution of gender and wheelchair types per cluster .................... 88	
Figure 5.4.	 Test data distribution and clustering result ......................................... 88	
Figure 5.5.	 Clustering of a test user ...................................................................... 89	
Figure 5.6.	 Clustering of test users ....................................................................... 90	
Figure 5.7.	 Result after clustering the test users ................................................... 91	
Figure 5.8.	 Route rating per cluster and corresponding clusters ........................... 92	
Figure 5.9.	 Request results for 63 year old male with manual wheelchair ........... 94	
Figure 5.10.	 Route rating per cluster including the new test users ......................... 95	
 
  



v 

 

 
 
 
 
TABLES DIRECTORY 

Table 4.1.	 User profiles ....................................................................................... 77	
Table 4.2.	 Overview of routes used for simulation ............................................. 78	
Table 4.3.	 Total number of ratings per route ....................................................... 79	
Table 4.4.	 Sample of user profile raw data .......................................................... 82	
Table 4.5.	 Example output of encoded and standardized user profile data ......... 82	
Table 5.1.	 Test user profiles ................................................................................ 90	
 
  



vi 

 

 
 
 
 
SYMBOLS AND ABBREVIATIONS 

Abbreviations 

AI : Artificial Intelligence 
API : Application Programming Interfaces 
CIMI : Cities In Motion Index 
GIS : Geographic Information Systems 
GSV  : Google Street View 
GTFS : General Transit Feed Specification 
ICT  : Information and Communication Technologies 
IoT : Internet of Things 
İSBAK : İstanbul Bilişim ve Akıllı Kent Teknolojileri A.Ş. (Istanbul IT, and Smart 

City Technologies Inc. ) 
ITS : Intelligent Transport Systems 
LED : Light-Emitting Diode 
MBaaS : Mobile Backend as a Service 
QGIS : Quantum Geographical Information System 
SSE : Sum of Squared Errors 
SVM : Support Vector Machines 
UI : User Interface 
  



vii 

 

 
 
 
 
TEKERLEKLİ SANDALYE KULLANICILARI İÇİN K-MEANS 
ALGORİTMASIYLA AKILLI ŞEHİR ROTA UYGULAMASI 

ÖZET 

Akıllı şehirlerin gelişimi, mevcut teknolojik dünyadaki en kritik konulardan biridir. 
Akıllı ulaşım sistemleri, akıllı otobüs durakları, gerçek zamanlı araç konum takibi, rota 
planlama, kamu araçlarında gerçek zamanlı kalabalık tahminine kadar pek çok 
iyileştirme yapılan alanlardır. 

Tez çalışmamızda, tekerlekli sandalye kullanıcılarına, İzmit şehrinde farklı otobüs 
güzergahlarını kullanma deneyiminin belirsizliğini azaltma ve bu güzergahlar 
hakkında bilinçli kararlar almalarına yardımcı olacak bir platform sağlamaya 
odaklanılmıştır. Akıllı şehirlerde, ulaşımla ilgili özelliklerden birini gerçekleştirmek 
amacıyla, İzmit’teki tekerlekli sandalye kullananlar için hem doğrudan hem de 
otobüsle ilgili güzergahları bilgilendiren bir sistem önerilmiştir. Sistem, yolun yürüme 
ve kaldırım bölümlerini haritalamak için ve eğimleri göstermek için renk kodlu 
çizgiler kullanır. Ayrıca şehrin General Transit Feed Specification (GTFS) 
verilerinden sorgulanan otobüs güzergahları için gri renkli bir çoklu çizgi kullanır. 

Geliştirilen uygulamada, doğrudan yürüyüş yolları ve bölümleri, Google Haritalar 
API’ları aracılığıyla alınmış, kaldırım verilerinin eksikliği nedeniyle, Kuantum 
Coğrafi Bilgi Sistemi (QGIS) kullanılarak şehirde belirlenmiş bir alanın kaldırım 
haritası çizilmiştir. Haritalanan alan içindeki en kısa yol daha sonra Dijkstra 
algoritması kullanılarak hesaplanmıştır. 

Ayrıca, K-Means kümeleme algoritması ve yıldızla puanlandırma sistemi, küme 
başına ortalama puana göre yolların akıllı önerilerini üretmek için kullanılmıştır. Yaş, 
cinsiyet ve tekerlekli sandalye tipi kullanıcılardan oluşturulan gruplar, farklı gruplar 
içindeki tutarlı kalıpları tasvir etmektedir. 

Kullanıcılara sunulan öneriler, öneri motorunun önemli ve güvenilir olduğunu daha da 
doğrulamıştır. 

Anahtar Kelimeler: Akıllı Şehirler, GTFS, K-Means Kümeleme, Tekerlekli Sandalye 
Yönlendirme. 

  



viii 

 

 
 
 
 
A SMART CITY INTELLIGENT ROUTING APPLICATION FOR 
WHEELCHAIR USERS USING K-MEANS CLUSTERING 

ABSTRACT 

The development of smart cities is one of the most critical issues in the current 
technological world. Intelligent transportation systems are areas with many 
improvements, from smart bus stops, real-time vehicle location tracking, route 
planning, to real-time crowd forecasting in public vehicles. 

Our research focuses on providing wheelchair users with a platform that would help 
them make informed decisions on routes to take and reduce the uncertainty of the 
experience of using the different bus routes in the city of Izmit. With the objective of 
being an inclusive smart city application, we propose a system that maps informative 
routes, both direct and bus-related routes, for wheelchair users in Izmit. The system 
uses color-coded gradient polylines to map walking and sidewalk sections of the path 
and a grey polyline for bus routes queried from the city's General Transit Feed 
Specification (GTFS) data. 

Direct walk paths and the gradient of its segments are retrieved via Google Maps APIs. 
Due to the lack of sidewalks data, the sidewalk map of a designated area in the city 
using Quantum Geographical Information System (QGIS) was drawn. The shortest 
path within the mapped area was then computed using the Dijkstra algorithm in the 
pgRouting extension. 

Furthermore, K-Means clustering and a star rating system was employed to generate 
intelligent recommendations of paths based on the average score per cluster. The 
created groups from the age, gender, and wheelchair type of users depict consistent 
patterns within different groups. Suggestions offered to users further confirmed that 
the recommendation engine is significant and reliable. 

Key words: Smart Cities, GTFS, K-Means Clustering, Wheelchair Routing.



1 

 

 
 
 
 
INTRODUCTION 

Smart cities, accessibility, and inclusive societies are growing trends in the current 

world. Governments around the globe have employed different techniques in building 

better cities for all citizens, and in recent times, for the residents with special needs. 

Turkey is at the forefront of ensuring that its metropolitans are accessible to all citizens 

regardless of disability (Göçümlü, 2020). 

Many cities and researchers have looked for different ways to improve the life of 

wheelchair users. Installation of ramps, addition of wheelchair friendly facilities like 

restrooms, innovations of wheelchairs that can climb stairs, and development of path 

finding applications specifically for wheelchair users are some of the diverse solutions 

that aim to improve the quality of life of the mobility-impaired people in our societies. 

The importance of having an inclusive society with accessible amenities for all citizens 

drives researchers and innovators to propose different solutions every day. We 

investigated the problems faced by the mobility-impaired citizens of Izmit as well as 

the solutions that are currently implemented for them. We also proposed a mobile 

application that would help recommend the accessible paths using the scores collected 

from other wheelchair users of the app. 

Steep slopes, obstacles on the paths, inaccessible ramps and sidewalks, fights with bus 

drivers, and frequently missing the bus were some of the complaints we received from 

our interviewees. The Kocaeli Municipality provides dedicated phone lines for 

receiving complaints and suggestions from the elderly and disabled citizens as well as 

a wheelchair-friendly taxi service dedicated to the mobility-impaired citizens in a bid 

to ameliorate the lives of its elderly and disabled citizens. 

We explored the development of an intelligent routing application that displays paths 

with color-coded polylines based on the slope value and also provides route 

recommendations to users of similar profiles based on the route scores submitted by 

users of the app. Our study is in line with other researchers (Gani et al., 2019; Mora et 

al., 2017; Prandi et al., 2017) who used the power of crowdsourcing to gather data on 



2 

 

accessibility issues and wheelchair-friendly paths to better route wheelchair users. 

These studies go a long way in helping mobility-impaired users traverse new areas 

without much difficulty since the widely used routing services in software such as 

Google Maps do not provide options specifically for them (Kozievitch et al., 2017).  

Most of the studies that we found mostly provided direct paths in their routing features. 

We used the Google Maps Directions API to retrieve direct walk paths and the 

Elevation API to get the elevation value at each segment of the paths. We then tried to 

incorporate public transport vehicles in the routing using the city's official General 

Transit Feed Specification (GTFS) data. The bus routes were added to enable users to 

get path options that would assist them move uphill through the help of a public 

vehicle. On top of that, a map of the sidewalk and ramps in a selected area of the city 

was created since we could not find an existing database of these features. The routes 

fetched by our application gave precedence to the sidewalks before the normal walk 

paths retrieved from Google Maps APIs. 

To produce the intelligently recommended routes, we first clustered the users using K-

Means clustering algorithm using their age, gender, and wheelchair type. Then using 

the scores submitted by users in similar clusters, we calculated the average score of 

routes and presented the user with those that had at least a score of 3.0. The clustering 

of users was set to automatically trigger after a specific number of users joined the app 

so as to keep the clusters updated thus ensuring realistic and more accurate suggestions 

were presented. 

Using four frequently travelled routes by our interviewees and a total of 20 users, we 

tested the clustering and route recommendation functionality of the application. Our 

analysis of the results prove that the automated clustering keeps the groups revised 

which trickles down to the suggested routes. The virtual collaboration platform 

provided by the app and the intelligent route suggestions presented to a user achieved 

the main objective of our research. 

An overview of the meaning of smart cities, their characteristics, how different 

researchers and organizations index them, and a few examples of smart cities in both 

the world and Turkey is presented in chapter 1. Since our main research area touches 



3 

 

on accessibility in cities, we present our report on the accessibility issues faced by 

wheelchair users in Izmit, a literature review of past studies on the wheelchair routing 

dilemma, and the solutions currently in use in Izmit within chapter 2. After which 

chapter 3 details the technical details of the frameworks and technologies used in our 

research. 

The fourth chapter then looks into the different modules of our system. We describe 

the importation of GTFS data into the database, the use of Google Maps Application 

Programming Interfaces (API) to get directions and elevation data, the mapping of 

sidewalks in a designated area of the city, pgRouting using Dijkstra algorithm, a brief 

description of the dataset, and the implementation of K-Means algorithm. Chapter 5 

reports the results of testing with five users that includes an analysis of the clustering 

outcomes and examples of the recommended routes displayed on the application. 

Finally, chapter 6 presents our conclusions based on the results we found and provides 

insights and recommendations for future development. Our final intended product was 

a working mobile application that displayed routes with slope information and offered 

direct paths, bus routes, and recommended routes as results of the routing requests. 

  



4 

 

 
 
 
 
1. SMART CITIES 

Smart cities are a trend in the technological world of our time. They are the visions of 

many governments, municipalities, organizations, researchers in all professions, and 

citizens in general. The world is working towards transforming cities into smart cities 

in all areas of life with a vision to improve the quality of life in a greener way. 

1.1. Defining Smart Cities 

To understand what a city needs for it to be called a smart city, we researched the 

definition of a smart city. While we could not find a clear and precise definition of a 

smart city, various researchers and organizations have expressed their interpretation of 

a smart city and what aspects of a city enable it to deserve the ‘smart’ label. Some 

smart city definitions that encompass a wide area of life mostly emphasize: the use of 

computerized technology; environmental protection or greener cities, integration of 

utilities like energy, water, transport; better safety, and security measures (Nevado 

Gilet al., 2020) while other definitions put more emphasis on certain aspects. 

As cited in (Albino et al., 2015), there were more than 20 definitions by different 

researchers from as early as the year 2000. Researchers (Albino et al., 2015; Nevado 

Gil et al., 2020; Yin et al., 2015) compiled a list of the definitions by other researchers. 

Albino et al., (2015) revealed that the term ‘smart city’ was first used in the 1990s but 

was diffused in the early 2000s as an ‘urban labeling’ phenomenon. In later years, the 

term ‘intelligent’ was compared to the term ‘smart’ and smart was considered a more 

friendly term that is also used in marketing which also entails the inclusion of people 

which is not clear when using the word intelligent city (Albino et al, 2015). They 

referenced many terms that were investigated in the past like the ubiquitous city, digital 

city, virtual city, and knowledge city.  

Numerous entities in Turkey also defined smart cities. According to İstanbul Bilişim 

ve Akıllı Kent Teknolojileri A.Ş. (İSBAK, İstanbul Information Technology, and 

Smart City Technologies Inc. ), a company in İstanbul which works on Intelligent 



5 

 

Transport Systems (ITS) in the city, a smart city is defined as a sustainable city that 

integrates all city administration and stakeholders to improve the life of its residents 

while using the highest level of its technologies and resources effectively and 

efficiently (Güven, 2019). The Ministry of Environment and Urbanization also started 

a National Smart Cities Strategy and Action Plan for the years 2019 to 2022 (Güven, 

2019). Under this plan, they too provided a definition of a smart city in their context. 

They described a smart city as a sustainable city that uses new and innovative 

technological approaches based on big data and experts to predict future problems and 

requirements for creating solutions that add value to life in the city (Güven, 2019). 

From all these definitions, it is clear that the global aim of smart cities is to improve 

the quality of life of its citizens, protect the environment, devise innovative ideas, use 

the highest technological advancements effectively and efficiently, involve the 

government, stakeholders, and citizens in smart city solutions implementation, and 

most importantly, make the cities sustainable. In a smart city, all of the various 

subsystems are related and integrated, leading to smart cities being referred to as a 

‘system of systems’. 

Pellicer et al., (2013) explained that the emergence of smart cities was due to the drastic 

population growth together with the shortage of natural resources important in the 

sustenance of life in the cities. Smart cities are a project to try and reduce the strain on 

nature while providing the essential needs for life in the city to all living things 

(Pellicer et al., 2013). This is one of the major reasons why the world is tirelessly 

working on innovative ideas to make cities smarter. Smart cities also aim at reducing 

environmental pollution by minimizing the use of natural resources and promoting 

renewable energy use (Pellicer et al., 2013) like solar and wind power. 

1.2. Characteristics of Smart Cities 

Without a standard description of what a smart city is and what it entails or how it is 

measured, researchers published categorizations of components that make up a smart 

city. Most of the elements presented touch on common areas of life which 

demonstrates the importance of smart cities on the quality of life in general. 



6 

 

Similar to the compilation of smart city definitions presented before, Albino et al., 

(2015) also compiled the categories given by various researchers from as early as 1999. 

They reported that the reviewed researchers' common factors include 

interconnectivity, transparent governance, innovative creations, the inclusion of urban 

residents, and natural environment protection. 

  

Figure 1.1. Boyd Cohen’s smart city wheel 
(Cohen, 2012) 

As Boyd Cohen explained in (Cohen, 2012; IoMob, 2018), there was no specific 

definition of smart cities or what they should be for a long time. Hence his decision to 

publish a graphical model which he called the ‘smart city wheel’ depicting what he 

believed encompassed the main components of a smart city in 6 major categories: 

smart economy, smart environment, smart government, smart living, smart mobility, 

and smart people as depicted in Figure 1.1. These characteristics are consistent with 

those developed by the European Smart Cities Research group (Giffinger et al., 2007). 

Hence definitions and details of each group overlap and can be used to complement 

each other. In this research, we will use these six categories to categorize better and 

visualize the diverse applications in smart cities of the world and Turkey. 



7 

 

1.2.1. Smart economy 

Smart economy describes all aspects of a city’s economic growth and prosperity in 

local, national, and international markets. It focuses on improving the business climate 

through new creative innovations, the attraction of start-ups and investors, utilization 

of technological solutions, productivity, and flexibility of labor markets and 

trademarks (Giffinger et al., 2007; Pellicer et al., 2013). Smart economies experience 

the loss of some jobs and the creation of new jobs. As has been experienced in the past, 

jobs lost during the Industrial Revolution consisted of those that made humans 

redundant since their jobs could be automated using machines. The same is predicted 

of the technological revolution that may come due to smart city implementations. More 

jobs with regards to technology like robotics, data scientists, software engineers, 

technicians, Artificial Intelligence (AI) friendly health workers, AI-driven urban 

planning, and AI-centric lawyers and laws are foreseen (URL-25). 

1.2.2. Smart environment 

Protecting the natural environment, reducing pollution, managing natural resources in 

a smart way, and achieving energy efficiency are some aspects that constitute a smart 

environment (Giffinger et al., 2007; Pellicer et al., 2013). They also compose of 

governments striving to manage the man-made developed and natural environment in 

a bid to improve the quality of life (URL-6). Most smart environment initiatives focus 

on energy efficiency, resource management, smart city planning, and the creation of a 

resilient community (URL-6). 

1.2.3. Smart government 

One of the major importance of smart cities is to improve the quality of life of its 

citizens. This can be achieved by making the decisions and steps being undertaken by 

the governing body open to discussion and participation from its citizens as well as 

public and private stakeholders. Transparency, thus, would play a role in ensuring that 

the government offers quality, diverse, and a large variety of services to its citizens 

and stakeholders (Giffinger et al., 2007; URL-6; URL-25; Pellicer et al., 2013). 



8 

 

1.2.4. Smart living 

Smart living encompasses culture, improved healthcare, better education systems, 

tourist attractiveness, social cohesion, safety and security, and better housing quality. 

Smart cities use the Internet of Things (IoT) based on Wi-Fi services to improve 

accessibility and social engagement (URL-6). Most smart living initiatives leverage 

the power of sensors, the IoT, and big data available to provide different kinds of 

solutions such as automatic emergency requests, remote monitoring of home 

appliances, easily accessible city information to visitors, automated services, and 

remotely accessible educational programs.  

People living in smart cities need to understand and be able to use the technical services 

and smart infrastructure put in place for their betterment. This can only be made 

possible if the citizens are aware of the services installed. To raise awareness, most 

countries, cities, organizations, and even educational institutions hold congresses, 

symposiums, and forums that are open to the public and broadcast to the citizens to 

inform them of smart solutions and include them in smartening their cities. Most cities 

advertise their works and even enforce the use of smart solutions by making it a 

requirement for residents to use the technological systems. The best example of this 

scenario is online appointment systems used in all areas, including government offices, 

hospitals, banks, and companies. These institutions usually require someone to book a 

slot using their websites or mobile applications before showing up at the offices. Hence 

makes it imperative for residents to learn and use smart solutions.  

In this regard, (Lytras and Visvizi, 2018) conducted research to find out the users and 

their perspective of smart city services. Their research targeted a demographic that had 

the technical knowledge and were avid users of the smart city services. They reported 

that even though the participants in the exercise were tech-savvy and well-informed 

people in smart city solutions, the feedback given had a lot of serious concerns 

especially in the safety, accessibility, and efficiency of the services. This demonstrates 

the importance of including citizens in the implementation of smart city initiatives so 

as to make sure the implemented solutions tackle issues in an acceptable manner, and 

efforts do not go to waste. 



9 

 

1.2.5. Smart mobility 

Transport is an essential service for the prosperity of a city. However, most 

transportation modes used in the 20th century use a non-renewable natural resource 

and contribute to noise and most of the carbon dioxide emissions to the atmosphere 

which harms the environment. Smart mobility aims at reducing this harm and 

protecting the environment as well as reducing congestions and road accidents 

(Pellicer et al., 2013). Furthermore, smart mobility involves efficient, cheaper, faster, 

environmentally friendly, customer-centric, and inclusive transportation options for 

residents, businesses, and visitors or tourists (URL-6.). New inventions in smart 

mobility include electric cars, bike-sharing, carpooling, (URL-6) smart traffic lights, 

automated highway payment systems, and even solar-powered roads. 

1.2.6. Smart people 

To accompany the evolution in smart cities, citizens need the appropriate education to 

enable them to support the creation of an accessible and inclusive environment (URL-

6). Education is important for people to provide them the skills and thinking capacity 

to encourage innovativeness, participation in public life, and flexibility and openness 

to the outside world (Giffinger et al., 2007; URL-6.; Pellicer et al., 2013) This also 

entails that citizens of smart cities need to be equipped with Information and 

Communication Technologies (ICT) training like programming, engineering, and 

mathematics (URL-25). We can see these trends in academia where all departments in 

universities have made it mandatory for students to take and pass a course in C++ 

programming language before graduating. Other countries also offer Microsoft Office 

packages training to provide the basic skills of using a computer for any task. 

1.3. Indexing/Ranking of Smart Cities 

How do we know if a city has become smart? And how can we tell the level of 

smartness of cities? These are some of the questions tackled by researchers of smart 

cities. Indexing or ranking of smart cities lacks a standard worldwide formula. 

However, researchers and institutions have devised their own measurements and 

presented rankings of smart cities using different formulas in a bid to help devise a 

standard measure. The significance of ranking smart cities can have different 



10 

 

interpretations and effects based on perspective. Rankings published by different 

entities focus on different aspects of a city since they use different categories and 

indicators. Hence interested entities may pay more attention to the overall rank itself 

yet categorical ranks and details in the ranks should be more important (Giffinger et 

al, 2007). On the other hand, city rankings draw public attention to issues in their areas 

which stimulates discussions on regional developments to better decide where to focus 

time and resources. (Albino et al., 2015). They force municipalities to make their plans 

and decisions transparent since most rankings depend on readily available data and 

also contribute to foster the need to learn in (Giffinger et al., 2007). 

European Smart Cities research group published their first ranking of medium-sized 

cities in Europe in 2007 (Giffinger et al., 2007). In their research, they selected 

European cities: with a population between 100,000 and 500,000; with accessible and 

relevant databases; and those that are of medium-size but with a dense population. 

From the criteria, they remained with a list of 70 cities. Luxembourg emerged as the 

top smart city in the 2007 European medium-sized smart cities ranking, with an above-

average score in each of the six characteristics, with the smart economy being the 

topmost followed by smart people (Giffinger et al., 2007). 

