
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 
FOR 

THE DEGREE OF MASTER OF SCIENCE 
IN

MECHATRONICS ENGINEERING

IMPROVED GLOBAL LOCALIZATION AND RESAMPLING 

TECHNIQUES FOR MONTE CARLO LOCALIZATION 

ALGORITHM

A THESIS SUBMITTED TO 

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 

KOCAELİ UNIVERSITY

2020

HUMAM ABUALKEBASH

BY

KOCAELİ



Thesis Defense Date: 17.08.2020

...........................

...........................

...........................

Prof.Dr. Hasan OCAK

Kocaeli UniversitySupervisor,

Prof.Dr. Hüseyin Metin ERTUNÇ

Kocaeli UniversityJury member,

Prof.Dr. Şeref Naci ENGİN

Yıldız Teknik UniversityJury member,

IMPROVED GLOBAL LOCALIZATION AND RESAMPLING 

TECHNIQUES FOR MONTE CARLO LOCALIZATION 

ALGORITHM

A THESIS SUBMITTED TO 

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 

KOCAELİ UNIVERSITY

BY

HUMAM ABUALKEBASH

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 
FOR 

THE DEGREE OF MASTER OF SCIENCE 
IN

MECHATRONICS ENGINEERING



i 

 

ACKNOWLEDGMENT 

This thesis presents the global indoor localization problem for mobile robots. The 

created uncertainty is addressed using the Monte Carlo Localization (MCL) algorithm 

that uses the Particle Filter to estimate the robot’s pose. This thesis report presents two 

novel approaches based on the MCL algorithm that can drastically reduce the sample 

set size and the amount of time it takes for the mobile robot to successfully localize 

itself in its environment. 

First and foremost, I thank Almighty Allah for giving me the patience and endurance 

to successfully complete this work. With great appreciation, I thank my thesis advisor 

Professor Dr. Hasan Ocak for his continuous guidance and support that prompted me 

to overcome difficulties and encouraged me throughout my research work. I also 

would like to thank the lawyer Meryem Erol for her help in translating the thesis 

abstract to Turkish language. 

I am very thankful for my parents and valuable brothers and sisters for their support, 

endless love, consistent encouragement, and prayers during my academic career. 

Finally, thanks to all my friends for their support and motivation. 

August – 2020 Humam ABUALKEBASH 

 



ii 

 

CONTENTS 

ACKNOWLEDGMENT ............................................................................................... i 
CONTENTS ................................................................................................................. ii 
LIST OF FIGURES .................................................................................................... iv 

LIST OF TABLES ...................................................................................................... vi 
LIST OF SYMBOLS AND ABBREVIATIONS ...................................................... vii 

ÖZET............................................................................................................................ x 
ABSTRACT ................................................................................................................ xi 
INTRODUCTION ....................................................................................................... 1 
1. BACKGROUND KNOWLEDGE .......................................................................... 9 

1.1. Uncertainty ....................................................................................................... 9 

1.2. Probabilistic Robotics .................................................................................... 10 
1.2.1. State ...................................................................................................... 10 
1.2.2. Environment interaction ....................................................................... 11 
1.2.3. Probabilistic generative laws ................................................................ 13 

1.2.4. Belief ..................................................................................................... 15 
1.2.5. Bayes filter ............................................................................................ 15 

1.3. Markov Localization ...................................................................................... 16 

1.4. Localization Algorithms ................................................................................. 19 

1.4.1. Grid-based localization ......................................................................... 21 
1.4.2. Monte Carlo Localization (MCL) ......................................................... 23 

1.4.2.1. Monte Carlo Localization methodology ................................. 23 
1.4.2.2. Particle Filter (PF) .................................................................. 24 

2. MONTE CARLO LOCALIZATION ALGORITHM ........................................... 28 

2.1. Probabilistic Motion Models .......................................................................... 29 
2.1.1. Odometry motion model ....................................................................... 30 
2.1.2. Robot forward kinematics model .......................................................... 33 

2.2. Probabilistic Measurement Models ................................................................ 36 
2.2.1. Likelihood field range finder model ..................................................... 37 

2.3. Pose Estimation .............................................................................................. 43 

2.4. Resampling ..................................................................................................... 44 

2.4.1. Multinomial resample ........................................................................... 44 
2.4.2. Augmented MCL .................................................................................. 46 

3. PROPOSED SCHEMES ....................................................................................... 48 
3.1. Motivation ...................................................................................................... 48 
3.2. Improved Global Localization Algorithm ...................................................... 48 

3.3. Effective Resampling Strategy for Augmented MCL .................................... 50 
4. SIMULATION SET-UP AND RESULTS ............................................................ 54 

4.1. Implementation Details .................................................................................. 55 
4.1.1. Occupancy grid map ............................................................................. 55 
4.1.2. LiDAR data simulation ......................................................................... 56 

4.1.3. Robot trajectory .................................................................................... 61 
4.2. MCL phases .................................................................................................... 62 

4.2.1. Odometry motion model ....................................................................... 63 



iii 

 

4.2.2. Likelihood field range finder model ..................................................... 64 

4.2.3. Pose estimation ..................................................................................... 68 
4.2.4. Resampling phase ................................................................................. 70 