A smart city ranking index called Cities In Motion Index (CIMI) was designed by 

IESE Business School, which is the business school of the University of Navarra, 

Spain (Alkadhim, 2016). “The CIMI aims to help the public and governments to 

understand the performance of 10 fundamental dimensions for a city: governance, 

urban planning, public management, technology, the environment, international 

outreach, social cohesion, mobility and transportation, human capital, and the 

economy” (Alkadhim, 2016, p. 8). This index was used to rank cities across the world 

by IESE Business School and other researchers. In 2019, the CIMI merged public 

management into the governance dimension since their definitions overlap (Berrone et 

al., 2019). In the 2018 ranking reported by (Berrone et al., 2019), London, New York, 

and Amsterdam topped the list with İstanbul being in the 118th and Ankara in the 

135th ranks out of 174 cities. 

In (Nevado Gil et al., 2020), researchers used the CIMI data of 73 ranked European 

cities to rank cities in three groups of highest, medium, and low smart city levels using 



11 

 

the 10 CIMI dimensions of a smart city. Their research focused on analyzing political 

factors that influence the development of smart cities using multivariate analysis. They 

investigated the significance of the region a smart city belongs, the gender of the 

governing person, and the ideology of its political rulers on the development of the 

city. Their report showed that cities in the western region of Europe and those governed 

by women achieved better ranking, while the ideology of the political body did not 

seem to have a definite impact on the city development.  

In the year 2016, a project was undertaken by top organizations in Turkey to analyze 

the energy, water, and transportation fields within 30 of Turkey’s metropolitan 

municipalities and provide an overview of the state and roadmap of the development 

of smart cities in the country (URL-14). They reported challenges faced in the 

implementation of smart city applications that included financial constraints, non-

collaboration with NGOs and educational institutions, and non-inclusion of citizens. 

Important factors detailed in the report encompass the need for innovation, skilled 

resources in ICT, security and privacy consideration, infrastructure for Geographic 

Information Systems (GIS), and the inclusion of citizens. The researchers also 

observed that the most common applications that were initially employed by every 2 

out of 3 municipalities were in the transportation sector where traffic monitoring, 

electronic payments, and smart bus stops were the top applications. 

Apart from the ranking systems and research mentioned above, Albino et al., (2015) 

reported techniques used by various entities in ranking smart cities. They concluded 

by expressing their belief that even though the formulas presented endeavored to create 

an all-encompassing ranking system, the assessments should be tailored to a city’s 

vision since they all have different priorities and capabilities in achieving the smart 

city objectives. 

1.4. Examples of Smart Cities in Turkey 

Turkey is one of the countries in the world that attributes great significance to smart 

cities. The Minister of Industry and Technology, Mustafa Varank, expressed his belief 

in technology to enable people to live happily in cities (URL-21). He also explained 



12 

 

that an economic analysis of smart cities on the global economy would be massive 

hence the acceleration in their study of smart city applications (URL-21). 

Smart city projects in Turkey were first launched as early as the year 2000 (Akiner, 

2016) and have been gaining momentum ever since. Cities in Turkey are transforming 

into smart cities by implementing different diverse projects. Since it is not possible to 

list every project implemented in every city under the smart city vision, we looked at 

the latest projects published in the bulletin provided by the National Smart Cities 

Strategy and Action Plan, which was a plan devised by Turkey’s Ministry of 

Environment and Urban Planning shaped by the public, private, and academia sectors 

with common viewpoints to ensure that projects are prioritized and implemented in the 

most productive way and in line with the determined policies under the smart city 

ecosystem (Bilgin, n.d.). 

From the bulletin published in 2019, several smart city projects that had a significant 

impact on the livelihood of residents were analyzed in the six categories of smart cities 

that were described in Boyd Cohen’s smart city wheel (Cohen, 2012). It was observed 

that most projects implemented in Turkey’s smart cities were related to mobility and 

the environment. While the category with the least implementation was the smart 

economy category.  

Under smart mobility, most cities had implemented more or less similar projects with 

a few extra projects in some cities. One of the most common ITS was the mobile 

application, and in some cities its website app, meant to simplify public transportation 

in the city. These apps are available for free and display all relevant public 

transportation information for the specific city it is designed for. Some cities with these 

apps include İstanbul (IBB CepTrafik), Ankara (EGO Cepte), Konya (ATUS), and 

Kayseri (Güven, 2019) among many others. In liaison with the apps, cities such as 

Mardin, Eskişehir, Gaziantep, Yalova, Kars, Konya, Kayseri, Gaziantep, and 

Kahramanmaraş (Güven, 2019) added smart stops that had Quick Response (QR) 

codes or stop codes which when searched in the app, displayed information like the 

nearest buses and their estimated time of arrival to the stop. The public transport 

vehicles were also equipped with e-payment solutions in cities like Manisa, İstanbul, 

Konya, Antalya (Güven, 2019). For pedestrians, İSBAK explained the crosswalk 



13 

 

request button which had illumination, audio, and haptic feedback specially designed 

for the disabled citizens. 

The Electronic Detection System (EDS) is a system that uses sensors, cameras, and 

intelligent software to detect violations and recognizes license plates of offenders with 

an aim to instill positive driving culture thereby reducing road accidents while 

increasing the security of people and property as explained by(URL-4). It was adopted 

in many cities like İstanbul, Konya, Antalya, and Gaziantep (Güven, 2019). URL-4 

also explained the fully Adaptive Traffic Management System (ATAK) which used 

cameras to monitor traffic density and intervene with calculated optimum signal times 

to help ease traffic adopted in cities such as Mardin, Konya, İstanbul, Ankara, Kayseri, 

Bursa, and Kahramanmaraş (Güven, 2019) and others. They further described the 

variable Light-Emitting Diode (LED) screens used to redirect, inform, and warn 

motorists in real time.  

Other solutions documented included intelligent parking systems that displayed car 

park occupancy status, offered e-payment options, used number plate recognition for 

automatic barrier control, and mobile apps that directed motorists to available car 

parks. Furthermore, the taxis in İstanbul used smart signals with color-coded 

occupancy information, parts of the tramway line in Konya used non-catenary lines to 

help preserve historical monuments, and the İstanbul Grand Airport (IGA) was 

equipped with self-check-in systems, intelligent lighting for aircraft guidance, and 

biometric screening at passport control points (Güven, 2019). 

To protect the natural environment, Turkey’s smart environment solutions consist of: 

using renewable resources, recycling waste, and constantly monitoring the 

environmental conditions in cities. The 2019 bulletin (Güven, 2019) cited some 

examples of smart environment solutions. Güven (2019) described smart renewable 

energy solutions like the one in İstanbul which made use of renewable energy through 

a floating solar power plant installed on Lake Büyükçekmece while in Antalya, solar 

power plants in agriculture that were set up in Döşemealtı-Mellidağ took advantage of 

the geographical location of Antalya to use solar energy to provide free electricity to 

over 7 thousand farmers in 47 irrigation units. He also explained Antalya’s electric 

generating stadium equipped with 12 thousand m2 of solar panels which met the 



14 

 

electrical needs of 575 homes and prevented the emission of 1200 tons of CO2 into the 

atmosphere and the smart solar poles installed in 19 points in parks and public areas 

in Kahramanmaraş that used solar panels for energy to provide free internet access to 

residents. 

Güven ( 2019) also described a few solutions implemented to instill a recycling culture 

and environmental awareness in cities such as İstanbul which has smart recycling 

containers at metro stations and the zero-waste program in Ankara where cartridge-

toners, fluorescents, waste batteries, paper, plastic, glass, and metal are collected 

separately. In most cities, Güven (2019) explained the energy generation facility from 

domestic waste incineration. He gave examples of the facility in İstanbul which 

generated 77MWs of electricity through incineration of 3,000 tons of waste daily; in 

Ankara, an integrated solid waste management system collected around 5,500 tons of 

waste daily and produced around 1,289MWs of energy daily from the disposed waste; 

in Konya, electricity generation from methane gas in a solid waste plant met the daily 

electricity needs of 26,000 homes, and a greenhouse of 1,200 m2 was installed to take 

advantage of the heat produced resulting in the production of around 30 tons of 

tomatoes annually; and in Antalya, a solid waste integrated recycling and disposal 

facilities separated around 3000 tons of domestic waste daily and met the electricity 

needs of 60,000 households. 

Examples of environmental control centers described by Güven (2019) are found in 

İstanbul and Konya which had air quality monitoring, waste tracking, noise tracking, 

fuel control, and vehicle tracking modules allowing the monitoring of pollution levels 

and instant access to the data enabled detection and solution of urban and regional 

environmental problems. Güven (2019) also gave an example of Ankara’s Electric 

Energy Tracking System (ETS Elektrik Enerji Takip Sistemi) that monitored energy 

quality, active-reactive power, fault conditions, and instantaneous voltage-current 

values in the municipal facilities. He also talked about the intelligent lighting systems 

in parks, roads, and gardens around the city of Antalya which used LED lights for 

efficient use of resources which contributed to up to 80% of energy savings in 2018. 

When it comes to intelligent systems that help preserve water as well as provide better 

and faster distribution of water to residents in the city, Güven (2019) described the 



15 

 

intelligent water management systems implemented in cities such as Ankara, 

Gaziantep, and Kahramanmaraş which also monitored tanks, water purification 

facilities, valves, pressure, water quality, and the water distribution network at large 

for any faults and had remote counter reading systems. Cities such as Antalya, Kayseri, 

and Gaziantep also had intelligent watering systems in public parks and gardens. 

Güven (2019) explained that the systems monitored the moisture condition of the soil 

and in the atmosphere, and when in need of water, it checked the weather forecast and 

devised a plan to water the soil in accordance to the weather forecast, the needs of the 

soil and plants, and automatically operated the water valves at the time of watering 

hence reducing water wastage and protecting the quality of the soil. Similar to this, is 

the e-desen project in Konya which analyzed soil and climate, identified the most 

suitable products to grow, stored this information in a central database, and informed 

citizens via a website (Güven, 2019). 

Shared bicycle systems for the public is considered a green transportation alternative 

in smart city projects. This system can be classified under the ITS as well as smart 

environment solutions. The intelligent bicycle system was implemented in many cities 

in Turkey such as Antalya, Izmir, Erzincan, Kocaeli, Yalova, Konya, and Kayseri 

(Güven, 2019). The cities have dedicated bicycle lanes on roads and the systems use 

the transport e-cards to take or return a bicycle from a rental point (Güven, 2019). 

Smart living solutions mainly focus on making an individual’s life easier, safer, and 

better. The solutions focus on safety and security, healthcare, cultural exposition, and 

shelter. In terms of security, video surveillance cameras have been used widely in cities 

and buildings all over the world. The surveillance in smart cities also includes public 

areas as parks and roads. Güven (2019) highlighted some of the cities that have 

implemented security-enhancing projects. He gave an example of the smart park 

projects in Ankara and Antalya that detected issues such as theft, kidnapping, and 

suspicious-looking items and sent instant notifications through a Long-Term Evolution 

(LTE) wireless system to the authorities in the operation center. As for Antalya, Güven 

(2019) explained the trusted circle project which provided wireless low-energy 

wristbands to children, the elderly with Alzheimer’s, and even pets, then they were 

monitored using solar-powered poles in parks which sent a notification to the mobile 



16 

 

application when it detected a wristband leaving the wristband’s trust circle hence 

allowing free movement without a lot of worries. 

Smart healthcare solutions also provide a sense of safety for smart city citizens. Güven 

(2019) pointed out some healthcare solutions that helped health workers and families 

keep track of patients remotely. He explained a chronic patient tracking project which 

measured patients’ glucose, blood sugar, and pulse values remotely and sent the data 

via a mobile application to a central database where health workers checked the values 

and contacted the patients in case of more analysis. The project also distributed a panic 

button to patients with chronic illnesses which instantly called for an ambulance and 

informed the family at the push of the button. In Bursa, Güven (2019) talked of the 

‘love chip’ project that made it possible for citizens with Alzheimer’s and mental 

illnesses who carried the chip to communicate freely with their relatives who could 

check in on them at any time of day in real-time.  

Some cities use smart building systems to aid in monitoring the elderly citizens. In 

Kahramanmaraş for example, Güven (2019) pointed out that the smart elderly care and 

coordination center in the city used remote smart tracking systems installed in the 

homes of elderly people who lived alone. The elderly were given a handheld button 

that connected to call centers directly and provided communication with personnel on 

duty. The smart tracking systems in the homes used sensors to automatically detect 

events such as fires, gas poisoning, smoke, and water overflow then instantly 

transferred that data to the call centers who simultaneously informed the relevant units 

such as ambulance, fire brigade, and police hence contributing to a life of peace and 

security for the elderly (Güven, 2019).  

In the cultural and tourism aspect of smart cities, Güven (2019) highlighted the 3D 

mobile tourism atlas project implemented in Bursa which introduced the historical, 

cultural and natural values of Bursa using 3D models, photography, and introduction 

text of 100 places around the city plus video adverts of 10 other places. 

Kahramanmaraş had a city guide which was a website that advertised the city by 

providing information on events, local products, meals, and accommodation options 

(Güven, 2019). And in Konya, Güven (2019) pointed out the “Mevlana ve Mesnevi” 



17 

 

mobile app that shared the most famous works and quotes of Mevlana, known as 

Mesnevi, in 20 different languages as well as photographs of the Mevlana museum. 

Smart cities are also enhancing services to be more inclusive and have more accessible 

solutions. In Antalya for example, Güven (2019) shared the audio steps project 

implemented in the municipality city hall. He explained that the project entailed the 

use of audio commands to enable the visually and hearing-impaired citizens to 

navigate the facility with limited need for support. Improving the lives of animals in 

the city was one of Konya’s visions. Güven (2019) explained this by providing 

examples of projects in the city that improved animal care in Konya. He talked of the 

volunteer animal friends project where rehabilitated dogs were appropriated to verified 

volunteers and an e-paw mobile application that was used to monitor the health of the 

dogs, their vaccinations, food supplements, and living conditions. 

In the spirit of having a transparent government, cities in Turkey have developed 

mobile applications and websites that offer information on the undergoing and planned 

works, plus offer a forum where citizens can submit their opinions, views, feedback, 

and complaints directly to the municipality. Güven (2019) explained that the 

municipality applications like the ones in Ankara, Bursa, Kayseri, and Kahramanmaraş 

provided access to all city services and information within the scope of transportation, 

city guide, municipal studies, and blue table applications. He also explained that cities 

like Ankara and Kahramanmaraş had a cemetery information system mobile 

application (MEBİS, Mezarlık Bilgi Sistemi Mobil Uygulaması) which had daily 

burial data, previous years’ burial information, and easily searchable locations for 

graves. In Bursa, however, Güven (2019) pointed out that the e-municipality 

application shows the definitions, transactions, and reports, carried out by the 

departments of 34 main modules. The Infrastructure License Control Program (Altyapı 

Ruhsat Denetim Programı [ARUDEP]) enabled all applications for infrastructure 

excavation licenses and follow-up procedures in Bursa to be done via the web-based 

GIS system. Furthermore, Bursa had an online advertisement auditing system that 

calculated signage taxation transactions online, reliably, quickly and efficiently, and 

sped up business and transactions in the city (Güven, 2019). 



18 

 

Smart cities in Turkey also provide free internet access for its residents in public areas. 

In Antalya, Güven (2019) mentioned the city information kiosks which had been set 

up in 20 different areas of the city, were air-conditioned, had internet access, had 

smartphone charging points, and offered information and announcements about the 

city to both residents and visitors. 

In a bid to make citizens of cities fit into the smart people definition, cities have 

employed different means of providing the needed education and skills in creative 

ways. For example in İstanbul, Güven (2019) pointed out “hayal kart” which was a 

gamified project to help children learn and love coding as well as increase their 

productivity. He also explained the living lab in Başakşehir, İstanbul which was a 

center opened to the public for research, innovation, and experience where new 

products and services were developed and tested with real users. While in Konya, he 

mentioned the Konya science center equipped with intelligent building systems and 

established to provide a fun and interactive environment to stimulate creativity, 

curiosity, togetherness, and learning in its citizens of all ages. 

Alongside providing a center for education and mentorship, İstanbul also has Zemin 

İstanbul which is a social and institutional structure that aims to attract and produce 

innovative products and services with citizens, instill an understanding of smart cities 

in the people, and provide professional advice about commercialization to 

entrepreneurs (Güven, 2019). This project focused more on entrepreneurship and 

commercialization efforts hence can be classified under smart economy solutions.  

The examples provided in this section are mainly concentrated on the solutions 

published in the 2019 White Bulletin. There are very many examples that have been 

implemented, currently being implemented, and planned for implementation that have 

not been covered. More examples can always be found on the annually published 

bulletins in the cities as well as the country. 

1.5. Examples of Smart Cities in The World 

Most countries of the developed world have, at one time or another, considered the 

possibility of developing smart cities. While some smart cities have been designed 

from scratch, others have gradually evolved from normal cities to smart cities. 



19 

 

According to Calderoni (2015), smart cities are close to becoming a common reality, 

especially with the various advancements that have been made in the fields of traffic 

management, smart payments, automated billing services and automated waste 

management. The advancement of the IoT has also improved the smartness of 

individual homes, which in effect increases the adaptability of fully smart cities. 

Cities such as Portland in Oregon, USA and Santander in northern Spain are examples 

of normal cities that are being deliberately transformed into smart cities. Portland, with 

a population of half a million inhabitants, has been a model city in the United States 

for sustainable development (Pellicer et al., 2013).  

 
Figure 1.2. 20 minute neighborhood 
concept (URL-22) 

In the first iteration, they enhanced the mobility and transport systems to reduce 

emissions to the environment. New tramways were created and an extensive network 

of bike lanes. In the second iteration, they focused on the construction of sustainable 

buildings with minimal environmental impact and energy savings. Finally, they 

implemented the concept of ‘20 minute neighborhoods’, where all basic services can 

be reached within 20 minutes, thus reducing traffic and air pollution (Pellicer et al., 

2013). The concept can be summarized by Figure 1.2 which shows the main elements 

incorporated such as health, educations, sports, transport, and housing facilities. 

In Santander, the city council had launched measures to turn it into a smart city. These 

measures included smart traffic management, interactive mobile apps to support 

tourism, tracking and monitoring of people with disability or disease, emergency alerts 



20 

 

to citizens, monitoring of security via a centralized system and an intelligent waste 

collection system. 

Smart cities are made smarter by extensive use of ICT in all public facing services. By 

improving ICT infrastructure, these innovative architectures bring a more efficient 

service delivery model (Pellicer et al., 2013). Some of the services that, by just being 

properly automated and improved, can transform a city to smart status are: video 

control and intelligent urban surveillance, security and geocoding in emergency call 

service, energy saving, remote control of industrial facilities, remote control of utility 

networks, logistics, safety at work, personal and community healthcare, waste 

management, public transport, automated traffic control, intelligent parking 

infrastructures, monitoring of air and noise pollution, wired and wireless broadband 

internet, NFC and other integrated payment methods, tourist facilities and secure 

digital voting for smart governance (Calderoni, 2015). 

Transport is  also essential in today’s society, in which we move while performing 

functions vital to the advancement of society (Pellicer et al., 2013). In Zaragoza, Spain, 

a wide sensor network controls approximately 90% of urban routes (Calderoni, 2015). 

There, a centralized control point monitors the entire city’s traffic in real time and 

helps the government to improve road networks with adequate policies. To improve 

transport systems in a city, one of the most important aspects is smart parking. By 

automating parking services, people can move around faster and more efficiently, and 

revenue collection is centralized leading to increased income to the city, which in turn 

leads to better services being provided to residents. 

According to Al-Turjman and Malekloo (2019) smart parking systems rely on 

analyzing and processing the real time data gathered from vehicle detection sensors 

and Radio Frequency Identification (RFID) systems in parking lots to report the status 

of a parking slot. Smart parking systems can also be combined with other systems in 

order to improve the accessibility and efficiency of a city’s traffic system. In 

Santander, Spain, for example, a system is in place to monitor, control and manage 

traffic in various aspects such as information about parking (slot availability, disabled 

slots, etc.), road traffic management for emergency lane clearance and proposal of 

alternative routes to avoid traffic (Pellicer et al., 2013). Figure 1.3 displays an example 



21 

 

of the smart parking systems implemented in Santander. The systems use radar 

technology to detect the occupancy status of a parking slot and communicates with 

drivers via ethernet (URL-18). 

 
Figure 1.3. Smart parking systems in Santander (URL-18)  

According to Pellicer et al., (2013), the parking system implemented in Copenhagen 

is fully automated and integrated. Drivers can park their cars anywhere in the city and 

get automated bills at the end of every month. This system used Automatic Number 

Plate Recognition (ANPR) systems to monitor all roads and public parking spaces, and 

it calculated the duration a vehicle has been parked at each available slot. Drivers who 

had good driving and payment records earned discounts in their parking rates, while 

drivers who committed traffic offences such as running red lights, parking in 

prohibited spaces or over speeding got steeper rates. This system has increased 

accountability and safety, since drivers are more careful while driving in order to enjoy 

the discounted rates. 

In Malaga, Spain, the city provided free car charging stations for all residents who 

owned electric vehicles (Pellicer et al., 2013). In this program, owners of electric 

vehicles were also exempt from parking levies in the city, and got tax breaks. This 

increased the adoption of electric vehicles, greatly decreasing air and noise pollution 

and increased the standing of Malaga as a tourist destination (Pellicer et al., 2013). 

Cities such as Paris, Copenhagen, Stockholm, Frankfurt and Vancouver have 

implemented free or cheap bicycle exchange programs (Pellicer et al., 2013). In these 

programs, citizens can pick a bicycle from a parking station, ride it to another part of 

the city and then leave it in another parking station. These programs improve the 

overall physical and mental health of citizens, while reducing air pollution and traffic 

in the cities. 



22 

 

In a city with a smart economy, all other aspects of life in the city are greatly improved 

because of increased automation in systems such as payment systems, utility 

management and revenue collection. According to Mahizhnan (1999), Singapore is 

moving into a smart economy by adoption of electronic commerce (e-commerce). For 

example, Singapore’s legal system is fully configured to recognize electronic 

identification for individuals, contracts and transactions. From as early as 1996, 

Singapore already set up the electronic commerce hotbed to support e-commerce. It 

lists guidelines that have guided the city’s adoption of e-commerce. Among these 

guidelines, the most important one states that the government, through joint ventures 

with the public sector, should expedite the growth and development of e-commerce 

(Mahizhnan, 1999). This ensured that any projects and programs that are geared 

towards e-commerce are prioritized and get all the required approvals without delays.  

In New York City, USA, the city launched a program called ‘Startup Development for 

Social Web’ (Pellicer et al., 2013). In this program, any technological innovations that 

were geared towards financial startups were exempt from some levies and taxes, and 

were usually placed at the top of the queue in any approval processing. Since New 

York, and especially Manhattan, is a financial hub, this increased investment in the 

financial startup scene, greatly increasing the ability of normal residents to access 

advanced financial services such as stock and forex trading. (Pellicer et al., 2013). 

In order to improve the quality of life for its residents, Singapore initiated the 

Singapore one network for everyone (Mahizhnan, 1999). This was an initiative jointly 

driven by the governing council and Singapore’s National Science and Technology 

Board. In this initiative, the Singapore ONE network offered more than a hundred and 

twenty web and mobile applications to more than 100,000 users. Mahizhnan (1999) 

stated that the official support for this system had increased the adoption of automated 

systems instead of manual ones, a process that has seen even simple establishments 

such as food kiosks acquire automated teller systems that are integrated to the owner’s 

bank accounts and the tax collection agency’s systems. 

One of the key drivers for smart cities is reduced pollution and a cleaner environment. 

In Vienna, Austria, the city implemented a smart green street lighting program that 

used very low energy consuming LED street lights that are solar powered (Pellicer et 



23 

 

al., 2013). Vienna also employed a green program where new buildings that were 

energy efficient got quicker approvals. 

 
Figure 1.4. An example of a centralized heating 
system (Engie, 2013) 

Buildings with passive heating/cooling, solar lighting and those that featured improved 

natural lighting usually got tax breaks and tenants in such buildings paid reduced levies 

(Pellicer et al., 2013). This increased the demand of green buildings and led to an 

explosion in the conversion of existing buildings to be more energy efficient. Pellicer 

et al., (2013) also gave the example of Barcelona, Spain, a city that implemented a 

centralized heating and cooling network. In this system, hot water and steam for 

heating buildings came from a centralized network which drew its heat from 

incinerators that burned the city’s waste, as seen in Figure 1.4. This combination of 

waste management and heating led to zero demand for landfills, and the improvement 

of waste management. 

In some cities, such as Paris, France, Manila, Philippines and Cyberjaya, Malaysia, a 

centralized cooling system is in place as seen in Figure 1.5. As mentioned in (Engie, 

2013), delivering conditioned air services to buildings connected to a central cooling 

network utilized chilled water production and distribution facilities that operate as a 

closed circuit, supplying the chilled water to the connected homes and back to the 

production plants for further cooling. 



24 

 

 
Figure 1.5. An example of a centralized cooling system 
(Engie, 2013) 

The underground train system in London, England is one of the oldest in the world. It 

been modernized and optimized to ensure that there are zero emissions in the entire 

system (Pellicer et al., 2013). The London underground runs completely from clean 

energy, coming from wind electricity and electricity generated from waste burning 

incinerators. The lighting systems used in the London underground and in the trains 

used energy saving LED bulbs, that had light sensors which adjusted the brightness 

automatically according to the ambient light levels. 

  



25 

 

 
 
 
 
2. RELATED WORK 

2.1. Accessibility Issues for Wheelchair Users 

The struggle to improve the accessibility of smart cities is a growing phenomenon. But 

what exactly is accessibility in cities? Accessibility refers to the ability of all 

individuals regardless of any disability to access information and resources any time 

and without much difficulty or help (Tavares et al., 2016). It is the main key to making 

cities and technologies inclusive while improving the lives of people. Accessibility 

problems refer to the issues faced by people with disabilities or special needs while 

going about their normal daily activities. These problems do not come naturally to a 

person without disabilities nor special needs. Researchers, therefore, use other means 

such as interviewing the people with the demographic under examination and reporting 

their findings to help other researchers, the general public, and the problem-solvers 

understand them.  

When it comes to mobility, most people with special needs such as the elderly, blind, 

deaf, and wheelchair users all have different experiences. Of these groups, mobility is 

most challenging for wheelchair users since they are constricted to a wheelchair. 

Wheelchair users have mobility limitations that depend on factors such as the surface 

of the path, the slope of the path, the width of the path, the abilities or power of the 

wheelchair itself, the obstacles on the path, and the shape of the trail itself. 

Many wheelchair users in societies feel left out and feel that their needs are ignored as 

reported by F Bromley et al., (2007). One of the mobility-impaired students in the 

computer engineering department of Kocaeli University expressed feeling that the 

ramps and curbs installed in the city center were designed for mothers with baby 

strollers and not wheelchair users. It is also apparent that the needs of wheelchair users 

differ (F Bromley et al., 2007) depending on factors such as the type of wheelchair, 

the age, weight, energy of the wheelchair user, and the power of the wheelchair itself. 

Some wheelchair users also feel discomfort while in public places due to the gazes 

they get from others (F Bromley et al., 2007). Some of them also complain about the 



26 

 

heavy doors, cluttered aisles, inaccessible shelves, and narrow checkouts in shops (F 

Bromley et al., 2007). 

We sought to find out the mobility problems faced by wheelchair users in the city of 

Izmit that is in Kocaeli, Turkey. We interviewed a student from the computer 

engineering department at Kocaeli University. From our exchange, we found out that 

the most problems faced are related to slopes because Izmit is a hilly place. For 

example, they expressed that when visiting an area for the first time, they have to find 

a path through trial and error or use google maps to find alternate paths. In order to 

stay out of other motorists’ way and be safe, they would decide to use the sidewalks 

on roads but were frequently faced with problems where a car was parked obstructing 

the ramp that should have been used to climb the sidewalk. Most times they 

encountered ramps and sidewalks that were not accessible either due to obstacles, 

damages on the surface, its narrowness, or its steepness. 

In situations where crossing the road or taking a turn was inevitable, they explained 

that the situation became a challenge due to the absence of ramps at the location forcing 

them to go back to where they started and find an alternative route mostly by 

rechecking the mapping applications. They also recounted how frequently they 

encountered steps on the sidewalks on slopes since most steps on roads were 

constructed to assist pedestrians. Due to all these problems, they stated that they 

developed a habit of checking the photos of the roads, ramps, entrances, and sidewalks 

of any areas that wheelchair users planned to visit beforehand to check their 

accessibility. 

Our interviews further revealed that manual wheelchair users had difficulty going up 

a steep incline and on a steep decline, they had a high probability of sliding which 

would sometimes not be possible to stop. We were also informed that since most 

electric wheelchairs have good brakes, the brakes helped against the non-controllable 

sliding. 

With regards to the public transportation in Izmit, wheelchair users expressed the 

common brawling with the bus drivers that was mostly because the drivers lamented 

opening the wheelchair ramp installed on the bus, and drivers would not tilt the bus to 



27 

 

make sure the ramp was not too steep. They recollected how drivers, would decide that 

a faster solution was to carry the passenger by their wheelchair into or out of the bus, 

which made the impaired feel belittled and sometimes end up with broken parts of 

their wheelchair in the process. They further conveyed their dislike when bus drivers 

stopped too far from the sidewalk, making it more difficult for wheelchair users to 

board. 

They continued explaining that they would sometimes miss the bus while waiting at 

the bus stop because the driver was unable to see them signaling for the bus to stop. 

One user stated he would prefer a direct communication line with the bus instead of 

having to call the municipality office to inform the driver of their waiting. For 

wheelchair users to be able to board a crowded bus, they need to call in advance to 

book a place on the bus. They check the approaching bus's number through the e-

komobil application and call 153 to inform them to notify the driver to reserve a spot 

for them. The interviewees complained that without doing this, drivers do not allow 

them to get on the bus, and they end up waiting long hours to catch a bus. 

These issues end up discouraging wheelchair users from wandering outside their 

neighborhoods and comfort zones. It is their right to have transportation options 

without bias, free to explore the world and have solutions that make their lives better 

and easier as every other citizen. Since improving the quality of life of citizens is the 

main objective of smart cities, we wanted to be a part of the solution providers by 

creating a mobile application that would offer more information on paths, sidewalks, 

and bus routes to wheelchair users in Izmit. 

2.2. Literature Review on Accessibility Solutions for Wheelchair Users 

Turkey has started its journey to make the country accessible to all citizens as was 

pointed out by President Recep Tayyip Erdoğan on January 9, 2020, as cited in the 

"Bakanlık 'Erişilebilir Türkiye' için harekete geçti" news article (Göçümlü, 2020). The 

Ministry of Family, Labor and Social Services in Turkey also pointed out that the 

ministry will ensure "...necessary criteria are identified and included in the 

accessibility control process for the elderly to benefit from urban living spaces safely 



28 

 

and without assistance" (Göçümlü, 2020). The President also announced that 2020 was 

declared as the "Year of Accessibility" (Göçümlü, 2020). 

With regards to public transport in cities, most smart cities have solutions that they 

implement to help wheelchair users move around with ease. Public transport stops in 

intelligent cities are constructed with accessibility in mind. Adding elevators and 

wheelchair ramps that give access to the stops are the main improvements taken into 

account. However, some of these ramps may not be well maintained hence not 

accessible to all users. Buses are also fitted with wheelchair ramps, which are opened 

for wheelchair users whenever they need to get on or off the bus. Some smart cities 

such as London and Paris (Brown, 2016; URL-16) have buses with an automated 

wheelchair ramp that opens and closes with the press of a button. These buses usually 

also have prioritized areas for wheelchair users with belts that hold them in place while 

the bus maneuvers through its route. 

Efforts to make public transport accessible in Turkey have been in progress for quite 

some time. On August 23, 2017, the Ministry of Family, Environment and Social 

Services, the Ministry of Environment and Education, the Ministry of Industry and 

Technology, universities, non-governmental boards, and private sector members 

launched an ‘Accessibility Project of Passenger Transportation Services in Turkey’ 

(URL-24). 

The public transportation and public areas have seen improvements in terms of 

accessibility thanks to this project. The Ministry of Family, Environment, and Social 

Services pointed out some of the solutions in their 2019 edition of ‘Erı̇şı̇lebı̇lı̇r Ulaşim 

Ve İletı̇şı̇m’ that have been implemented to improve the accessibility situation in the 

country. They explained some of the solutions for the visually impaired which include 

tactile surfaces in all kinds of bus stops and sidewalks; braille embossed floor plans 

that direct one to the essential service stations such as the washrooms, information 

desks, disabled parking lots, and ramps; and special kennels in places such as Antalya 

and Erzincan airport for the visually impaired aid dogs. 

To aid wheelchair users and citizens with mobility problems, they mentioned the 

ramps and elevators installed at the entrances and exits of buildings, trains, stations, 



29 

 

boat docks, and flyovers, special ticket counters at the train stations, wheelchair-

friendly toilets, reserved accessible parking spaces and reserved wheelchair-friendly 

spaces on the trains and buses. They also pointed out that the staff at stations in cities 

such as Ankara, Eskișehir, Konya, Adana, Aydın, Mersin, Alsancak, Basmane, 

Balıkesir, and Manisa have been given sign language training to aid the hearing-

impaired passengers. They mentioned that the ministry also launched a project that 

encourages the employment and inclusion of people with special needs in the staff in 

areas such as call centers, data entry staff, and even kitchen staff. 

In their 2019 edition of ‘Erı̇şı̇lebı̇lı̇r Ulaşim Ve İletı̇şı̇m’, the ministry described a 

mobile application that could detect voice commands and direct a user using audio 

cues to their destination. They explained that the mobile operators provided the 

visually impaired with a free service where they could be informed on their current 

location using reference points. Subscription contracts and invoices were also offered 

in Braille alphabets or as voice messages. They also described call centers with video 

calls for the hearing impaired, free transport tariffs for the elderly and disabled, and 

bill payment services where a civil servant went to the homes of the elderly and 

processed their bills while at home. 

In terms of software solutions, researchers, as well as organizations in cities, have 

implemented a variety of mobile and web applications to try and make it easier for 

wheelchair users to move around more swiftly. In Berlin, a software solution named 

wheelmap was developed to provide a map of accessible areas around the city using 

the traffic light color system. Mobasheri et al., (2017) explained that green marked 

fully accessible areas, yellow meant partially accessible areas with the probability of 

a small step, red were sections not accessible, while grey signified areas not yet 

analyzed. Wheelmap used the power of crowdsourcing, simplicity, and free price to 

get information about the accessibility of facilities around the city (Mobasheri et al., 

2017). It also emphasized on checking wheelchair-accessible toilets in a facility before 

marking it fully accessible (Mobasheri et al., 2017). Residents of Berlin could all 

contribute and use the Android, iOS, or web version of the application with ease 

(Mobasheri et al., 2017). 



30 

 

Researchers also used the power of machine learning algorithms to automate and help 

in the detection of accessibility issues around their cities. Some researchers combined 

both machine learning and crowdsourcing to make the process much more efficient. 

In 2013, Google Street View (GSV) images were used to detect whether an image has 

a curb ramp or not (Hara et al., 2013). The Support Vector Machines (SVM) with 

Histogram of Oriented Gradient (HOG) feature vectors classifier was trained using 

manually cropped 82*40 pixel images of curb ramps at intersections and random non-

curb ramps (Hara et al., 2013). Using the sliding window detector technique, images 

from GSV were classified as having curb ramps or not (Hara et al., 2013). Results 

showed that the classifier managed to correctly classify 77.3% of the curb ramps but 

does not misclassify any non-curb ramp image as a curb ramp (Hara et al., 2013). 

Hara et al. (2013) then expanded on this research and used GSV, computer vision, 

machine learning, and crowdsourcing to detect curb cuts on streets. They collected 

sidewalk data of four north American cities: Washington DC, Baltimore, Los Angeles, 

and Saskatoon, Saskatchewan. The collected dataset included GSV images and GIS-

based intersection data of curb ramps from the four cities. The researchers collected 

data using a program they developed and called svCrawl as well as through a physical 

survey of the neighborhoods. The detection of curb ramps was first done automatically 

using a developed algorithm called svDetect which used SVM as a binary classifier to 

confirm the existence of a ramp from the results of the Deformable Part Model (DPM). 

The detected ramps together with the confidence score were then evaluated by a 

machine learning module called svControl that predicted computer vision performance 

and decided whether to assign the detection results for verification or for manual re-

labeling using a web interface. If labeling was paramount, it was manually done using 

a developed tool called svLabel where a researcher looked at a 360-degree panoramic 

image of the sidewalk and drew where the ramp was while the verification relied on 

the crowds to examine and verify the correctness of the results. They reported a lower 

cost in using the automated method which they called Tohme, and accuracies of around 

85% that were similar to the accuracy of manual labeling of the ramps. 

In 2015, Neis developed an algorithm that took factors that affected the reliability and 

accessibility of a path into account. The algorithm consisted of slope, width, surface, 



31 

 

smoothness, sloped curb, and lighting as the considered parameters which had 

specified maximum thresholds. Each parameter was assigned an importance score 

value based on a user’s preference. For each segment of a path, Neis (2015) calculated 

the impedance score using the six parameters. Only the segments with score values 

greater than or equal to a user’s preferences were included in the routing tree. The 

proposed algorithm proved to generate reliable paths for wheelchair users, however, 

the length of the path was longer with length differences between 20% and 55%, and 

sometimes no path was found due to incomplete data in the OSM datasets (Neis, 2015). 

Iwasawa et al., (2016) ventured into developing a prototype that would help with the 

collection of accessibility information without relying on a lot on manpower. Using an 

iPod touch that was mounted on a user’s wheelchair they collected 3-D acceleration 

signals, location information, and annotation data during a one-hour wheelchair ride 

in a designated route in Tokyo. SVM, Random Forest (RF), and K-Nearest Neighbors 

(KNN) were used to classify the different action types into movement on a curb, 

movement on tactile indicators, climb on a slope, at a stop, and others (Iwasawa et al., 

2015, 2016). 

Mora et al., (2017) used a different approach to create a system that automatically tried 

to identify accessibility issues on routes in the city and also provided a way for the 

public to contribute to the identification of accessibility problems. They implemented 

a system that automatically tried to identify accessibility issues that wheelchair users 

would face by comparing the path and the length of the paths used by people without 

disabilities versus those with disability (e.g. wheelchair users). They described that the 

system would identify an accessibility issue on a path at the point where the path 

followed by a person without a disability and the wheelchair user path diverged if the 

latter was longer. But if the length of the paths were identical, they stated that the 

frequency of usage was used to identify accessibility issues. Furthermore, they pointed 

out that if a path always used by a person without a disability was seldom used by a 

wheelchair user, the path was marked as inaccessible. Apart from that, the system 

provided an interface that allowed reporting of accessibility issues by users themselves 

hence involving the disabled people (Mora et al., 2017). 



32 

 

Kozievitch et al., (2017) decided to use base maps that had road and building 

information in order to derive simplified maps that had sidewalk and curb ramps 

information to be used in the routing algorithm. The base map integrated a spatial 

database with OpenStreetMap data. They later simplified the base map sidewalk 

polygon, then derived a map with the average distance among streets and sidewalks, 

then added triangles and rectangles that represented crosswalks in road intersection 

areas to the map, and finally derived a weighted map, which set the weight between 

two points as the distance of the edge, if there were no barriers, and infinite, if there 

were barriers. The shortest path from one point to another was selected using the 

Dijkstra algorithm, with the cost of the edges that had been calculated before 

(Kozievitch et al., 2017). 

With population aging being an important topic of current societies, providing 

accessible transport for the elderly and wheelchair users is paramount. Rahaman et al., 

(2017) proposed an algorithm they called contour-based path routing algorithm that 

retrieved accessible routes for the elderly and wheelchair users. The contour-based 

graph consisted of a network of roads that were segmented based on the different 

elevation values which made it easier to evaluate the accessibility of the paths using 

the total energy consumed and the force needed to climb up the slopes along the path 

(Rahaman et al., 2017). For their path routing algorithm, they used the multi-objective 

A* search algorithm which was initially proposed in Ref 25. Case studies were done 

in hilly cities of San Francisco (USA) for its grid-like street layout, Lisbon (Portugal), 

and Singapore for their complex street layouts. They reported that the paths output by 

the contour-based path routing algorithm were consistent and sometimes more than 

the routes found via Google maps. Thus, the system demonstrated its ability to get 

more diverse routes with diverse options that a user would choose based on their 

personal preferences. 

Prandi et al., (2017) designed a mobile pervasive accessibility social sensing (i.e. 

mPASS) application that could be used to get personalized paths based on a 

personalized user’s profile with options such as color blindness or low vision or 

contribute to data collection. It allowed “...users to (i) configure their profile; (ii) 

receive notifications to validate the presence/absence of accessibility 



33 

 

barriers/facilities; (iii) spontaneously insert a report; (iv) view the past report logs; (v) 

display the report localized in OpenStreetMap; (vi) search the route that better fits the 

user’s preferences and needs, computed by a customized version of OpenTripPlanner 

(http://www.opentripplanner.org/), an open-source multimodal trip planning” (Prandi 

et al., 2017, pp. 9-10). 

Another group of researchers worked on classifying buildings as accessible or not by 

using convolutional neural networks and image processing to identify ramps at the 

building entrances (Wu et al., 2019). They took pictures of building entrances from 

random places to create convolutional neural networks with 2, 3, and 5 hidden layers. 

They reported that convolutional neural network 5 gave the best results with a model 

accuracy of 95.6% (Wu et al., 2019). The researchers also acknowledged that they 

concentrated on just detecting the existence of a ramp in a building entrance and that 

they did not consider the slope of the ramp or width of the ramp and entrance, which 

are major factors in the inaccessibility of a building (Wu et al., 2019). 

Cáceres et al., (2020) tried to use a playful way to gain the public’s help in contributing 

to data collection. The Android application they developed was called “Access ‘n’ 

Go!” where users worked in teams to update accessibility information about the 

stations of public transport around the city. The app prompted a user to upload 

information of a station they were closest to at any specific time which gained the team 

points and badges (Cáceres et al., 2020). The researchers’ idea was to collect 

accessibility information about public transport stations in order to provide users with 

disabilities enough knowledge to pre-plan and choose routes that were accessible 

according to their needs. 

Edinger et al., (2019) researched on using vibrations from a wheelchair to classify the 

accessibility of a path. They developed an application called wheelshare that gathered 

vibration data from geo-tagged accelerometer and gyroscope data of the smart device 

attached to a wheelchair traveling on different types of surfaces. They then used 

machine learning algorithms to classify the paths as either accessible or inaccessible. 

The wheelshare application was further enhanced by (Gani et al., 2019) to compute 

possible accessible routes when a user sent a request. The computed routes were 

evaluated using the accessibility classification and other factors such as existence of 



34 

 

curb ramps and crosswalks. The routing algorithm worked by getting the top 10 routes 

within a radius of the origin and destination points then scores were assigned to each 

edge of a route using the length of the edge and the detected road surface score that 

was pre-set. The top three routes were then displayed to the user on a web interface 

with a map. 

2.3. Solutions for Wheelchair Users in Izmit 

The Kocaeli metropolitan municipality has provided some solutions to ease the burden 

of mobility for its mobility-impaired citizens as a way to demonstrate the significance 

these citizens possess in the city (URL-1, URL-3). 

At the time of research, the Kocaeli municipality provided a free taxi service called 

engelsiz Kocaeli taxi to its mobility-impaired citizens. Citizens were required to 

complete a registration process to be eligible for the service (URL-3). Once the 

paperwork and registration process was completed, a wheelchair user could request 

transportation services by calling and making arrangements ahead of time. The 

services were available for errands such as going to or coming back from hospitals, 

schools, and even social and cultural events (URL-1, URL-3). The municipality also 

made clear that since the service worked on an appointment basis, any emergency or 

last-minute requests were catered to depending on the availability of the vehicles. They 

specified that there was a vehicle dedicated to the Gebze district and four other vehicles 

for the other regions within the municipality. A wheelchair user expressed that they 

preferred the municipality vehicles more than the regular vehicles because it had a 

ramp at the back that enabled them to board and disembark the vehicle without much 

difficulty as well as travel with their friends as it had enough seats (URL-1). As of 

January 2020, the Disabled and Elderly Services Branch Office in Izmit informed us 

that they had a total of 442 active registered users of the engelsiz taxi service. 

Further discussions with the Disabled and Elderly Services Branch Office in Izmit 

revealed that they provided an open telephone line for requests and complaints that 

affected their disabled and elderly citizens. They narrated incidents when citizens 

would call and ask for the Kocaeli state hospital entrance to be made more accessible 

through renovating the ramps and removing a trash can that was making it difficult to 



35 

 

maneuver the entrance. More renovation requests had become frequent when the 

public saw that complaints were being acted upon. They also stated that citizens had 

reported accessibility issues in places such as universities, bus stops, flyovers, 

dormitories, and even the city center. 

However, the officers revealed that they sometimes clashed with the Traffic Police 

Department in the city regarding some bollards on sidewalks and ramps. While the 

Traffic Police Department installed the bollards on the ramps to prevent cars from 

climbing and parking on the sidewalk, the Disabled and Elderly Services Branch 

Office perceived it as an accessibility problem for wheelchair users. The case was the 

same for bollards installed at traffic light crossings. Likewise, some street lights, street 

signs, and advertisement boards in the city were placed obstructively on sidewalks as 

shown in Figure 2.1. 

 
Figure 2.1. An example of an 
obstructed ramp (URL-23) 

The officers in charge of improving accessibility proved that the position of the 

signage poles could be rectified. They demonstrated that the trash cans, street name 

signs, and streetlamps could be combined into one pole and placed on the edge of the 

sidewalk instead of obstructing the ramps (e.g. in Figure 2.1), and the billboards could 

be attached to the building walls instead of adding more poles on sidewalks. However, 

some cases were more complicated to resolve like the one in Figure 2.2 where the ramp 

was completely obstructed from one side of the street. The officers expressed that these 



36 

 

kinds of problems could be avoided by citizens who had prior knowledge of the 

accessibility situations. 

 
Figure 2.2. An inaccessible ramp from one side in 
Izmit (URL-23) 

Most ramps in the city center were too steep or too damaged for a wheelchair user's 

safety. The steep ramps were meant to prevent cars from ascending onto the sidewalk, 

and the damages were due to lack of maintenance. The Disabled and Elderly Services 

Branch Office declared their efforts in trying to restore the damaged ramps as well as 

get the steep ramps chamfered for better usability. The officers assured that they 

regularly monitor any construction work being done in the city that was accessibility 

related, with their elderly and disabled citizens' best interests at heart. All their efforts 

were directed to ensuring a more accessible and inclusive city. 

Aside from these, the metropolitan municipality of Kocaeli also offered the elderly and 

those with special needs a unique transportation card that gave them complimentary 

use of public transport vehicles in the citY. The municipality also announced the 

installation of wheelchair charging ports on the main walkway in the city center at the 

celebration of World Disabled day on December 3, 2017 (URL-8). However, these 

charging stations did not last as reports of their vandalization were reported less than 

a year after (URL-2). 

Efforts to make Izmit more accessible and inclusive were apparent from all the 

solutions summarized. The Disabled and Elderly Services Branch Office also added 

that there were more projects underway to improve the district's accessibility situation. 

Some of the projects described include a mobile application that would replace the 



37 

 

calls for booking an appointment with engelsiz taksi and a partnership with Kocaeli 

University to increase the public's awareness of the existence of disabled people in life 

and their ability to be independent when given the opportunity and necessary attention 

(URL-7). The Information Technologies department of Kocaeli was also working on 

adding features in the available e-komobil transport application to aid the disabled and 

elderly citizens in informing approaching drivers of their location so that the drivers 

assist them in getting on the bus and they were assured of not missing the bus. 

We also presented our research idea to The Disabled and Elderly Services Branch 

Office and they provided their maximum support. Our research proposed a mobile 

application that computed and recommended routes for wheelchair users. These routes 

were computed from walking paths retrieved from Google, official bus routes in Izmit, 

and a sidewalk and ramps map of a designated area of Izmit. The walking paths were 

retrieved from Google Maps directions API while the bus routes are queried from the 

official GTFS data of the district. The sidewalk and ramps map of a chosen area of 

Izmit was manually created using Quantum Geographical Information System (QGIS) 

mapping software and exported to a database where the querying was done. 

Furthermore, the application recommended routes by checking the best-rated routes 

from people with similar age, gender, and wheelchair type. 

Our research idea was arrived at after observing the hurdles a wheelchair user faced 

when using the public buses in the district of Izmit. Easing the uncertainty of: catching 

a bus, getting space on the bus, and getting the necessary help in a wheelchair user's 

life was the main drive behind our research. Making them feel independent and 

included, instill confidence, and encourage them to move out of their comfort spaces 

was our goal. Moreover, being a part of the smart cities researchers and solutions 

innovators also played a big role in the significance of our research. 

We brainstormed on ideas that would make the wheelchair users' mobility easier or at 

least more informed. Because Izmit is a hilly place, one of the features that we deemed 

important was the slope information of paths. Displaying the slope information as it 

varies on a route would help a user have a mental picture of the way. It would therefore 

help a user make an informed decision on whether they would be able to go through a 

path or not hence saving them time and energy. When slope information was 



38 

 

displayed, safety was improved because a user could avoid very steep paths that made 

a wheelchair harder to control. The slope information on our mobile app was displayed 

using color-coded polylines. The red areas of the polyline indicated an incline of 

greater than 7 degrees, blue areas indicated a descent of more than 7 degrees while the 

green parts showed areas with less than 7 degrees of incline or no more than 7 degrees 

of descent which meant that a wheelchair could pass that part of the route without 

much difficulty. 

One of the most popular navigation apps is Google maps, which also has slope 

information. However, one of the downsides of Google maps was that it did not show 

the slope info of the different parts of a path. It instead used a graph that showed an 

overview of how the slope changed. This made it hard for wheelchair users to deduce 

whether specific sections of the path were impassable or not. Even though Google 

maps is used by millions of users daily, the only wheelchair information available was 

displayed when a user was in transit mode, which was used to show public transport 

options that were wheelchair accessible. Our application improved on this by using 

crowdsourced data to show routes that were preferred by wheelchair users with similar 

profiles. 

The inclusion of bus routes in our research was to add and provide more route options 

for wheelchair users. By having public transport integrated in our routing algorithms, 

our application allowed wheelchair users to comfortably search for a route for longer 

distances than they usually would. A user could easily get route information for two 

points on opposite sides of the town, and if there were bus routes connecting those 

points then the app would suggest feasible routes. 

We interviewed a wheelchair user in our school, who had to commute several times a 

week to attend her classes in the school. She also had frequent hospital visits, and she 

was enthusiastic about getting an informative app. She asked for a way to communicate 

with the driver of a bus because sometimes bus drivers failed to notice her at a bus 

stop. We intended to add this feature to our application, but the department of 

Information Technology at the municipality which was responsible for developing the 

e-komobil application mentioned that they were already working on this feature for an 

upcoming release of the application. 



39 

 

She also mentioned that she would get very concerned whenever she had to visit an 

unfamiliar location, often spending hours looking at maps and photos of the destination 

and route in order to map any areas that she had to avoid. Sometimes she encountered 

obstacles along the way, such as steps on the sidewalk that were too high to maneuver 

forcing her to turn back and look for more accessible routes, which led longer travel 

times than planned. 

One of the most important features she was interested in was the mapping of sidewalks, 

along with the locations of ramps and their actual accessibility status. Her requests 

guided our search for sidewalk data, since we could not get reliable data from 

OpenStreetMap (OSM) so we went to the municipality with our idea to learn if they 

could help. The transport office redirected us to The Disabled and Elderly Services 

Branch Office and the Information Technology office of the district. Even though the 

municipality was very helpful and provided us with answers to all our questions, we 

could not find a database of the sidewalk, ramps, and elevators data of the district. 

We decided to create a map of a small designated area in the city center that would 

become our pilot project. The chosen area consisted of junctions, a mall, a park, and a 

major bus stop. Armed with her inclinometer and tape measure devices, the internal 

architect at The Disabled and Elderly Services Branch Office took us around the town 

and described the obstacles, steep ramps, damaged ramps, manholes and drainage 

features that would hinder smooth movement of wheelchairs within the area. The 

architect also explained a few solutions that could be implemented to rectify these 

issues with time, such as combining street light and road sign poles to reduce obstacles 

on the sidewalk and chamfering ramps to make them gentler and more accessible. 

Using the data collected in the field, we created sidewalk map data for the pilot area 

using QGIS software. We added the slope, width, length, surface type, and 

accessibility state information to the map. This map was then exported to a PostGIS 

database where the routing was implemented. We used the Dijkstra algorithm that is 

supplied in pgRouting to get the route from one place to another within the sidewalk 

map. After this, we updated our logic to first check for sidewalk routes before checking 

for the google map walk path, to ensure that users always get the most optimal route 

available. 



40 

 

Another feature added on our application was the rating of routes. Users could rate a 

route as many times as they wanted, and when subsequent searches were made, the 

application suggested highly-rated routes first. We added a smart recommendation for 

queried routes, whereby users who registered in the system were clustered based on 

their age, gender, and wheelchair type using k-means clustering machine learning 

algorithm. The system would check if a route with the same origin and destination had 

ever been rated by the users in the cluster, and if available it calculated the average 

rating of the routes and returned the ones with the at least a score of three as the 

recommended routes. On top of that, the system also searched and appended the 

Google walk paths, the bus routes, and the sidewalk paths to the results to give the 

users the power of choice. Finally, the clusters were set to auto-update after every five 

new users joined. The optimal cluster number was selected using the silhouette 

coefficient method. 

  



41 

 

 
 
 
 
3. TECHNICAL DETAILS 

The intended output of our research was to create a smart city mobile application 

specifically for routing wheelchair users of Izmit. Most smartphone users had either 

Android or iOS devices which required the use of a framework that could ease creation 

of a cross-platform mobile application. Most of the utilized technologies in our 

research were selected based on different criteria. We explain a few of the details of 

the main technologies used to create our wheelchair routing application.  

3.1. Flutter Framework 

Flutter is Google’s User Interface (UI) toolkit for building natively compiled 

applications for mobile (iOS, Android), web, and desktop from a single codebase. It is 

a free open source project meaning it is open to contributions from anyone who is 

interested. Flutter allows fast application development, and the resulting application 

can be published to both the Google Play Store and the Apple App Store without 

changing the code or having to write separate applications. It also helps implement an 

intuitive user interface due to its layered architecture that gives developers control over 

every pixel on the screen, as explained in Flutter’s official documentation page . 

Development in flutter is made quick, easy and intuitive through its hot reload feature. 

It is able to update the UI on the device or an emulator on-the-fly after saving the 

changes made in the code, without having to restart the app. It also works seamlessly 

with popular integrated development environments such as Visual Studio Code, 

IntelliJ, and Android Studio. The framework provides a large number of packages and 

plugins to choose from for any development needs. The packages and plugins are 

developed by people in the flutter community which include integration tools and 

simplified utilities for all needs of any app. Flutter also integrates well with the chosen 

backends (Google Cloud Platform for authentication, and Node.js as the API 

endpoint). 



42 

 

It uses the object oriented Dart programming language. Dart can be used to write 

software for all platforms such as mobile, web, desktop, command-line, and server 

side, whether a script or a full-featured app. The language has a C style syntax, it is 

class based, and garbage collected. The flutter framework is powered by Dart native 

which has a Dart VM (Virtual Machine) and an ahead-of-time compiler for producing 

machine code. The Dart VM is a virtual machine that provides an execution 

environment for the dart language. 

Development of mobile apps can also be done using Java or Kotlin languages for 

Android and Objective-C or Swift for iOS devices. These are native languages 

designed to develop apps for the specific platforms. Development using native 

languages entails different codebases for different devices. For example, an android 

app written in Java would need the same code to be written in iOS specific languages 

to get its iOS equivalent app which doubles the development work needed. 

Other cross-platform mobile app development tools include React Native, Ionic, and 

PhoneGap. React is a javascript library for developing UI created by Facebook. It has 

most of the pros as flutter like the hot reload feature, many packages and plugins, free 

and open source, and great documentation. However, it has issues with memory 

leakage, slow app launch, and large app size in Android (Hossain, 2020). Ionic also 

uses javascript with HTML and CSS when creating mobile apps. The mobile apps 

created using Ionic run in a web view which is basically a browser with a hidden 

browser header (Netkow, 2019). PhoneGap was developed by Adobe and was similar 

to Ionic. Their performance is moderate compared to flutter apps, and was more suited 

in creating simple applications. 

We used the flutter framework and dart programming language due to the convenience 

of being able to compile the app for both Android and iOS devices from one codebase. 

Flutter also provided many UI packages and plugins such as Google Maps, slide-up 

panel, star rating, and excellent animations needed to enhance the experience of using 

the app. The flutter framework was also an emerging trend in the development world 

at the time of development, which was an excellent opportunity to learn. It integrated 

seamlessly with other Google libraries and APIs, such as firebase. 



43 

 

3.2. Firebase 

Firebase is a mobile and web application development platform owned by Google. It 

offers user management, authentication, real time databases, push notifications, and 

performance and crash analytics, which earns it the position of a mobile backend as a 

service (MBaaS). MBaaS are service providers that offer backend service needs of a 

mobile application such as data management, data storage, analytics reports, push 

notifications, and API endpoints without writing any code. Therefore, developers can 

create mobile and web apps without developing the backend for apps and instead use 

the MBaaS services according to the needs of their applications. 

Other BaaS solutions that exist are Apple's Cloudkit and Kinvey. Cloudkit flaunts its 

seamless integration with iOS, Mac, and web apps (Ashwini, 2020). It provides data 

storage functionality, authentication using iCloud, and push notifications services 

(Ashwini, 2020). It, however, only supports iOS apps (Ashwini, 2020). On the other 

hand, Kinvey and Firebase support iOS, Android, and web apps. Kinvey has a 

database, push notifications, authentication, and location services (Ashwini, 2020). 

Firebase also provides anonymous user authentication by assigning each user a unique 

id whenever needed. Firebase offers a tree-view real time database and a nested 

documents and field database named cloud firestore. These databases can be used to 

synchronize data across clients or any features that occur in real time such as chats. 

Firebase has analytics and crashlytics that enable developers to monitor the app usage 

and view errors that occurred when their apps were in use. 

We used the anonymous authentication feature in our application, which created 

anonymous accounts using unique ID assigned automatically by Firebase. Each ID 

was unique for each installation of the app. We also used the cloud firestore database 

to synchronize the user's profile information with our own database in PostgreSQL. 

The synchronization between firebase and PostgreSQL was made possible via cloud 

functions. 

Cloud functions are javascript codes deployed to a firebase project. The functions can 

either be triggered via HTTPS requests or events such as database document creation, 

update, and deletion. We wrote cloud functions that would be triggered by the cloud 



44 

 

firestore database whenever a user was created, deleted, or updated, the function 

triggered and invoked the corresponding PostgreSQL query that synchronized the data. 

We used Firebase because of our previous knowledge of the system, its real time 

database functionality, and the anonymous login feature that enabled our app to assign 

users a unique ID without having to demand them to sign up. 

3.3. Google APIs 

Google APIs are a set of endpoints which enable communication between apps and 

Google Services. Google services are endpoints that could be used to extend the 

functionality of applications. There is a vast number of Google Services available. 

However, we used only a few services under the Google Maps Platform. 

To use Google APIs, it was essential to obtain an API key from the developers console 

which was used as credentials when accessing any Google service. The developers 

console was also used to enable the APIs as needed. In our application, we used the 

Maps, Places, Elevation, and Directions APIs. Each API had excellent documentation 

that explained the form of the request for each API, its required and optional 

parameters, and what each parameter meant. The documentation also provided 

extensive examples that showed the expected response, its format, and the meaning of 

returned fields. 

There were other services that provided mapping APIs with directions, place search, 

and elevation endpoints like openrouteservice. All requests made through these 

services needed credentials. The openrouteservice APIs had a free tier program with a 

limited number of requests per API per day. For example, direction accepted 2,000 

requests per day, elevation points and linestrings were limited to 200 requests per day, 

and geocoding accepted only 1,000 requests per day. There were many other open 

source routing software with different capabilities and tiers. A list of them can be found 

under (URL-15). Each option had its own capabilities, syntax and requirements. We 

used Google Services since it was a familiar ground and it included the APIs needed 

for our application. 

The Google Places API basically returns details of an area. It has different request 

types. We used the places autocomplete request to get suggestions of place names that 



45 

 

a user was searching. Each query in the autocomplete request passes a search string 

which responds with five places, having its name and place ID, that matched the search 

string. We also used the place details request to get the details of a place using the 

place ID. The place ID sent to the request was retrieved from the places autocomplete 

request. 

The Google Directions API is a service that returned directions between two locations 

depending on the mode specified. The different modes include driving, walking, or 

cycling. The locations sent to the API request can either be in the form of text, latitude 

and longitude coordinates, or place IDs. The response returned includes a routes array 

with a list of the legs in each route. The routes list also contains an overview polyline 

which is an encoded polyline of the locations in the route. Using the polyline, it can be 

decoded to get the latitudes and longitudes in the path of the route which can then be 

drawn on the Google map. 

The Google elevations API request returns the elevation data of the locations in the 

query. The locations can either be passed as one point location or as a path. The 

response from the API includes the latitude and longitude of the point and its elevation 

in meters. Each of the Google APIs require a key parameter within the request for 

authentication. 

3.4. PostgreSQL Database 

PostgreSQL is an object-oriented database that is open source and stable. It has the 

spatial database PostGIS extension which adds support for geographic objects in the 

database. The extension also makes it possible to have geography related SQL queries 

that are easy to write. It adds extra spatial data types to the database such as geometry, 

geography, and raster data types that refer to shapes such as point, line, and polygon. 

Functions, operators, and indexes are also included to enhance the usability of the 

spatial data types. 

Other spatial databases that compete with PostGIS are MySQL and Oracle Spatial. A 

study done to compare the performance between Oracle Spatial and PostGIS database 

showed that PostGIS was faster in querying spatial data than Oracle Spatial (Shukla et 

al., 2016). While performance measurement was not entirely dependent on the time 



46 

 

constraints, time taken to execute a database query was one of the most important 

factors that we considered. Shukla et al. (2016) also reported that query execution was 

costlier in PostGIS than in Oracle Spatial in terms of computer resources used. 

PostgreSQL database also has many other extensions that can be enabled as needed. 

PgRouting extension was the extension we used to compute the shortest distance 

between two locations. With the fast performance, spatial database extension, 

pgRouting extension, QGIS integration, and understandable documentation, 

PostgreSQL PostGIS database was deemed the best choice for our application needs. 

3.5. General Transit Feed Specification (GTFS) 

Google developed the GTFS as a format for sharing public transport information. 

Using a standard format, public transit agencies can publish their transit data and 

developers can consume the data in any of the diverse variety of applications that use 

public transit information without much hassle. As explained on the official website, 

GTFS is split into static and real time components. The static components comprise 

the necessary information on stops, routes, and schedules, while the real time version 

includes arrival predictions, vehicle positions, and service advisories (URL-5). 

Thousands of cities have published their GTFS data openly to the public. 

OpenMobilityData is a project that aimed to collect open transit data from around the 

world. It showed that it had data from 1251 providers in 673 locations worldwide as 

of July 11, 2020. From the hosted feeds, only two cities of Turkey published their 

GTFS data: Izmit in the municipality of Kocaeli and Mersin in Mersin's municipality. 

We acquired the bus information for our application from the Izmit GTFS feeds hosted 

on OpenMobilityData. 

GTFS is intended to be a standard format. It contains specifications on the naming and 

requirements of the files, the number of fields in each record and their names, and the 

format of each field type. The field types have to follow specific guidelines that are 

explicitly documented in the official GTFS website. For example, colors are written in 

the hexadecimal format without the leading # symbol, dates follow the four-digit year, 

two-digit month, then two-digit day format and the latitude and longitudes use the 

WGS84 decimal degrees that are expected to be between -90 and 90 degrees inclusive. 



47 

 

The included files in a GTFS dataset are also conventional. The current dataset 

comprises five required, three conditionally required, and nine optional files. All files 

in the dataset are text comma-separated files. The most significant files in the 

collection include the stops, routes, trips, and stop times files. The stops file carries 

information about public transit bus stops in the area, the stop codes, names, and 

locations represented as latitude and longitude. It also includes a field named 

wheelchair_boarding, which indicates whether a stop is wheelchair accessible or not. 

The stops file retrieved from the Izmit dataset had the value 0 for wheelchair_borading, 

which meant that no accessibility information was available about any of the stops. 

In the context of the GTFS dataset, a trip is defined as "...a sequence of two or more 

stops that occur during a specific time period" (URL-13) while a route is "a group of 

trips that are displayed to riders as a single service" (URL-13). The routes file contains 

the names of all routes with their short or long names. The routes in the city of Izmit 

are known mainly through unique bus numbers together with the first and last stop 

names. Hence the route_short_name field in the file was assigned the bus number 

while the route_long_name field was assigned the origin and destination names. The 

trips file consisted of multiple records of trips for each route. Each record of a trip had 

the name of the destination as the trip_headsign field, while the trip_short_name field 

was assigned the start time of a trip in the Izmit dataset. The trips file also had 

wheelchair_accessible, which denoted whether a trip was suitable for wheelchair users. 

However, this field in the Izmit file were all marked as 0, which meant the accessibility 

status was inconclusive. 

And lastly, the stop times file describes the expected arrival and departure time of 

buses at each stop of a trip. This file primarily draws a picture of each recorded trip. 

The stop sequence is used to describe which stops a bus travelled through on a trip. 

The time between stops is available using the arrival and departure time fields. And 

finally, the stops where a bus can only pick up but not drop off and vice versa are 

defined using the pickup_type and drop_off_type fields, respectively. With the 

required five files, it is possible to draw a map of all the routes in a city, among many 

other potential use cases, as long as the data provided is accurate. More information 



48 

 

on the contents of all files as well as their meaning can be found in Google’s Static 

Transit reference documentation (URL-13). 

3.6. Quantum Geographical Information System Desktop 

QGIS is an open source, free desktop GIS application. It supports viewing, editing, 

and analyzing geospatial data. GIS applications enables one to open a digital map, 

create or edit spatial information, customize maps, print maps, and perform spatial 

analysis. There are many GIS applications that are both available freely and on 

payment. ArcGIS is one of the closed source GIS software that runs on Windows only. 

It is mostly similar to QGIS functionality except that it does not integrate with open 

source GIS plugins. However, it has better spatial topological and analytical 

capabilities than QGIS. QGIS also works hand in hand with other GIS applications 

like GRASS GIS. According to the GRASS wiki page, the app focuses more on 

analysis while QGIS focuses on map making which makes them complement each 

other. 

We mainly used QGIS to draw a map of sidewalks in a designated area of the city. 

With its extensive documentation filled with examples, QGIS was fairly easy to learn. 

As a first step to drawing the sidewalk map, we added a base map layer. The base map 

is a reference map such as Google Maps, OSM, and Bing Maps. QGIS had a 

QuickMapServices plugin that made adding any base map possible. We decided to use 

Google Map as our base map since our mobile application used it too. 

QGIS also has a QuickOSM plugin that can be used to query and visualize OSM data. 

The plugin has a graphical user interface that can be used to generate an OSM query. 

The OSM queries use key value pairs as described in the OSM wiki page. QuickOSM 

also requires the query to specify an area to search. It provides a few options such as a 

name of a place, the canvas extent, or the layer extent. The queries are run through 

Overpass API which is a read-only API that returns OSM data based on the query sent. 

To draw a new map, an empty layer was first created. Using the properties settings of 

the layer, the fields of the drawn elements could be defined. The fields’ names, object 

type, and length were specified just as is done in a database. Using the relevant add 

feature option, a new point, line, or any other shape could be used to add items on the 



49 

 

relevant layer. After each feature addition, the necessary fields were entered. These 

layers were also exportable in many different formats such as GeoJSON, SQLite, 

Shapefile, and even as an excel spreadsheet. 

QGIS incorporates a database manager plugin. It is used to integrate with spatial 

databases that are supported by QGIS like PostGIS and Oracle Spatial databases. The 

database menu in the plugin allows connection to existing spatial databases. The tables 

and schemas can then be viewed and edited directly from QGIS. The plugin also has 

an SQL window which allows writing and execution of SQL queries on the connected 

database instances. The result of the queries can also be visualized by exporting it as a 

layer to the project. Using the database manager plugin and query execution 

capabilities, it is possible to run routing algorithms and visualize the returned routes 

directly on the map. This made it easier to debug and confirm that the drawn map was 

correct. 

3.7. PgRouting 

The PostGIS PostgreSQL database has a geospatial routing extension called 

pgRouting. It is easily enabled on any PostGIS enabled PostgreSQL database instance. 

PgRouting extension is bundled with many famously known routing algorithms. It was 

first called pgDijkstra which had the Dijkstra algorithm methods. It was then extended 

and renamed to pgRouting and has since grown to include a variety of routing 

functionality. The extension also has documentation with examples which helped 

when learning to use it. 

We used pgRouting to find the shortest path from one point to one destination. Some 

of the available algorithms used for this purpose include A* and Dijkstra algorithms. 

Other functions with other purposes are also available. For example, the travelling 

salesperson problem computes the shortest route that passes through each node only 

once and returns to the start node. There is also Kruskal’s and Prim’s algorithms that 

finds the graph with minimum weight edges that spans all nodes in the original graph. 

The Dijkstra algorithm is a greedy algorithm that finds the shortest path in a graph 

from a defined start and end node using positively weighted edges. The A* algorithm 

also has the same principle of Dijkstra with an addition of a heuristic function. The 



50 

 

heuristic is an intelligent estimation of the cost between a node and the intended 

destination. PgRouting defines five different heuristic functions that can be used in its 

implementation of A* algorithm. These include the Manhattan, diagonal, and 

Euclidean distances. It also has an option to set the heuristic to a value of 0 which 

would basically make its logic similar to the Dijkstra algorithm. 

Rachmawati and Gustin (2020) experimented the differences in execution time and 

loop count between A* and Dijkstra algorithm in a path finding problem. They created 

a map of their university and used the distance between intersections as the cost of the 

edges in the graph. Their reports showed that A* executed faster than Dijkstra in both 

execution time and loop count variables. However, the returned path and shortest 

distance were the same. They made the conclusion that either of the algorithms could 

be used on a town or regional scale. However, the A* algorithm was a better option 

for large scale maps. They also stated that Dijkstra’s slow execution was caused by its 

exploration of options in a much larger area that expanded out equally in every 

direction contrary to how A* works. 

The use of an algorithm that went through the maximum number of options to find the 

shortest path was considered a major advantage for our problem. This was because of 

the small area in question. When executing the pgRouting functions, a cost value is 

expected to be defined in the first parameter of the functions. The A* and Dijkstra 

functions returns a list of nodes that correspond to the shortest path in the graph passed 

to the function. The details of the nodes returned include the sequence of the node in 

the path, the identifier to the node’s location and name details in the original graph, 

identifier of the edge between the current node and the next, the cost of the edge, and 

the aggregated cost that equaled the total cost from the start node to the node in the 

row. This result set can then be used to display the found path and the last row’s 

aggregated column would equal the total cost of the path. 

3.8. K-Means Clustering and The Scikit-Learn Library 

K-Means is an unsupervised iterative clustering algorithm. Its main aim is to cluster 

samples based on their features into a predefined number of clusters. It uses the 

Euclidean distance metric to get the distances between samples and their assigned 



51 

 

cluster centers (Yuan and Yang, 2019). K-Means works to minimize the distance 

within cluster samples and maximize the distance between clusters. The algorithm 

workflow is iterative but it starts by randomly selecting k cluster centers from the 

dataset (Arthur and Vassilvitskii, 2007; Li and Wu, 2012). The downside is that the 

correctness of the clusters is sometimes influenced by the first assigned cluster centers 

(Li and Wu, 2012). Such that varying initial points may sometimes result in different 

clusters. 

Each sample is then assigned to the nearest centroid which is the centroid with the least 

Euclidean distance value between the sample and the centroid. The next step in the 

algorithm is the centroid update. The centroid is recalculated using its distance to each 

sample in the cluster to reposition it in the center of its cluster. The algorithm then 

iterates over the cluster assignment and centroid update operations until either a 

maximum number of iterations is reached or the centroids do not change location. 

K-Means algorithm expects a predefined number of clusters as a parameter. Defining 

the optimal number of clusters may not be straightforward in some cases. Hence there 

exists some algorithms that could be used to estimate the optimal number of clusters. 

Some of these algorithms include the elbow method and the silhouette coefficient 

algorithm. The elbow method is one of the most commonly used techniques to estimate 

the optimal k value (Trevino, n.d.). In this method, the Sum of Squared Errors (SSE) 

is calculated for values of k ranging from one to a defined maximum number. Smaller 

SSE values show that the samples in the cluster are closer together (Yuan and Yang, 

2019). A plot of SSE against k is usually used to visualize the decline in the SSE values 

as k increases. The curve rapidly declines as it approaches the optimal k value and then 

becomes steady or slower as it exceeds the optimal k (Yuan and Yang, 2019). This 

results in a curve that resembles an arm with an elbow at the optimum k value. 

The silhouette coefficient method provides a rough measurement of how good the 

resulting clusters are. It gives an overview of how far apart the clusters are from each 

other. The coefficient values range between -1 and 1. A value of -1 implies that a 

sample has been assigned to the wrong cluster, while values near 1 depicts correct 

clustering because the sample is near its cluster centroid (Yuan and Yang, 2019). 

Values near 0 indicate almost or overlapping clusters (URL-17). Yuan and Yang 



52 

 

(2019) provided a concise and understandable description of the calculation process of 

the silhouette coefficient of a cluster. They explained that it is calculated by first 

selecting a sample i in the cluster, say a. The average distance of i to all other samples 

in the cluster a is then calculated which they called a(i) the intra-cluster dissimilarity 

of sample i. Then they stated that the average distance of i to all samples in the other 

clusters, b(i) is calculated and the least of these distances, i.e. b(i) = min{bi1, bi2, ..., 

bik}; yields the inter-cluster dissimilarity value, b(i). The silhouette coefficient of the 

sample i is finally computed using Formula (3.1) as provided in (Yuan and Yang, 

2019). 

s(i)= b(i)-a(i)
max{a(i),b(i) 

(3.1) 
=

⎩
⎪
⎨
⎪
⎧1-

a(i)
b(i) , a(i)<b(i)

0, a(i)=b(i)
b(i)
a(i) -1, a(i)>b(i)

 

The cluster silhouette coefficient would then be calculated by getting the average of 

coefficients of all samples in the cluster. Silhouette coefficient values that are nearer 

to one indicates that the samples are assigned to the correct cluster. 

A study was conducted to analyze four algorithms used to define the optimal value of 

k. The researchers used the iris dataset to compute its optimal number of clusters and 

analyzed the efficiency of each of four methods: elbow, gap statistic, silhouette 

coefficient, and canopy methods (Yuan and Yang, 2019). Their results showed that all 

four methods yield the same k value however the execution times differed with gap 

statistic and silhouette coefficient taking over eight seconds for 100 samples. The 

elbow and canopy methods were a bit faster. The researchers concluded that silhouette 

coefficient and gap statistic methods were not suitable for large scale datasets and that 

canopy was the best algorithm for large and complex datasets (Yuan and Yang, 2019). 

However, they also reported that all methods were suitable for small datasets (Yuan 

and Yang, 2019). 

The implementation of machine learning algorithms has gained a lot of traction in the 

past few years. This has brought up many machine learning libraries and systems that 



53 

 

help students to learn as well as simplify the development of machine learning 

applications. These include the scikit-learn library and the WEKA software. The 

scikit-learn library relies fully on the Python ecosystem (Pedregosa et al., 2011) while 

the WEKA software has a wrapper called python-weka-wrapper that allows it to be 

used in Python projects. 

The scikit-learn library can be used to implement a wide variety of both the supervised 

and unsupervised machine learning algorithms. Its documentation explains all the 

parameters of each algorithm and provides examples. Furthermore, they have an 

extensive user guide that explains each algorithm and function with examples, charts, 

figures, and code snippets. The WEKA software is an open source graphical user 

interface desktop application with a number of machine learning algorithms developed 

at the University of Waikato in New Zealand. It can be used to run many data mining 

algorithms on one dataset at a go enabling easier and faster comparisons of different 

algorithms and their outcomes. Since our implementation of the backend was a 

Node.JS project, implementing a python scikit-learn project to handle the clustering 

was considered a better option. The availability of examples, documentation, and a 

wide user community added to its appeal. 

The K-Means function in the scikit-learn library expects a certain number of 

parameters. These have been explained in their documentation (URL-17). Each 

parameter has a default option to reduce the number of errors. We will look into some 

of the parameters expected. The number of clusters n to generate is required, and if not 

passed, it defaults to eight clusters. The centroid initialization uses different methods. 

The random option chooses n random samples as the initial centroids. The k-means++ 

option initializes centroids generally far from each other. The user guide in scikit-learn 

explains that the k-means++ algorithm was proposed by (Arthur and Vassilvitskii, 

2007) as a smart selection of initial centroids to speed up convergence and curb the 

issue of getting different clusters with different initial centroids (Arthur and 

Vassilvitskii, 2007). 

In kmeans++, the first centroid is first selected randomly from the data points. Then 

the distance of each data point to the selected centroid is calculated. The next centroid 

that is chosen is such that the chosen data point is far from the previous centroid with 



54 

 

high probability. This results in initial centroids that are widely spaced from each 

other. And since the chosen centroids are data points, there is a high likelihood that 

there are other points related to it. The scikit-learn K-Means algorithm also uses 

Elkan’s algorithm when calculating distances. The Elkan’s algorithm uses triangle 

inequality to reduce the number of distance computations hence making the overall K-

Means algorithm faster (Elkan, 2003). Other parameters include the maximum number 

of iterations for computing centers with a default of 300, the number of times the 

clustering should be done with different centroids whose default is ten, a flag that 

signifies whether distances should be precomputed, and the number of threads to use 

during the executions. 

The results from the K-Means scikit-learn algorithm includes an array of the cluster 

center locations, an array of the cluster labels, the number of iterations run, and the 

inertia which is the “sum of squared distances of samples to their closest cluster center” 

(URL-17). The K-Means model can then be created using the fit method which 

computes the cluster of the samples passed in the first parameter. The model can later 

be used to get the cluster index of each sample in the dataset using the predict function. 

To easily get the cluster a specific sample belongs to, the computed K-Means clusters 

can be cached using Python’s joblib tool. It persists a Python object to a file and can 

be used to re-read the model and directly use it to perform cluster predictions. 

The use of K-Means clustering algorithm was to enable the generation of intelligent 

recommendations for all users even on a first request. Other recommendation 

algorithms such as collaborative filtering require prior knowledge of a user’s rating to 

generate recommendations. While K-Means clustering is the most widely used 

clustering algorithm (Elkan, 2003), other clustering algorithms can also be studied and 

compared in future research. 

3.9. Node.JS 

The server-side API calls for the mobile application we developed were handled by 

Node.JS. It is defined an asynchronous and event-driven JavaScript runtime 

environment. Written in C/C++ and JavaScript, Node.JS is designed to build scalable 

network applications in which many connections and requests can be handled 



55 

 

concurrently. This is very different from more conventional models, in which each 

request is handled in its thread. Node.JS users do not have to worry about deadlocking 

of processes, files, and other resources because of its asynchronous nature. Web 

protocols such as HTTP/S are built into Node.JS, making it well suited for use in a 

web library or framework. 

For the backend API server for our mobile application, we considered several options 

before settling on Node.JS. Among the considered options were Python, Ruby on 

Rails, Django and Laravel. Even though Python is an excellent choice for a backend 

API server, Node.JS has better memory optimization (URL-9), making it a better 

choice for our application, which ran on an online virtual server where minimal 

memory utilization was key. Our application made extensive use of asynchronous calls 

to database functions and to web APIs, which was not an area where Python is strong 

at. According to URL-9, Node.JS is better at asynchronous process management than 

Python. Ruby on Rails is one of the most popular frameworks for backend and web 

programming. However, Ruby is much more opinionated (expects files and folders to 

be structured in a certain way) than Node.JS, which makes it suitable for larger projects 

that have many files and processes. For the purpose of our study, Node.JS was more 

appropriate since we did not envision a large API server, but a compact one with a 

minimal set of functions. Django (Python Based) and Laravel (PHP) were also 

considered, but based on our previous experience of working with Node.JS we opted 

not to use them because we felt we would be more productive in a familiar 

environment. 

In order to handle Representational State Transfer (REST) API requests, we opted to 

use restify, a Node.JS web service framework optimized for building semantically 

correct RESTful web services ready for production use at scale. Restify optimizes for 

introspection and performance. There are several alternatives to restify, the most 

popular being flask and expressjs. We considered using each of these, but chose restify 

because it can easily handle many concurrent requests without throttling them. 

  



56 

 

 
 
 
 
4. METHOD 

Our research was mainly focused on providing route options for wheelchair users. 

However, we also believe that an informed decision is more important than trial and 

error attempts. In this regard, our first step was to provide routes with information 

critical to wheelchair users such as the slope, distance, and all available pathways. 

Moreover, we added in the public transport options that would further help wheelchair 

users traverse hilly areas more efficiently. Finally, we attempted to get more intelligent 

route recommendations using the power of crowdsourcing. 

Our perception of the research was to provide wheelchair users a virtual collaboration 

platform. Whereby a user would rate a route and their rating would be used to provide 

recommendations to others. To achieve this, we used K-Means algorithm which 

clustered users based on profile similarity and recommended routes based on the 

feedback from fellow cluster members. A brief overview of the application workflow 

is depicted using flowcharts. 

 
Figure 4.1. User registration 
flowchart 



57 

 

After every 5 new user registrations on the app, the clustering functionality was 

triggered, as shown in the flowchart in Figure 4.1. All previously-recorded users were 

used in the silhouette coefficient method to get the most appropriate number of clusters 

and avoid overfitting the data. The optimal number of clusters was used to fit the data 

in the K-means clustering algorithm and find the cluster a new user belonged to. The 

cluster number returned also provided all the users in a certain cluster. The cluster of 

the user that is output in Figure 4.1 was used in the first step in the API server section 

of Figure 4.2. 

 
Figure 4.2. Route request process flowchart 

Figure 4.2 displays the logical flow of the routing algorithm we used in our research. 

Whenever a user posted a request for a route from an origin to a destination, the server 



58 

 

first checked if there were any rated routes for this point. The routes that had been 

rated were then filtered based on users in the same cluster as the user requesting the 

route. If any users in the cluster had rated any of the routes, the average rating of each 

route was calculated and routes with an average rating of above three out of five were 

added to the result set as the recommended route. 

The system then continued to search for the walking directions and bus routes for the 

requested origin and destination as it would when there was no rated route. Since the 

app was developed with wheelchair users in mind, we queried a direct path from the 

sidewalk map using the Dijkstra algorithm. The algorithm used the length of a segment 

calculated from the geopoint of its start and end location as the cost of the segment. If 

a sidewalk path was found, we skipped querying the walking path from Google, but if 

no path was found, we used Google directions API to get a direct walking path in 

segments. The elevation of each segment's start and end location was then retrieved 

via Google elevation API, and the overall slope of the segment was calculated. These 

segments were added to the result set as walking directions and displayed on the app 

using polylines. Each segment of the polyline was given a color based on the slope 

value of the path's segment. 

Bus routes were simultaneously queried from the PostgreSQL GTFS database of the 

district of Izmit. Querying bus routes required the use of bus stops as parameters. The 

nearest bus stop within one kilometer to both the origin and destination locations were 

fetched using PostgreSQL’s ST_Distance_Sphere function. Each pair of the first and 

last stops were queried for a direct bus route. If a bus route was found, walking 

directions from the start position to the first stop and walking directions from the last 

stop to the destination was fetched using the previous steps outlined. The route was 

then added to the bus route options result set. 

After the process described above was complete, the result set finally contained a direct 

path, bus route options, and smart recommendation options. App users could also rate 

each segment of each route separately from the routes list. These ratings were re-used 

and re-calculated with every request made. 



59 

 

4.1. Mobile Application Development using Flutter Framework 

The mobile application in our research was designed using Flutter, Google’s UI toolkit 

for building natively compiled applications for mobile (iOS, Android), web, and 

desktop from a single codebase. Flutter was chosen because it allows for fast 

application development, and the resulting application could be published to both the 

Google Play Store and the Apple App Store without changing the code or having to 

write separate applications. Flutter also integrates well with the chosen backends 

(Google Cloud Platform for authentication, and Node.js as the API endpoint). Another 

reason for choosing Flutter over native app development was the speed and ease of 

producing a fully working application with an intuitive user interface.  

The source code for the application is publicly hosted in an online repository on 

GitHub and is freely available for any future researchers who may wish to reproduce 

or build on this research. This also ensures that the API can be easily re-deployed to a 

new server in case redundancy is needed or in case there are problems with the current 

server. Amongst the considered options for developing the mobile application 

(including native applications), flutter was chosen because of its fast development 

methodology. When using flutter, changes are seen on the test device as soon as the 

application source code is saved. This greatly reduced development time since the 

developer does not have to wait for the application to recompile every time code is 

changed. 

4.2. Node.JS Backend Route Recommendation Processing 

The API developed in Node.JS was hosted on an online Linux server running Ubuntu 

Linux. All communication between the application and the API server was transferred 

over HTTPS, thus making it secure and private. To further increase security, all 

requests to the API server were routed via Cloudflare’s DNS service. This ensured that 

the API server delivered fast results while remaining protected from DNS attacks such 

as Denial of Service (DoS) attacks. 

In order to reduce the number of calls being made to Google APIs, caching was 

implemented in the Node.JS API server source code. Whenever a call was made to a 

Google API, for example, the elevation between two points, this data was cached in 



60 

 

the PostgreSQL database. When a new request was made for the exact same 

coordinates, instead of calling the Google API again, the net result was fetched from 

PostgreSQL. This greatly reduced the number of calls to Google APIs and also 

improved the speed at which the responses were served back to the application. 

Overall, caching Google API requests reduced the cost incurred from the API requests. 

The sidewalk map data was stored in a PostgreSQL database, in order to fully utilize 

algorithms such as pgRouting that were better suited to be run on PostgreSQL. Using 

Node.JS as a centralized API host ensured that the application always called one 

specific route for all API calls, and the API server then routed these calls to the 

different providers for each request 

4.2.1. Google Firebase 

Since Flutter is a Google tool, it integrates with Firebase seamlessly, ensuring proper 

differentiation of different users and leading to improved and targeted route 

suggestions. Firebase also includes built-in metrics and performance analytics, which 

can be enabled to track the app’s usage, performance, and crashes (if any) to ensure 

the best user experience possible. 

In the mobile application that we developed, we use firebase for authentication and 

user information tracking. Even though users did not have to explicitly enter 

credentials to log in, the application conducted an anonymous login via firebase that 

tracked each installation with a unique id. This id was used to represent the user and 

was used across the application when storing preferences, rating routes or getting 

recommendations for various routes. Firebase’s flutter library is robust enough to do 

this authentication seamlessly in the background, and if conventional 

username/password authentication will be needed in the future then it can be added. 

In order to sync user details between Google Firebase and PostgreSQL, Firebase Cloud 

Functions were used. Cloud Functions for Firebase is a serverless framework that lets 

developers automatically run backend code in response to events triggered by Firebase 

features and HTTPS requests. JavaScript or TypeScript code is stored in Google's 

cloud and runs in a managed environment, eliminating the need to manage and scale 

your own servers. In our PostgreSQL database, we had a table that holds users 



61 

 

(izmit.users), which was populated by the Firebase Cloud Functions. The user 

functions, createUser, updateUser, and deleteUser were deployed to keep the 

PostgreSQL table in sync with the users table in Firebase. 

4.2.2. Bus route querying 

The data for mapping bus routes and displaying bus schedules came in the form of a 

GTFS data set. GTFS is a data specification that outlines guidelines regarding how 

public transit agencies can organize and publish transit data in a standardized format 

that can be used by various software applications (URL-20). 

A GTFS dataset for Izmit was obtained from an officially published feed by the 

municipality of Kocaeli at URL-10. This data set contained route information, bus stop 

details including their coordinates and bus schedules for each route. In order to make 

it easier to consume this data in the API, we converted it from the original collection 

of text files to database tables. We tried to use Firebase’s real time database first by 

converting the text files to NoSQL and uploading them to Firebase. However, the 

result was over 3 million requests which ended up costing us 250 Turkish liras. Since 

the GTFS data had exceeded the free tier provided by Firebase, we could not continue 

using it as our database due to the high cost that would have been incurred by 

subsequent queries to the database. We then dropped the GTFS data from Firebase and 

shifted to migrating the GTFS data to a relational PostgreSQL database. 

Our research was not focused on getting ways of importing the bus routes data into a 

relational database. We, therefore, used an open-source tool developed in Python to 

import the data to our database. The tool is called gtfsdb and can be found in GitHub 

under the OpenTransitTools account (Young, 2019). The developers of the tool 

mentioned that the software was developed to help jump-start software developers in 

their projects that need GTFS data in a relational database. They provide a short tutorial 

on how to use the tool to migrate the official GTFS data to PostgreSQL, Oracle, 

MySQL, and SQLite databases. To import the data, we created an empty schema in 

the database and downloaded the GTFS data from the link provided by the Information 

Technology department of Izmit. We later passed the schema name and relative 

location of the downloaded data to gtfsdb which created the tables for all text files 



62 

 

included in the GTFS folder. Using this tool saved us a significant amount of time and 

gave us the assurance of having correctly imported data on the database. 

Once the GTFS data was in a relational database table, it was easy to come up with 

SQL queries to fetch data on demand based on the various bus routes and bus 

schedules. In the GTFS dataset for Izmit that was acquired, each bus stop record 

contained the stop’s GPS coordinates. Using this data, given a set of GPS coordinates, 

it was now possible to figure out the closest bus stop, and all of the bus routes that pass 

through it. 

In case of extension or continuation of this study, the application can easily be 

improved to work with other transit types such as train and boat transit. GTFS’s 

structure is very standardized, meaning that the stops in a bus transit dataset can 

represent stations in a train transit dataset. If, in the future, there’s a need to extend this 

application to other areas, all it will take is downloading the GTFS dataset for that 

area, and running the script to convert it into SQL statements that can be executed to 

insert the data into the PostgreSQL database, and the application will work as 

expected. This will also be done in case the GTFS dataset for Izmit’s bus system is 

updated. 

4.2.3. Walk directions using Google APIs 

Walking directions and slope information (elevation) were retrieved from Google 

using the directions API and elevation API respectively. Whenever a user searched for 

directions, say from location A to location B, this request was passed on to the API 

server. The server then checked the GTFS database and selected the bus stops nearest 

to A and B, which were also in bus routes linking the two points. Since the bus stops 

would not always be exactly at the same coordinates as points A and B, the user had 

to be provided with directions from their origin to the first bus stop. They also had to 

be provided with directions from the last bus stop to their destination. 

Google directions API was used to provide walking directions between these points. 

Since the target users used wheelchairs, a way had to be found to map a safe route that 

wheelchairs could navigate without any difficulties. Google’s elevation API was quite 

suited for this since it could provide slope/elevation details between two given points. 



63 

 

By taking the route given by the directions API and splitting it into multiple segments, 

elevation data was obtained between the start and endpoints of each segment. If the 

slope between two segments was too steep, it was highlighted in red for steep incline 

and in blue for steep descent, and thus the user would have an overview of the 

suggested route and how usable it would be with a wheelchair. In order to reduce 

external traffic, to reduce costs and to improve speed, the collected elevation and 

direction data was cached in a PostgreSQL database on the server, and subsequent 

requests for the same data were served from this cache instead of making fresh requests 

to Google. 

4.3. Sidewalk Mapping 

On top of having bus routes and slope detailed walking routes displayed, we added 

fetching of sidewalk data. However, the available sidewalk map was only of a 

designated pilot area in the city center. The designated area was chosen with a major 

bus stop, a public park, a shopping mall, and road junctions in mind. The inclusion of 

these was to enable more straightforward and more realistic test case simulation. 

Since the municipality did not have a ready database of sidewalks and ramp locations 

in the district, we sought ways of obtaining the data from online open source solutions. 

We checked OpenStreetMap using the QGIS mapping application. QGIS is a free GIS 

that can be used to visualize, manage, edit, analyze data, and print customized maps. 

It has an OpenStreetMap plugin that can be used to download and visualize OSM data 

using layers. We downloaded the footway and pedestrian data under the highway data 

type of OSM. The footways and pedestrian paths displayed an overview of their 

locations in a few areas of the city. 

In Figure 4.3, it is clear that the map only contained a rough location of the footways. 

Pedestrian paths are described in the OSM wiki as a road that is exclusively meant for 

pedestrians and vehicles may be allowed at specific times only. The pedestrian paths 

in the city center shown in Figure 4.3 can be seen clearly marked for areas prominently 

known by citizens. 



64 

 

 
Figure 4.3. Sidewalk and ramps map of Izmit from OSM 

Footways in the context of OSM describe paths that are mainly used by pedestrians. 

OSM provides an option to mark a footway as a sidewalk that can further be marked 

as being present on the left, right, or both sides of the road. However, the OSM 

footways map of Izmit only showed footways in a few areas mostly in parks. At the 

time of our research, we could not find a map that had details of sidewalks and ramps 

that are on roads, both major and minor, in the city of Izmit. We, therefore, selected a 

pilot area to map and use in our research. 

In our pilot area, we selected a central location in the city. In this area, a mall, a park, 

a major bus stop, roads with sidewalks and ramps, and a pedestrian path were located. 

We surveyed the area with the help of one of the interior architects from the Disabled 

and Elderly Services Branch Office of Izmit. The architect used a tape measure to 

measure the widths of sidewalks, and a digital inclinometer to measure the elevation 

of ramps on our path. We also noted down the many physical and structural obstacles 

that would pose a threat or difficulty to a wheelchair user. We later mapped the area 

using QGIS mapping software and entered the length, width, elevation, and surface 

type details of sidewalks and ramps collected from the survey. 

Our mapping of the sidewalk followed the paths on either side of roads with sidewalks. 

The selected area’s mapping can be seen in Figure 4.4. The map details and mapping 

procedure was inspired by Accessmap, a wheelchair accessibility map of Seattle that 

displays the incline, color-coded wheelchair accessibility status, and type of road 



65 

 

(sidewalk, curb, or crossing) of segments on either side of a road. An example of the 

map can be seen in Figure 4.5. 

 
Figure 4.4. Sidewalk mapping of pilot area 

Accessmap shows the details of a clicked location. In the example, the clicked location 

is displayed by the location pointer and the details show that it is a sidewalk made of 

concrete with a 1.2% incline. The accessibility of the location is partially accessible. 

The red dashed lines communicate inaccessible paths (Bolten and Caspi, 2019). The 

accessibility of the paths is measured using the uphill and downhill steepness settings 

on the left panel and the colors on the map are updated in real-time (Bolten and Caspi, 

2019). 

 
Figure 4.5. An example screenshot of AccessMap 



66 

 

 In Figure 4.4, the roads with only one line show pedestrian paths where vehicles were 

only allowed in specific times of day. The roads with lines on either side shows the 

presence of sidewalk on roads with an active flow of vehicles. The lines on these roads 

are segmented into paths with different information on each segment. The information 

included in the segments included the width of the path, the surface type (smooth or 

ragged), the average incline of the stretch of the path, the accessibility status (whether 

a wheelchair user would be able to pass through with difficulty or not), and the name 

of the path. The name given to the path segment mentioned whether it was a sidewalk, 

a curb, or a crossing. The map was later exported to a GeoJSON file with all its details. 

The file was imported into a PostGIS PostgreSQL database for routing functionality. 

4.4. Smart Sidewalk Routing using PGRouting 

The routing functionality through the manually plotted sidewalk map was 

implemented using a PostGIS database with pgRouting extension. PostGIS is an 

extension of the PostgreSQL database with support for GIS spatial objects. It is freely 

available, open-source, and has geospatial object types and functions on top of the 

basic geometry types already available in the PostgreSQL database. Spatial databases 

like the PostGIS database are optimized for handling data that represent objects in a 

geographic sense. Furthermore, the pgRouting extension of the PostGIS database 

provides geospatial routing and network analysis functions. The extension contains a 

vast number of routing functions that use algorithms widely known, for example, 

Dijkstra, A*, and the bidirectional A* and Dijkstra algorithms. We used the Dijkstra 

algorithm in our research. 

Upon getting the GeoJSON file of the sidewalk map from QGIS software, we imported 

the map into our PostGIS database using a tool called ogr2ogr, which is part of the 

geospatial data abstraction library. It is used to convert vector data between different 

file formats like GeoJSON, PostGIS, and Environmental Systems Research Institute 

(ESRI) shapefile. 

The import tool created a table of our map. Figure 4.6 shows the table columns that 

corresponded to the details we added to each segment. Each row in the table referenced 



67 

 

an edge on the map. Each edge corresponded to a line drawn on the map that referenced 

sidewalks, ramps, crossings, or obstacles. 

 
Figure 4.6. A snapshot of the PostGIS table contents of imported sidewalk map 

The columns for each section of the path included information about the width of the 

path, the surface type (smooth or ragged), the average incline of the stretch of the trail, 

the accessibility status (whether a wheelchair user would be able to pass through with 

difficulty or not), and the name of the segment (whether a sidewalk, ramp, crossing, 

or obstacle). Additionally, it created a geometry column that stored the geolocation of 

the segment. The start and end latitude and longitudes of the segment could be derived 

from the geometry column. 

To have a network that correctly maps intersections of roads, we first created a noded 

system of the map using the pgr_nodeNetwork function as is recommended for 

pgRouting. This function uses the geometry column of the map table to intersect all 

edges to find probable junctions. It then splits the intersecting sides into different 

segments while assigning the edges to a node that link the new segments. An example 

best depicting this provided by the official pgRouting documentation can be seen in 

Figure 4.7 (URL-11). The figure shows an example of a graph with crossing edges. 

After running the pgr_nodeNetwork function, it shows that the resulting network is rid 

of crossing edges that do not have a node at the intersection. 



68 

 

 
Figure 4.7. Before node and After node (URL-11) 

We then built a topology of the map using the noded graph and pgRouting's 

pgr_createTopology function. This function creates a vertex table of the noded edges. 

This means that each end of an edge was assigned a unique vertex (URL-12). The 

edges with connections to each other were assigned the same vertices, which resulted 

in a network topology of our original map (URL-12). The creation of the topology 

brings us to the routing functionality. 

Getting a path from one point of the map to another was made possible by the available 

greedy algorithms functions supplied in the pgRouting extension. We used the 

pgr_dijkstra function to get the shortest path from one point to another using Dijkstra 

greedy algorithm. The function expects a query for the edges to search through, a 

starting vertex, and an ending vertex as its arguments. The inner query for the edges 

to search through contains a cost parameter, which we set as the length of the segment. 

This ensured that the path returned was the shortest possible path since the Dijkstra 

algorithm uses the cost of an edge to calculate the shortest route. 

The source and end vertex arguments of the pgr_dijkstra function are ids of an edge in 

a topology map. Since when querying routes, we have the latitude and longitude details 

of the start and end locations, we first need to get the ids of the edges closest to these 

locations. In our query, we used the ST_Distance method in PostGIS to find any edges 

within 500meters of the LatLng points. Moreover, we used the <-> PostGIS operator 

to get the nearest neighbor edge to the location. 



69 

 

The result set returned from the pgr_Dijkstra method contained an array of edges in 

sequence that lead from the start to end coordinates. We appended the edges into the 

response and sent it back to the client app. The edges were then displayed on the mobile 

app using the same color-coded polylines with the incline column from the table as the 

slope variable. 

4.5. Application Workflow 

We created a mobile application using the Flutter framework so that it would be easy 

to compile for both android and iOS devices. We will however use screenshots from 

an Android device to exhibit the interface of our application. On a fresh installation, 

we invoked firebase anonymous authentication function in the firebase library. The 

function assigns a user a unique firebase id. And for subsequent runs of the app, the 

same id was used per installation. This id was later used to create a user object in the 

firestore database. The firebase user object consisted of age, gender, wheelchair type, 

and accepted fields. The accepted field was set to true when a user accepted the privacy 

policy. 

The user object in firebase was then synced to the PostGIS database which later used 

it to link ratings to a user. The sync functionality was made possible via the cloud 

functions in the firebase cloudstore database. The cloud functions updated the users 

table in the PostGIS database every time a record was created, updated or deleted in 

the cloud firestore database. Deleted users in the PostGIS database were marked using 

an is_deleted flag in the users table to maintain integrity of the database. It also ensured 

that previous rated routes by a deleted user were still available for use in the 

recommendation generation engine. 

With their firebase identifier, the user was directed to the profile page where it was 

mandatory to accept the privacy policy as can be seen in Figure 4.8. The privacy policy 

asked for permission to use the user’s details that they saved for research purposes 

only. The user profile screen also had the age, gender, and wheelchair type fields which 

were saved and used for the smart route recommendations. The profile fields were 

however optional since the app was foreseen to be used by non-wheelchair users for 

other purposes such as getting walking directions, or contributing to route ratings. 



70 

 

 
Figure 4.8. User profile, Main screen, and Search screen examples 

On accepting the privacy policy, the user was directed to the main screen of the app. 

The user’s current location was first fetched. We assumed that the user’s route request 

origin would be their current location. Sometimes the location takes long to be fetched 

but this did not hinder a user to continue using the app. The user could manually set 

the location of origin when performing their route request. 

The main screen had a full google map view centered at the user’s current location. 

The map showed all nearby bus stops in the area by default. Clicking on a bus stop 

icon opened a window with the code and name of the stop. The bus stops were 

automatically fetched and displayed any time the map was moved. However, the bus 

stops display icons could be switched off using the location pointer button situated on 

the top right-hand side of the map view.  

The buttons on the top right also included a settings icon button which redirected a 

user back to the profile page in case they would like to make any changes in their 

profile. The location button centered the map on a user’s current location, if found, or 

last known location, if current location was not found. At the top of the main screen 

shown in Figure 4.8, a search box allowed a user to search for a destination to be 

mapped. The search box opened up a search screen. The search used Google’s place 

autocomplete API to get areas that matched the text typed. The API returns a maximum 

of 5 results which were displayed in the search screen. A user was then expected to 



71 

 

select a search result so as to set the location as the destination. Selecting a location 

from the search results triggered another request to the Google place details API. The 

API returns a place’s full details like the address, reviews, and location which were 

not included in the autocomplete results. The location coordinates and address 

description extracted from the place details API was then passed back to the main 

screen where a red location icon was added at the destination location selected as can 

be seen in Figure 4.9. 

 
Figure 4.9. Before and After route request 

Setting the destination location automatically set the origin location to the current 

location, or to the last known location if the current one was not available. This also 

added a green location icon at the retrieved location. The user was also free to change 

or manually reset the origin location using the origin text box that was displayed on 

top of the destination one. Clicking on the origin text box opened the search screen in 

Figure 4.8 and the same process as the destination setting process is followed. Figure 

4.9 shows an example of the origin set to the Kocaeli University hospital and the 

destination as Halkevi in Izmit city center. When both the destination and origin were 

set, the route request could then be triggered using the get directions button visible at 

the bottom of the screen as seen in Figure 4.9. 



72 

 

The route request was sent to the API server which searched for the direct walking 

directions from origin to destination. It then looked for the nearest bus stops within 1 

km to the origin and destination. Using these bus stops, it queried for all bus routes 

that went through them. Since a bus route with different schedule times considered 

each time as a different trip, the results sometimes returned the same route but with 

different arrival times as different routes. Therefore we added a time limit in our bus 

route query. The limit queried for all bus routes that would be at the particular stop 

within the next 30 minutes of the querying time. For all the returned bus routes, we 

searched for either the sidewalk path or walking path, if the sidewalk path was not 

found, to the start stop and from the last stop. The walking and sidewalk paths both 

included slope details of different segments of the path. All these results were then 

bundled together and sent back to the client as seen in Figure 4.9. The figure also shows 

the collapsed version of the slide-up panel that is used to display the different route 

options returned from the server. 

The bottom panel with the returned route results can be seen in Figure 4.10. The panel 

had three sections. The first section displayed the smart recommendations, if any were 

found. The second section showed direct routes (where no bus route is provided). And 

the third section showed the wheelchair and bus routes (wheelchair navigation to the 

first bus stop, then bus navigation to the last bus stop, and finally wheelchair navigation 

to the destination). The panel also had a refresh icon button which re-fetched routes 

for the same locations. A close icon button closed the panel, removed the origin and 

destination locations and reset the map to the state shown in Figure 4.8. It could be 

used when a user needed to reset the map and restart a new route request. 

The polylines drawn on the map always coincided with the selected route option in the 

slide-up panel. This meant that whenever a user selected a different option, the 

polylines on the map were redrawn to show the selected route. Figure 4.10 shows an 

example of a selected bus route. The map has been zoomed out to fit the origin and 

destination in the visible canvas. 



73 

 

 
Figure 4.10. Route request outcome 

The bus route selected in Figure 4.10 is represented by the grey polyline on the map. 

The gray polyline meant that the elevation information was not available. We did not 

display the elevation details of a bus route because the vehicle would still pass through 

all areas it was designated to pass without a problem. The details of a route displayed 

to a user included the bus number, the distance and average time from the origin to 

first bus stop, the expected departure time at the first bus stop and arrival time at the 

last bus stop, and the distance and average time from the last stop to the destination. 

The distance between a location and a bus stop was found from the Google directions 

API. The average time from a location to a stop was however calculated using the 

assumption that a wheelchair user travels at an average speed of 1.4m/s.  

The sidewalk or walking directions were color coded using the elevation value of each 

segment of the path. Figure 4.11 shows an example of a path from a bus stop to the 

destination. The colors on the path show different elevation values which translate to 

paths that would be either hard or safe to navigate for wheelchair users. 



74 

 

 
Figure 4.11. Color-coded Directions and Rating Dialog 

The red polylines indicated an incline of greater than seven degrees while the blue 

polylines indicated a descent of greater than seven degrees. The green areas showed 

sections that had elevation of between zero and seven degrees uphill and downhill 

which were considered safe for wheelchair users . Even though we learnt that a safe 

elevation value is seven degrees, future development of the application could add a 

custom minimum and maximum elevation value for a user to manipulate according to 

their personal needs and preferences. 

Finally, the app provided a rating option for each route returned in the results via a 

dialog visible in Figure 4.11. A user would rate a route without actually going through 

it because we learnt that wheelchair users usually learnt and followed the same paths 

in their daily life. Hence users could provide their feedback on routes that they had 

prior knowledge on. We used a five star rating system in our application. A user could 

fill the number of stars and submit their rating as many times as they want. When 

retrieving routes, the average rating of a route from all users was returned. The rating 

returned could be seen on opening the rating dialog. 



75 

 

Once the application was almost fully developed, it was released to the Google Play 

store. This process involved compiling the code into an Android Package (APK) and 

submitting it for review. After the first review, Google rejected the application due to 

a lack of privacy policies, terms and conditions, and fatal bugs that had to be fixed 

before they could accept it again. Privacy policy and terms and conditions were 

included in the application, alongside a request for the user’s permission to use their 

details for this research. 

4.6. Collection of Data 

Our study's route recommendation process was majorly dependent on the clustering of 

users and the ratings each user submitted. The average rating of a route was calculated 

the mean of the points assigned to the route by users in the same cluster. Routes 

recommended to a user making a query were based on a few criteria. The cluster rating 

of the route was supposed to be at least three points, and the origin and destination 

points of a route were supposed to be within 100 meters of the origin and destination 

points of the rated routes. 

The grouping of users started when a user installed the application on their device. 

Subsequent clustering of users was triggered after a specified number of new users 

were registered into the system. We used a small amount of five new users to trigger 

clustering in order to deliver a working demo of the system. However, studies that 

were planned to be conducted with the special needs citizens of the city of Izmit were 

distracted due to a global pandemic.  

The pandemic brought about by the infectious coronavirus disease, also known as 

Covid-19, led to closing schools and public areas in Turkey in March, 2020. The 

epidemic led the country, and the world at large, to an era of quarantine, lockdown, 

social distancing, and use of sanitizers and masks. Observing distance between people 

was of paramount importance to minimize the spread of the virus and the disease that 

was responsible for the loss of many lives worldwide. In Turkey, the number of cases 

increased sharply to 13,531 infected people and the death toll to 214 people by the end 

of March after the first case was reported on 10th March 2020 (URL-19).  



76 

 

The sharp increase in cases translated to stricter measures and a stay-at-home policy 

that lasted for almost four months instead of an originally announced three-week 

quarantine duration. All students went back to their homes, while student dormitories 

were converted to in-patient hospital wards. Foreign students were all moved to one 

designated dormitory per number of cities. Going out for non-essential workers, inter-

city travel, and international travel was prohibited with the increasing number of cases 

and deaths caused by the pandemic. 

These measures also affected schools, which retaliated by converting the classes to 

online video platforms. As a result of all these measures and restrictions, we could not 

carry out our field study to completion as has been planned. Therefore, we updated the 

app to accept ratings of a route without actually going through the route for simulation 

purposes. The data used to simulate the workflow of the app was also collected using 

feedback from the interviews with and observation of the wheelchair users and the 

architects conducted at the beginning of the research. 

   
(a) (b) (c) 

Figure 4.12. a) Number of users based on gender and wheelchair type b) 
Distribution of age per gender c) Distribution of age per wheelchair type 

A portion of the users in the final dataset included wheelchair users who did a few tests 

before the onset of the pandemic. The other portion was created using previously 

collected information about the users, their hardships, experiences, and 

recommendations. Consequently, our simulation of the application used profiles of 20 

people. A graph of the distribution of the profiles based on the three features we looked 

at in our study can be seen in Figure 4.12. The first graph shows the number of people 

based on their gender and wheelchair type. The unspecified gender and wheelchair 

types denote users who decided not to share details of their gender and type of 



77 

 

wheelchair they use. This was added to enable non-wheelchair users to submit ratings 

on routes that may benefit wheelchair users using the system. The graph communicates 

that there were mostly female users with electric wheelchairs and in overall most users 

had electric chairs. 

Table 4.1. User profiles 

Gender Age Wheelchair Type 
Male 18 Manual 
Male 30 Electric 
Male 24 Electric 
Male 21 Electric 
Male 12 Manual 
Male 15 Manual 

Female 16 Manual 
Female 11 Electric 

Unspecified 14 Unspecified 
Female 34 Electric 
Female 23 Electric 
Female 47 Electric 
Female 28 Manual 
Female 73 Electric 
Female 17 Manual 
Male 53 Electric 

Female 30 Unspecified 
Unspecified 27 Electric 
Unspecified 0 Unspecified 
Unspecified 0 Unspecified 

 

The second and third graphs in Figure 4.12 shows the age brackets of users in both 

gender and wheelchair type. It is clear that there were a few people older than 50 years 

of age and the larger population of wheelchair users in our dataset are users between 

10 and 40 years of age. We also understand that there were mostly female users and 

most of the users used electric chairs. Table 4.1 shows details of each user profile used 

in our research. A few observations that can be made are that there were 9 females, 7 

male, and 4 with unspecified gender; 10 electric, 6 manual, and 4 unspecified 

wheelchair type users. Of these females, 5 used electric chairs, 3 used manual chairs, 

and 1 did not specify. In the case of males, 4 used electric while 3 used manual chairs. 



78 

 

Three users did not specify either gender nor wheelchair type while one electric 

wheelchair user did not specify their gender. Apart from the user profiles, we also had 

routes that were used in the simulation. 

Table 4.2. Overview of routes used for simulation 

Route Number Route Origin Route Destination 
1 Kocaeli Tepekoy KO-MEK Belsa Plaza 
2 Tepecik Halkevi Kocaeli University, Faculty of Medicine 
3 Kocaeli Toki Konutlari Kocaeli Municipal Hospital 
4 Umuttepe Bus stop Kocaeli University, Faculty of Engineering, Blok A 

 

These routes were also selected based on the frequented areas of our study subjects. A 

summary of the start and end point of the chosen routes can be seen in Table 4.2. The 

first route was one that started from a public institution named KO-MEK in the 

Tepekoy neighborhood to the Belsa Plaza at the center of the city square. The 

destination was chosen specifically because it lay within the area with the sidewalk 

mapping. The second route led to the Kocaeli University faculty of medicine building 

from a popular area in the city called Halkevi. This route imitated one of the most 

frequented routes with many citizens going to the university from town.  

The third route originated from a residential complex named Toki to the municipality 

hospital. Many wheelchair users had frequent visits to the hospital which was covered 

by this route. And finally, a route from the bus stops at Umuttepe to block A of the 

engineering faculty in Kocaeli University was chosen to replicate the daily route of 

one of our test subjects. The last route did not have bus options since it was within the 

university where no bus routes pass through. It was chosen to also simulate the 

recommendation of routes that do not rely on buses.  

Each of the users went through each route and assigned the rating that best fit their 

normal experience on a five star scale. We did not put a limitation on the number of 

routes or the bus routes that needed rating. The ratings were given based on the 

returned routes and bus options at the time of querying.  

At the end of the data collection phase, we had a total of 15 routes with ratings both 

good and bad as displayed in Table 4.3. The table also shows the number of users who 



79 

 

rated each route and the overall rating of each route based on all the points it received. 

Routes with a high frequency of rating showed that there were not many alternatives 

of buses at the location that went to the destination queried. 

Table 4.3. Total number of ratings per route 

Route Short Name Number of Users Overall Rating 
bus-105 1 4 
bus-111 14 3 
bus-115 2 3 
bus-13 1 4 
bus-145 5 4.8 
bus-24 1 1 
bus-255 1 2 
bus-33 4 2.5 
bus-43 1 5 
bus-70 1 1 
bus-72 7 3.29 
bus-85 2 3.5 
bus-92 10 2.9 

sidewalk 17 3.18 
walk 4 2.17 

 

For example, bus number 111 had 14 ratings because there were no other bus choices 

when querying from Toki housing to Kocaeli municipality hospital. Bus number 92 

also had a high rating frequency because there were not many frequent buses from 

Tepekoy KO-MEK to Belsa Plaza. Even though bus 72 was also an option for this 

route, the bus was dispatched once in an hour as opposed to bus 92 which was 

dispatched two to four times an hour depending on the time of day and day of week. 

It was also important to note that the average rating of each route calculated during 

recommendation was dependent on the queried origin and destination locations. Since 

bus routes passed through multiple different stations, we reserved a rating made for a 

route based on the start and last stop of the route. For example, bus number 33 is 

famously known for its town to university route that is notoriously crowded during 

school days. Some users preferred to alight at gate B of the university which is one 

stop from gate A, the last stop of the route at the university. Let us assume we are 

dealing with users in the same cluster. If a user searched for a route to gate A and gave 



80 

 

bus 33 a good rating, and another user searched for a route to gate B and gave bus 33 

a bad rating, its overall rating would be average. However, if another user searched for 

a route to gate B, bus 33 will not be recommended because the bus had a bad rating 

when the destination was gate B. But if they set gate A as the destination, bus 33 would 

be recommended since it had a good rating. 

In summary, our study did not consider the same rating for overlapping routes. Each 

rating is exclusive to the origin and destination locations of a route. The main reason 

behind this was that the paths to and from the bus stops mattered more than the bus 

itself. However further development of the app can add the ability to rate buses 

independently of the route and stops in the query. 

4.7. K-means Clustering and Smart Route Recommendation 

With the routing functionalities of sidewalks and bus routes in place, we added an 

intelligent recommendation for our target users. The suggestion was deduced by using 

the average scores of routes made by users in similar clusters. The user’s group was, 

in turn, determined via clustering users based on their profile using the K-Means 

clustering algorithm. 

The K-Means clustering algorithm is a type of unsupervised learning algorithm. This 

means that it is not given prior data with known output to train and learn from. Instead, 

it uses data and features to look for patterns in a dataset, which provides meaningful 

insights about the data. The main objective of K-Means algorithms is to look for 

underlying patterns in the observations of a dataset and output k number of groups 

from the dataset based on the underlying similarity. 

To cluster data points, K-Means assigns k number of random centroids. The average 

distance of each data point to each centroid is then calculated. The data points with the 

least distances to a centroid are assigned to that centroid's cluster. The algorithm then 

recalculates its new center point in its group by averaging its distance to each data 

point for every feature being used in the clustering functionality. This is the first 

iteration of the K-Means algorithm. With the newly calculated centroid locations, the 

algorithm then calculates the distance of each data point to each centroid again and 

assigns it to the centroid’s cluster with the least distance. The centroid's central position 



81 

 

is then recalculated again. This iteration continues until either the centroid's spot in the 

group does not change or the iterations specified are reached. 

To get the optimum number of k clusters for our dataset, we used the silhouette 

coefficient method. This method assigns scores based on the average cohesion and 

separation distances. The cohesion distances of samples within their clusters and the 

separation distance is the minimum distance between the samples and other clusters. 

The score is then calculated using Formula (3.1). Silhouette values close to a value of 

1 indicate good clustering while values close to -1 indicate wrong clustering. Since 

comparison of silhouette scores are manageable using programming, using this score 

made it easier and more reliable than using the elbow method. The elbow method is 

mostly used to output a graph of SSE against the number of clusters. Since the SSE 

values percentage differences are not uniform nor predictable, it is not easy to 

determine the optimal k value using mathematical formulas in code. Hence its 

automation proved to be challenging and we opted to use it as a validation option 

instead. 

In our research, we used three features to cluster registered users. The features were 

age, gender, and wheelchair type. Since the K-Means clustering algorithm worked by 

calculating distances to the centroid, we had to convert the categorical features into 

numeric values. The gender feature had male and female categories, while the 

wheelchair type had manual and electric categories. Gender and wheelchair type 

columns were assigned numeric values using the one-hot encoder function available 

in the scikit learn python library. The one-hot encoder function was used to encode 

nominal or named features like gender types into numerical categories. It basically 

creates a new column for each category in the feature. It assigns either a one (for 

samples with the category) or a zero (for samples without the category) to the samples. 

For example, Table 4.4 shows a sample of the first five users who joined the 

application. For the gender category, the encoder created a gender_Male, 

gender_Female, and gender_Unspecified features. It then assigned gender_Male to 

one and gender_Female to 0 for male users and vice versa for female users. The 

resulting encoded data for the sample raw data in Table 4.4 can be seen in Table 4.5. 

The vital point to note is that the category labels have to be precisely the same so that 



82 

 

the new numeric columns are equal to the number of categories in the feature, and we 

do not have redundant columns. 

Table 4.4. Sample of user profile raw data 

user_id gender age wheelchair_type 

85 Female 34 Electric 

87 Female 23 Electric 

88 Female 28 Manual 

89 Female 17 Manual 

90 Female 30 Unspecified 

 

Table 4.5. Example output of encoded and standardized user profile data 

gender_
Female 

gender
_Male 

gender_ 
Unspecified 

wheelchair_
type_ 

Electric 

wheelchair_ 
type_ 

Manual 

wheelchair_ 
type_ 

Unspecified age user_id 

1 0 0 1 0 0 1.291293 85 

1 0 0 1 0 0 -0.577684 87 

1 0 0 0 1 0 0.271851 88 

1 0 0 0 1 0 -1.597125 89 

1 0 0 0 0 1 0.611665 90 
 

After having categorical features converted to numeric values, we standardized the 

data. Standardization of data in K-Means clustering improves performance by giving 

all features in a dataset equal weight as explained by (Sharma, 2019). He continued to 

explain that not normalizing features led to bias when clustering data points because 

the algorithm’s unit of measure is the distance between a data point and the center in 

terms of feature values. He also showed with example that the algorithm is biased 

towards variables with greater variance. Hence normalizing data helped to reduce this 

bias. 

We used scikit-learn’s standard scaler to standardize our age variable. The scaler 

calculates the mean and standard deviation of the age feature, then for each 

observation, it calculates its new value by subtracting the mean value from the 



83 

 

observation value and dividing the result by the standard deviation using Formula 

(4.1). The result of the standardized age values can be seen in Table 4.5. 

z=
x-μ
σ  (4.1) 

With our standardized data ready, we passed our dataset through the silhouette 

coefficient method to get the optimum number of clusters that would best group our 

users. We used scikit-learn's K-Means function to perform the clustering in our 

research. In the silhouette coefficient method, we calculated the silhouette score of 

clusters ranging from 2 to a maximum of 20. The optimal number of clusters chosen 

became the one with the highest score. The silhouette score values for our 20 test users 

can be seen in Figure 4.13. It is clear that the optimal k is 10 with a score of 0.522. 

Hence that is what we used for our clustering. 

 
Figure 4.13. Silhouette Coefficient method output. 

The dataset was then passed through the K-Means clustering algorithm, with k=10, 

where the clustering of all registered users was completed, and the cluster model 

preserved using the joblib library. The process of getting the optimal k number of 

clusters, clustering users, and preserving the model was triggered whenever a new user 

registers on the app. However before any new clustering was performed, we checked 

whether the number of new users since the last clustering had reached its threshold. 

For our research, we set this threshold at five users. Meaning that after every five new 



84 

 

user registration, the clusters were updated. Hence the cluster of users were kept up to 

date and offered more realistic recommendations. 

Whenever a user requested for routing, we first tried to find a smart recommendation 

using the ratings of other users in their cluster. The user's cluster was found using the 

saved K-Means model, which enabled us to get the other users in the same cluster as 

well. We then checked for any ratings for routes that had the same origin and 

destination as the requested route. We filtered these ratings based on the users in the 

cluster and got the average score of each unique route. If the average rating of a route 

exceeded the minimum threshold of a rating of three out of five, we consider this route 

a good recommendation and passed it back to the requesting client along with the other 

options. 

The display of the route on the mobile app followed the same procedure as all the 

others. The route’s incline or slope value in each segment of the path was used to 

decide the color of each section. Users were also able to rate the recommended route, 

as well as all the other routes as many times as they wished. 

  



85 

 

 
 
 
 
5. FINDINGS AND DISCUSSION 

As with the majority of studies, the design of the current study was subject to 

limitations and assumptions. Most of the information on the details of a path were 

retrieved from Google API. The place search, directions, and elevation details were all 

reliable on Google API. Even though the APIs had a free tier provided by Google, the 

free credits were easily drained by the many requests from users. This can however be 

worked around by using the free and open source APIs such as OpenStreetMap. The 

mapping of sidewalk also involved a lot of tedious manual work even for a small area 

of the city that we chose. While our study only focused mapping the sidewalks on a 

small area of the city, it provided insights on the results that could be reached if it was 

done on a larger scale. The mapping could be crowd sourced as implemented by some 

researchers (Hara et al., 2013, 2014) to reduce the manual work. The sidewalk maps 

would at least provide wheelchair users some more helpful information on routes to 

use in different areas of the city without much difficulty. 

When displaying the bus route options, we used the approximated times at bus stops 

to query the buses that were likely to arrive within half an hour which might not be the 

case. Even though most buses in the city adhere to the timetables set for them, other 

issues on the ground such as traffic, accidents, and social events may cause differences 

in the times and routes. Use of the real time locations of buses which would provide 

more accurate times would solve this limitation. Furthermore, users can double check 

the bus times and locations using the official E-komobil application developed by the 

city municipality. 

One of the main areas of our research was to get the safe and easy to maneuver route 

for a wheelchair user. However, temporary obstacles on a user’s route such as 

construction works, parked cars, closed roads, and trash cans would pose a problem 

for a wheelchair user. We focused mainly on the road elevation and sidewalk status to 

provide route recommendations. Some researchers used the surface types, Google 

Street View images , and crowdsourced applications to gather data on such obstacles 



86 

 

(Cáceres et al., 2020; Edinger et al., 2019; Gani et al., 2019; Hara et al., 2014; Prandi 

et al., 2017). Some of these can be incorporated to make the app better suited for 

everyday use.  

Our research depended on ratings of routes by users to generate smart 

recommendations. These kinds of implementation usually suffer from cold start 

problems because there is no prior data from which to generate a recommendation. We 

therefore provided the ability to rate routes just by searching for them and rating them 

without having to travel through it first. Thus enabling users to provide a rating for 

previously learnt routes that would help others instantly.  

5.1. Clustering Results 

K-Means clustering of our users was triggered after every fifth new user. The 

clustering automatically updated the K-Means model saved in a file on the system as 

a Python object. The number of clusters was also automatically selected by comparing 

the silhouette score of clusters between 2 and 20. This meant that a function loops 

between 2 and a maximum of 20 clusters and calculated the silhouette score of each 

clustering result. Finally the number of clusters that got the highest silhouette score 

was assigned the k value which coincided with the optimal number of clusters. 

 
Figure 5.1. Elbow method graph of SSE 
against K for 20 users 

We analyzed the k value returned by the silhouette coefficient method for the 20 users 

with the graph of SSE against k values, popularly known as the elbow method. The 



87 

 

graph yielded by the elbow method for the 20 users is shown in Figure 5.1. The graph 

shows that 10 clusters would be an ideal number, similarly to what the silhouette 

coefficient returned as the optimal number of clusters. 

Using k=10 as the number of clusters and the encoded and standardized data of the 20 

user profiles collected, the output of the clustering can be visualized in Figure 5.2. The 

first chart shows the graph of the standardized age values against the cluster numbers 

while the second graph shows the original age values against the cluster numbers for 

easier interpretation. The first chart also indicates the location of each cluster centroid. 

The resulting 10 clusters visible on the graphs show that each cluster had a specific 

wheelchair type and gender. Furthermore, the clusters were seen to be separated based 

on the age brackets. 

 
Figure 5.2. K-Means clustering result 

For example, the users in cluster 4, 6, and 7 were all females with electric chairs. 

However, they were grouped in different clusters because of their age. Users in cluster 

4 can be described as females with electric wheelchairs who were below 30 years of 

age, those in cluster 6 were females with electric wheelchairs who were between 30 

and 50 years of age, while those in cluster 7 were females with electric wheelchairs 

who were above 50 years of age. The same explanation applied for male users with 

electric wheelchairs in clusters 0 and 3. The rest of the clusters had users of uniquely 

separated gender and wheelchair types. 

To further analyze the clusters of the users in our dataset, graphs of gender against the 

cluster number and wheelchair type against cluster number were drawn as exhibited in 



88 

 

Figure 5.3. These graphs show that each cluster had a specific type of gender as well 

as wheelchair type. And as for clusters that have similar combinations of the gender 

and wheelchair type groups, the graph in Figure 5.2 confirms that the clusters were 

differentiated based on the age values.  

 
Figure 5.3. Distribution of gender and wheelchair types per cluster 

Since the number of users in our dataset was limited due to unavoidable circumstances, 

we decided to run a test on a dataset with generic data of around 1400 user profiles. 

This data was generated by assigning random gender and wheelchair type from the 

respective pre-defined options. The age value was also selected at random in the range 

of between 10 and 80 years.  

 
Figure 5.4. Test data distribution and clustering result 

Figure 5.4 shows the number of each gender per wheelchair type and the resulting 18 

clusters. The outcome is consistent to the result found with our test users but on a larger 

scale. It shows that the groups each have a specific gender and wheelchair type within 

a specific age group. During a route query, a user’s cluster was first retrieved to 



89 

 

determine the route average rating in their cluster. For the new users that requested a 

route before being updated in the clusters, the previously clustered model was used to 

determine the cluster that best suited them. A test user who was a 32-year-old female 

with an unspecified type of wheelchair was used to test the correctness of the cluster 

model created using the 20 original users. The outcome of her cluster is as depicted in 

Figure 5.5. The grey circle shows the test user location who was assigned to cluster 9. 

This cluster previously had one member who was a 30-year-old female with an 

unspecified wheelchair type. The routes recommended to the test user would therefore 

be good rated routes as per the points received from the members of cluster 9. 

 
Figure 5.5. Clustering of a test user 

In an attempt to confirm the clustering functionality of our model, we used five user 

profiles as described in Table 5.1. Three of the test users had similar characteristics to 

previous users in the clusters while two of them were unique. The unique profiles were 

both male, one was 25 and the other was 63 years of age, and one had a manual chair 

while the other was not specified. The aftermath of clustering the test users is indicated 

by the graph in Figure 5.6. The markers depicting the new users are a bit larger in size 

than the markers of the previous users. 

The results showed that the users with similar profiles as some of the previous users 

were assigned to the cluster that matched their profile. For example, the user assigned 

to cluster 0 is similar to the others since the user was a 40 year old female with an 

electric chair. Similarly the users assigned to cluster 9 and 2 both fit in perfectly. Also 

the two unique users were assigned to the cluster that best fit their profile. 



90 

 

 
Figure 5.6. Clustering of test users 

Table 5.1. Test user profiles 

Age Gender Wheelchair Type 
63 Male Manual 
40 Female Electric 
32 Female Unspecified 
25 Male Unspecified 
0 Unspecified Unspecified 

 

For the 63 year old male with a manual chair, he was assigned to cluster 8 which had 

males with electric chairs who were greater than 50 years of age. A closer look at the 

clusters revealed that there was a cluster 1 that had males with manual chairs. 

However, cluster 1 users were all below 20 years of age. Thus showing that the cluster 

based its decision on the age factor. Similarly, the 25 year old male with an unspecified 

wheelchair type was assigned to cluster 3 instead of cluster 8 or 1 because of his age. 

The males in cluster 1 were below 20 years while the ones in cluster 8 were above 50 

years. And since there was no cluster with males with unspecified wheelchair types, 

the decision was established by his age. 

After these five test users registered on the app, the clustering was triggered and the 

outcome is depicted in Figure 5.7. The three users with similar characteristics as 

previous users can be seen to be retained in the previous clusters that they were 

assigned even though the cluster numbers were updated. 



91 

 

 
Figure 5.7. Result after clustering the 
test users 

However, the two unique profiles resulted in two new clusters, bumping the number 

of clusters from 10 to 12. The cluster 4 and 9 in the 12-cluster graph were the new 

clusters added with each having the unique characteristic of their members. This 

translates to mean that the recommendation returned by the system would update 

accordingly based on the new clusters formed after the addition of every five new 

users, or whatever threshold is set. 

5.2. Route Recommendation Analysis 

The wheelchair router app that was the product of our study had one main functionality 

which was to return available routes from one point to another in the district of Izmit 

in the municipality of Kocaeli in Turkey. The start and end locations were entered by 

searching their names as identified on Google Maps. A button that exclusively 

submitted a query to the server would then appear after both the origin and destination 

was set. The query would be posted to our servers where routes were queried in three 

phases. First, a direct route from the start to end position was queried using the Google 

Maps direction API which would later be reconstructed by querying and adding the 

elevation value to each segment of the path. Second, bus stops within a kilometer of 

either location were searched. For every combination of the bus stops found, we 

explored the GTFS database of the bus routes to look for any available direct bus 

routes. For every route found, a sidewalk would then be queried using the Dijkstra 

pgRouting functionality to and from either bus stop, and if none was found, the 

walking path from the directions API which would be added to the bus route. And 



92 

 

finally, we filtered the routes whose rating was made when a user had searched for an 

origin and destination within 100 meters of the current query locations. These routes 

were further filtered based on the clusters in which the user who rated them belonged. 

The average rating of the routes submitted by users in similar clusters as the current 

user were then calculated and routes with an average score of three or greater were 

returned as recommendations. 

 
Figure 5.8. Route rating per cluster and corresponding clusters 

We chose four combinations of origin and destination locations that were mostly 

frequented by our test subjects as shown in Table 4.2. The buses and walking routes 

returned after querying the test locations were then rated by each user depending on 



93 

 

their normal experiences and as many as they wanted. Some users differed from some 

routes by using different destination or origin locations. For example some users 

entered their route 2’s destination as Kocaeli University Gate B instead of the faculty 

of medicine. And others set the start location of route 4 at Kocaeli University hospital 

instead of the bus stops at Umuttepe. Nevertheless, the average rating of each route as 

per the initial test locations that each bus got per cluster can be seen in Figure 5.8. 

Since the cluster numbers changed after every cluster iteration, the cluster graph is 

shown beside the route score chart to communicate the demographic of users in the 

clusters represented in the rate score graph. The graphs show the average points of 

buses for each route as rated by users in the different clusters. We immediately 

understand that there were more bus options when a user searches from Halkevi to the 

university. It is also possible to deduce the bus numbers that had good ratings across 

different groups. For example, buses 72, 145, and 111 are all good options for at least 

five groups of people. For the route with no bus options, it is possible to deduce that 

there were at least two options which cater to the needs of most groups. Furthermore, 

we can predict the buses that would be recommended to a user based on their profile, 

cluster, and the rating of the buses for a particular origin and destination location. 

To confirm that routes were recommended as expected, we used the 63 year old male 

with a manual chair. He made requests of each route as defined in the origin and 

destination locations in our previously selected test routes. Since we know that the 

cluster he was assigned to was cluster 9 as in Figure 5.8, we expected routes 1, 2, and 

4 to have at least one recommended route because cluster 9 appears in all the routes 

charts with an acceptable rating. It should also be noted that the recommended routes 

depend on the schedule of the bus itself within the next 30 minutes of querying. The 

outcome of querying the test locations using the first test user are presented in Figure 

5.9. The first and fourth screenshots display the recommended routes which are bus 72 

and walking route respectively. The second screenshot shows that the query did not 

result in any recommended routes yet we expected bus 105 to be shown. However, this 

is explained by the fact that bus 105 had just gone past the stop in question meaning 

the bus was missed due to its schedule as confirmed by the screenshot from e-komobil, 

the official bus tracking app of the city. 



94 

 

 
Figure 5.9. Request results for 63 year old male with manual wheelchair 

We performed the routing with all the five test user profiles and compared the results 

with the charts’ outputs. We observed that the recommended routes were consistent to 

the expected results, similar to the described example. After these confirmations, the 

test users were signed up to the application which triggered a re-clustering. We then 

re-analyzed the rating of the predefined four routes with the new clusters. The output 

of the redrawn charts are as shown in Figure 5.10. The number of buses rated for each 

route, and the number of clusters that rated each bus did not change because no new 

rating was done during the analysis phase. However, since two of the new users had 

unique profiles, the number of clusters changed from 10 to 12 as explained in the 

clustering analysis section. The two new clusters added each had one of the new test 

users with the unique profile. These clusters are 7 and 9 according to the cluster output 

shown in Figure 5.10. 

Having been assigned new clusters that were different from their previous assigned 

groups, the 63 and 25 year old male users were unable to get the recommendations 

they were presented before. While lack of recommendations from previous clusters 

can be considered a disadvantage, the update made to the clusters keeps the system up 

to date by learning new patterns within the users. 



95 

 

 
Figure 5.10. Route rating per cluster including the new test users 

Furthermore, any rating submitted by users of different or unique demographics would 

translate to recommendations for future users who might share the profile in question. 

5.3. Discussion 

Results obtained and observed from the performance of the app were plausible for the 

cases we studied. Users with similar demographics were grouped in clusters of similar 

profiles, and the presented suggestions of routes were as expected. Our research 

majorly relies on the scores submitted by users of the app, making it a crowdsourced 



96 

 

app similar to previous studies as well as currently available applications in the device 

stores like wheelmap, route4u, and accessibility map (found in Google play store). 

Researchers have tackled the issue of offering accessible routes to wheelchair users in 

many different forms. Some (Edinger et al., 2019; Gani et al., 2019; Iwasawa et al., 

2016) used vibrations of surfaces to classify the accessible ways. Others (Hara et al., 

2014; Prandi et al., 2017; Wu et al., 2019) used image processing to detect the ramps 

and obstacles. Others (Cáceres et al., 2020; Mobasheri et al., 2017) created apps that 

use crowdsourcing to collect information on accessibility issues in their cities. All the 

studies that we found which ventured into routing wheelchair users more or less 

delivered their routes on direct paths by considering ramps, crossings, slopes, surface 

types, and sidewalks. We tried to incorporate bus routes using the standard GTFS 

system of public transportation. 

The city of Izmit is situated in a hilly geographic location. Most of its areas have slopes 

and hills that sometimes prove difficult for pedestrians, let alone wheelchair users. The 

bus routes that run through the city cover most of the residential areas in the city. 

However, there exist complexes that are not accessible by public transport. The idea 

behind our research was to provide wheelchair users with a platform to facilitate their 

making informative decisions on the routes they chose to travel. 

The visualization of routes on a map is imperative for routing applications. Most 

researchers (Kozievitch et al., 2017; Mobasheri et al., 2017; Neis, 2015) use the OSM 

map and its data because it is free and open source. However, data is not always readily 

available for all cities (Neis, 2015). An exploration of the sidewalk, ramps, directions, 

and elevation data proved difficult for the town of Izmit. Therefore, we decided to use 

the Google Maps APIs and create our own map of the sidewalks and ramps in a 

designated area. It should also be noted that the free tier provided by Google APIs on 

a new account ran out before the end of the study. Some solutions to counter and reduce 

the number of requests made to the APIs would be to either use a free service or create 

a cache database for the API requests early on. Elevation data or maps can also be 

downloaded and set up on self-hosted databases to further reduce the cost incurred 

from paid services. 



97 

 

 Researchers who have worked on providing accessible routes for wheelchair users 

employed many factors and variables. Most studies applied a score for directions using 

different variables. For example, (Gani et al., 2019) used the length and a pre-set score 

for the detected surface type, and Neis (2015) defined a reliability factor that was 

generated from values of slope, width, surface, smoothness, curb length, and lighting. 

We implemented a score for each route based on the average rating submitted by users 

in similar clusters. 

The clustering of users via K-Means helps get users' recommendations of routes 

without relying on their rating. The constant update of clusters, in extension 

recommendations, also provides more intelligent information that enables more 

informed decisions on the part of the users. Overall, the users of the system would be 

collaborating and sharing information about their travel experiences smartly. Hence 

attaining the goal of a smart city application. 

  



98 

 

 
 
 
 
6. CONCLUSION AND RECOMMENDATIONS 

Our study's main aim was to create a smart city application that would recommend 

either direct or bus routes to wheelchair users residing in a smart city. We attempted 

to provide an application with informative paths and intelligent recommendations for 

Izmit's mobility-impaired residents. We used the K-Means clustering method to get 

similar users based on their age, gender, and wheelchair type. Intelligent 

recommendations of routes were then generated from the average score of routes from 

users in the same group. 

Based on the recommended routes presented to the users of both unique and shared 

demographics, it can be concluded that the proposal of routes from average cluster 

scores provide meaningful suggestions. The study shows that automated clustering 

functionality keeps the model updated on the different groups of users, thereby 

offering suitable and renewed route recommendations. Moreover, creating a platform 

that enhances collaboration and sharing of route scores between wheelchair users in 

the city promotes our research in the fields of smart city applications. 

Further advancement of the application to greater heights of intelligence can entail 

broadening the features utilized in clustering and supplementing the recommendation 

engine with more machine learning algorithms such as collaborative filtering. The 

application can be made more dynamic by providing users with options to set some of 

the variables as per their needs. For example, the minimum and maximum gradients a 

wheelchair can accommodate usually differ. Users can also be allowed to explicitly set 

the time of day a user queries for bus routes for pre-planned trips. Similarly, the radius 

of searching the nearest bus stops and the minimum score of recommended ways can 

be adjustable from the presets used in our research. 

Additionally, the predicted buses and their times can use the real time location of buses 

in the query instead of using the static bus schedules stated in the GTFS data. By rating 

the accessibility of each bus route, bus stop, and path segments separately, the scores 

and sections can be used to create a graph that uses greedy algorithms to get other 



99 

 

varieties of recommendations. The shortest path with the highest rating from a 

combination of its sections can be explored. Bus routes with transfers to other public 

transport options such as tramways can also be weaved in. 

While creating the maps of sidewalks, ramps, and crossings was labor-intensive, the 

ability to compute routes that went through features designed explicitly for mobility-

impaired users can be considered safe. Further improvements are, however, needed to 

visualize the returned path from the Dijkstra algorithm correctly. The manual mapping 

of the accessibility features in future research can be done via crowdsourcing as past 

researchers have proved reliable. The reporting of obstacles and damages currently 

undertaken via a dedicated phone line may also be made more efficient through mobile 

apps, as has been done by (Cáceres et al., 2020). 

Incorporating more features into the user profile like the minimum and maximum 

preferred gradients, types of public transport used or queried, weather conditions and 

time of day during the rating of a route, and surface types preferred can be investigated 

to give the intelligent engine a broader perspective for appropriate suggestions. Our 

study outputs proposals based on users with similar profiles, facilitating the output of 

tips even for new users and those who have not submitted any feedback. Another 

category of recommendations that can be examined for users who have offered scores 

is presenting well-rated routes by other users who rated similar routes as them. 

Different machine learning algorithms, such as collaborative filtering, can complement 

the clustering to give a more diverse kind of recommendation. 

With the popularity of technology and smart cities being at their hype, further 

development and investigation into making informative applications for all citizens, 

especially those with special needs, is fundamental. Our study shows that it is possible 

to have apps that can help work around the problem of accessibility in our cities as the 

municipalities and governments improve their efforts to establish and repair 

accessibility issues in public sectors. 

  



100 

 

 
 
 
 
REFERENCES 

Akiner M. E., Smart Cities Transformation in Turkey, International Journal of 

Contemporary Architecture The New ARCH, DOI: 10.14621/tna.20160302. 

Al-Turjman F., Malekloo A., Smart parking in IoT-enabled cities: A survey, 
Sustainable Cities and Society, DOI: 10.1016/j.scs.2019.101608. 

Albino V., Berardi U., Dangelico R. M., Smart Cities: Definitions, Dimensions, 
Performance, and Initiatives, Journal of Urban Technology, DOI: 
10.1080/10630732.2014.942092. 

Alkadhim S. A. S., IESE Cities in Motion Index 2016 Center for Globalization and 
Strategy, DOI: 10.13140/RG.2.2.12141.4912. 

Arthur D., Vassilvitskii S., K-Means++: The Advantages of Careful Seeding, 
Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, DOI: 
10.1145/1283383.1283494.  

Ashwini A., How To Choose The Best Mobile Backend As A Service (MBaaS), 
https://medium.com/swlh/how-to-choose-the-best-mobile-backend-as-a-service-
mbaas-5534e1fc33f4 (Accessed: 9 July 2020). 

Berrone P., Ricart J. E., Duch A., Carrasco C., IESE Cities in Motion Index 2019, 
DOI: 10.15581/018.ST-509. 

Bilgin G., Taslak Eylem Planı—2020-2023 Ulusal Akıllı Şehirler Stratejisi, 
https://www.akillisehirler.gov.tr/eylemplani/ (Accessed: 22 May 2020). 

Bolten N., Caspi A., AccessMap Website Demonstration: Individualized, Accessible 
Pedestrian Trip Planning at Scale, The 21st International ACM SIGACCESS 

Conference on Computers and Accessibility, DOI: 10.1145/3308561.3354598. 

Brown L., Bus accessibility – more than just a ramp, 
https://www.intelligenttransport.com/transport-articles/20454/bus-accessibility/ 
(Accessed: 1 June 2020). 

Cáceres P., Cuesta C. E., Vela B., Cavero J. M., Sierra A., Smart data at play: 
Improving accessibility in the urban transport system, Behaviour & Information 

Technology, 2020, 39(6), 681-694. 

Calderoni L., Distributed Smart City Services for Urban Ecosystems, DOI: 
10.6092/unibo/amsdottorato/6858. 



101 

 

Cohen B., Blockchain Cities and the Smart Cities Wheel, 
https://medium.com/iomob/blockchain-cities-and-the-smart-cities-wheel-
9f65c2f32c36, (Accessed: 5 May 2020). 

Cohen B., What Exactly Is A Smart City? 
https://www.fastcompany.com/1680538/what-exactly-is-a-smart-city, (Accessed: 7 
May 2020). 

Edinger J., Hofmann A., Wachner A., Becker C., Raychoudhury V., Krupitzer C., 
WheelShare: Crowd-Sensed Surface Classification for Accessible Routing, 2019 IEEE 

International Conference on Pervasive Computing and Communications Workshops 

(PerCom Workshops), DOI: 10.1109/PERCOMW.2019.8730849. 

Elkan C., Using the triangle inequality to accelerate kmeans, Proceedings of the 

Twentieth International Conference on Machine Learning (ICML), Washington, DC, 
USA, 21-24 August 2003. 

Engie, District heating and cooling systems, 
https://www.engie.com/en/businesses/district-heating-cooling-systems (Accessed: 28 
July 2020). 

F Bromley R. D., Matthews D. L., Thomas C. J., City centre accessibility for 
wheelchair users: The consumer perspective and the planning implications, Cities, 
2007, 24(3), 229–241. 

Gani O., Raychoudhury V., Edinger J., Mokrenko V., Cao Z., Smart Surface 
Classification for Accessible Routing through Built Environment—A Crowd-sourced 
Approach, BuildSys '19: Proceedings of the 6th ACM International Conference on 

Systems for Energy-Efficient Buildings, Cities, and Transportation, DOI: 
10.1145/3360322.3360863. 

Giffinger R., Fertner C., Kramar H., Kalasek R., Pichler-Milanovic N., Meijers E., 
Smart Cities - Ranking of European medium-sized cities, Vienna University of 

Technology, 2007. 

Göçümlü B. Ç., Bakanlık “Erişilebilir Türkiye” için harekete geçti, 
https://www.aa.com.tr/tr/turkiye/bakanlik-erisilebilir-turkiye-icin-harekete-gecti-
/1726013, (Accessed: 1 June 2020). 

Güven H., Akıllı Şehirler Beyaz Bülteni, TC Çevre ve Şehircilik Bakanlığı, 2019. 

Hara K., Le V., Sun J., Jacobs D., Froehlich J. E., (2013). Exploring Early Solutions 
for Automatically Identifying Inaccessible Sidewalks in the Physical World using 
Google Street View, Human Computer Interaction Consortium (2013), Pacific Grove, 
California, USA, 22-27 June 2013. 

Hara K., Sun J., Moore R., Jacobs D., Froehlich J., Tohme: Detecting curb ramps in 
google street view using crowdsourcing, computer vision, and machine learning, 
Proceedings of the 27th Annual ACM Symposium on User Interface Software and 

Technology - UIST ’14, DOI: 10.1145/2642918.2647403. 



102 

 

Hossain A., 7 Reasons to Choose React Native for Mobile App Development, 
https://geekflare.com/react-native-for-mobile-app/, (Accessed: 9 July 2020). 

Iwasawa Y., Yairi I., Matsuo Y., Combining Human Action Sensing of Wheelchair 
Users and Machine Learning for Autonomous Accessibility Data Collection, IEICE 

Transactions on Information and Systems, DOI: 10.1587/transinf.2015EDP7278. 

Kozievitch N. P., Almeida L. D. A., Silva R. D., Minetto R., A Smarter Sidewalk-
Based Route Planner for Wheelchair Users: An Approach with Open Data, Smart 

Cities, Green Technologies, and Intelligent Transport Systems, DOI: 10.1007/978-3-
319-63712-9_11. 

Li Y., Wu H., A Clustering Method Based on K-Means Algorithm, Physics Procedia, 
2012, 25, 1104–1109. 

Lytras M., Visvizi A. Who Uses Smart City Services and What to Make of It: Toward 
Interdisciplinary Smart Cities Research, Sustainability, 2018, 10(6), 1998. 

Mahizhnan A., (1999). Smart cities: The Singapore case, Cities, 1999, 16(1), 13–18. 

Mobasheri A., Deister J., Dieterich H., Wheelmap: The wheelchair accessibility 
crowdsourcing platform, Open Geospatial Data, Software and Standards, 2017, 2(1), 
27. 

Mora H., Gilart-Iglesias V., Pérez-del Hoyo R., Andújar-Montoya M., A 
Comprehensive System for Monitoring Urban Accessibility in Smart Cities, Sensors, 
2017, 17(8), 1834. 

Neis P., Measuring the Reliability of Wheelchair User Route Planning based on 
Volunteered Geographic Information, Transactions in GIS, 2015, 19(2), 188–201. 

Netkow M., Ionic Article: Ionic vs Flutter, 
https://ionicframework.com//resources/articles/ionic-vs-flutter-comparison-guide, 
(Accessed: 9 July 2020). 

Nevado Gil M. T., Carvalho L., Paiva I., Determining factors in becoming a 
sustainable smart city: An empirical study in Europe, Economics & Sociology, 2020 
13(1), 24–39. 

Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel 
M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., 
Brucher M., Perrot M., Duchesnay E., Scikit-learn: Machine Learning in Python, 
Journal of Machine Learning Research, 2011, 12, 2825--2830. 

Pellicer S., Santa G., Bleda A. L., Maestre R., Jara A. J., Skarmeta A. G., A Global 
Perspective of Smart Cities: A Survey, 2013 Seventh International Conference on 

Innovative Mobile and Internet Services in Ubiquitous Computing, DOI: 
10.1109/IMIS.2013.79. 



103 

 

Prandi C., Mirri S., Ferretti S., Salomoni P., On the Need of Trustworthy Sensing and 
Crowdsourcing for Urban Accessibility in Smart City, ACM Transactions on Internet 

Technology, 2017, 18(1), 1–21. 

Rachmawati D., Gustin L., Analysis of Dijkstra’s Algorithm and A* Algorithm in 
Shortest Path Problem, Journal of Physics: Conference Series, 2020, 1566, 012061. 

Rahaman M. S., Mei Y., Hamilton M., Salim F. D., CAPRA: A contour-based 
accessible path routing algorithm, Information Sciences, 2017, 385(C), 157–173.  

Sharma P., Why is scaling required in KNN and K-Means?, 
https://medium.com/analytics-vidhya/why-is-scaling-required-in-knn-and-k-means-
8129e4d88ed7, (Accessed 20 June 2020). 

Shukla D., Shivnani C., Shah D., Comparing Oracle Spatial and Postgres PostGIS, 
International Journal of Computer Science & Communication, 2016, 7(2), 95-100. 

Tavares J., Barbosa J., Cardoso I., Costa C., Yamin A., Real R., Hefestos: An 
intelligent system applied to ubiquitous accessibility, Universal Access in the 

Information Society, 2016, 15(4), 589–607. 

Trevino A., Introduction to K-means Clustering, 
https://blogs.oracle.com/datascience/introduction-to-k-means-clustering, (Accessed: 
20 June 2020). 

URL-1: https://www.kocaeli.bel.tr/tr/main/birimler/saglik-ve-sosyal-hizmetler-
dairesi-baskanligi/76 , (Accessed: 4 June 2020). 

URL-2: https://www.kocaeligazetesi.com.tr/haber/1563522/akulu-tekerlekli-
sandalye-sarj-istasyonunu-bu-hale-getirdiler, (Accessed: 4 June 2020). 

URL-3: https://www.kocaeli.bel.tr/tr/main/news/haberler/3/bu-taksi-her-engeli-
asiyor/30362, (Accessed: 4 June 2020). 

URL-4: https://www.isbak.istanbul/intelligent-transportation-systems/electronic-
detection-system/, (Accessed: 22 May 2020). 

URL-5: https://gtfs.org/, (Accessed: 11 July 2020). 

URL-6: https://hub.beesmart.city/smart-city-indicators/, (Accessed: 10 May 2020). 

URL-7: http://fef.kocaeli.edu.tr/, (Accessed: 4 June 2020). 

URL-8: http://www.ozgurkocaeli.com.tr/izmitte-tekerlekli-sandalye-sarj-istasyonu-
kuruldu-338908h.htm, (Accessed: 4 June 2020). 

URL-9: https://www.guru99.com/node-js-vs-python.html, (Accessed: 20 July 2020). 

URL-10: https://transitfeeds.com/p/kocaeli-buyuksehir-belediyesi, (Accessed: 27 July 
2020). 



104 

 

URL-11: 
https://docs.pgrouting.org/2.0/en/src/common/doc/functions/node_network.html, 
(Accessed: 26 July 2020). 

URL-12: https://docs.pgrouting.org/latest/en/pgRouting-concepts.html#getting-
started, (Accessed: 26 July 2020). 

URL-13: https://developers.google.com/transit/gtfs/reference, (Accessed: 11 July 
2020). 

URL-14: https://www.thesmartcityjournal.com/en/articles/1064-road-smart-city-
strategy-turkey, (Accessed: 5 May 2020). 

URL-15: https://wiki.openstreetmap.org/wiki/Routing/online_routers, (Accessed: 11 
July 2020). 

URL-16: https://landtransportguru.net/sbs-transit-man-a95-with-auto-ramp/, 
(Accessed: 1 June 2020). 

URL-17: https://scikit-
learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KM
eans, (Accessed: 14 July 2020). 

URL-18: http://www.libelium.com/smart_parking/, (Accessed: 28 July 2020). 

URL-19: https://covid19.saglik.gov.tr/, (Accessed: 21 July 2020). 

URL-20: https://blog.transloc.com/blog/what-is-gtfs-why-does-it-matter-public-
transit, (Accessed: 7 May 2020). 

URL-21: https://www.aa.com.tr/en/economy/turkey-attaches-great-importance-to-
smart-cities/1626053, (Accessed: 5 May 2020). 

URL-22: 
https://www.planmelbourne.vic.gov.au/__data/assets/pdf_file/0003/509736/Brochure
-January-20-min-neighbourhood-2019.pdf, (Accessed: 28 July 2020). 

URL-23: http://maps.google.com, (Accessed: 25 July 2020). 

URL-24: https://www.uab.gov.tr/bakanlik-yayinlari, (Accessed: 23 May 2020). 

URL-25: https://iotsummiteurasia.com/en/trends/legacy-of-the-smart-cities/, 
(Accessed: 10 May 2020). 

Wu J., Hu W., Coelho J., Nitu P., Paul H. R., Madiraju P., Smith R. O., Ahamed S. I., 
Identifying Buildings with Ramp Entrances Using Convolutional Neural Networks. 
2019 IEEE 43rd Annual Computer Software and Applications Conference 

(COMPSAC), 2019, 2, 74–79. 

Yin C., Xiong Z., Chen H., Wang J., Cooper D., David B., A literature survey on smart 
cities, Science China Information Sciences, 2015, 58(10), 1–18. 



105 

 

Young M., OpenTripPlanner—Creating and querying your own multi-modal route 
planner. 

Yuan C., Yang H., Research on K-Value Selection Method of K-Means Clustering 
Algorithm, J — Multidisciplinary Scientific Journal, 2019, 2(2), 226–235. 

  



106 

 

 
 
 
 
PUBLICATIONS AND WORKS 

Farukh F., Duru N. (2019) Automatic Detection of Elderly on Touch Screen 
Interfaces Using Touch Gesture Measurements, 10th International Conference on 

Image Processing, Wavelet and Applications, IWW2019, Kocaeli, Turkey, 18-20 
October 2019. 
  



107 

 

 
 
 
 
BIOGRAPHY 

Firdaws Farukh was born in 1989 in the town of Kisumu in Kenya. She completed her 
high school education in Kisumu Girls’ High School in the year 2007. She then joined 
Gazi University for a one year Turkish language course in preparation for her 
university major. She went on to graduate third of her class from Selçuk University in 
2013 which earned her a degree in Bsc. Computer Engineering. 

Later that year she started her career in software development as an intern at Allied 
Technique Inc. in Nairobi, Kenya. She was promoted to team lead status in 2016 
surpassing many of her colleagues. She then ventured into a UI/UX position at Finance 
in Motion GmbH in 2018 which lasted for 6 months. She took a break from her career 
to pursue a degree in Msc. Computer Engineering after securing a scholarship with the 
Turks Abroad and Related Communities (YTB) institution of Turkey. She joined the 
department of Computer Engineering in Kocaeli University in 2018 where she 
researched topics on accessibility and wrote a thesis on a smart city application that 
offered intelligent route suggestions for wheelchair users in Izmit. 

In addition, she is still working as a part time software engineer at Megvel Cartons 
Ltd. where she joined in 2020 during her masters course of study. 