4.3. Proposed Schemes .......................................................................................... 73 
4.3.1. Improved global localization ................................................................ 73 
4.3.2. Improved resampling scheme ............................................................... 77 

5. CONCLUSIONS AND FUTURE WORK ............................................................ 82 
REFERENCES ........................................................................................................... 84 
APPENDICES ........................................................................................................... 88 
PUBLICATIONS ....................................................................................................... 90 
RESUME ................................................................................................................... 91 

 



iv 

 

LIST OF FIGURES 

Figure 1.1.  Mobile robot interactions with its environment ................................... 12 
Figure 1.2.  The hidden Markov model that describes the development states, 

and measurements ................................................................................ 14 

Figure 1.3.  Normal Gaussian distribution (68-95-99.7 Rule) ................................. 18 
Figure 1.4.  Control scheme for mobile robot systems ............................................ 19 

Figure 1.5.  Different designs of autonomous guided vehicles ............................... 20 
Figure 1.6.  Grid decomposition example over the robot’s state space. (appears 

just three orientations) .......................................................................... 22 
Figure 1.7.  An arbitrary distribution represented by a set of particles ................... 23 
Figure 1.8.  Generating samples from Gaussian distribution by closed-form 

sampling ............................................................................................... 24 
Figure 1.9.  Importance sampling principle ............................................................. 25 
Figure 2.1.  Odometry information from sensor measurements .............................. 31 
Figure 2.2.  Differential drive mobile robot driven by rotational and 

translational velocities. ......................................................................... 33 
Figure 2.3.  Differential drive mobile robot changes its pose during the time. ....... 34 

Figure 2.4.  Occupancy grid map ............................................................................. 37 

Figure 2.5.  (a) OGM of the robot’s environment. (b) Likelihood field .................. 38 

Figure 2.6.  Sensor and robot coordinates in the world coordinate system, 

where each of these coordinates has a rotation about z-axis of the 

world frame .......................................................................................... 40 
Figure 3.1.  OGM with all possible poses over the pose configuration space. 

Black cells represent occupied areas, while the white cells 

represent free areas ............................................................................... 49 
Figure 3.2.  The specified area around the last confident position (P) of two-

dimensional coordinates where random samples can be added. The 

second robot’s pose represents the unknown new pose after the 

filter gets diverged ................................................................................ 52 

Figure 4.1.  OGM indoor environments. The resolution for each is 5cm per cell. 

(a) simple map, (b) symmetric map, (c) factory map, (d) maze map

 .............................................................................................................. 55 
Figure 4.2.  Line Representation. (a) vector representation in world frame, (b) 

raster representation in grid .................................................................. 57 
Figure 4.3.  (a) Positive slope, (b) negative slope .................................................... 58 
Figure 4.4.  Predefined trajectory for the comparison purpose over the factory 

map. ...................................................................................................... 62 
Figure 4.5.  Generating 700 samples from the odometry motion model at 

different noise motion parameters ........................................................ 63 
Figure 4.6.  (a) OGM simple map, (b)-(d) likelihood field of the map with a 

standard deviation: (b) 𝜎 = 0.2m, (c) 𝜎 = 0.05m, (d) 𝜎 = 0.5m ....... 65 

Figure 4.7.  Scan rays emitted from the actual sensor’s pose. The randomly 

generated samples appear in green color .............................................. 66 



v 

 

Figure 4.8.  (a) actual robot’s pose with the scan endpoints. figures (b)-(f) 

likelihood field of the simple map, also show how the scan applied 

on hypothesis states in green ................................................................ 67 
Figure 4.9.  Global Localization problem. The mobile robot appears in blue, 

while the scan in red. (a) 15,000 particles (dark green) were 

distributed uniformly over the working space of the factory map. 

(b) Robot’s pose is estimated (light green) after two corrections ........ 69 
Figure 4.10.  Resampling phase. (a) after the first iteration of resampling, (b) 

after the third iteration of resampling ................................................... 70 
Figure 4.11.  Resampling based on augmented MCL. (a) scattering random 

samples as a result of localization failure, (b) robot successfully 

localize itself again after 5 iterations of resampling ............................. 72 
Figure 4.12.  Maze map. (a) The logarithmic scale of grid cells probability. (b) 

and (c) represent distributing 10k and 500 samples over the areas 

with the highest probabilities while the mobile robot still in the 

immobile state ...................................................................................... 74 
Figure 4.13.  The ratio of successful confident during the global localization 

problem of the proposed and traditional method on the maze map ..... 76 
Figure 4.14.  The ratio of successful confident during the global localization 

problem of the proposed and traditional method on the simple map

 .............................................................................................................. 77 
Figure 4.15.  The robot is trying to recover itself on the symmetric map after 

losing its convergence due to two dynamic objects. (a) the response 

of the resampling algorithm of the conventional stochastic MCL. 

(b)-(d) the response of our improved resampling strategy ................... 78 
Figure 4.16.  The proposed and conventional resampling scheme responses 

when the probabilities drop down due to disturbances on the 

symmetric map ..................................................................................... 79 
 



vi 

 

LIST OF TABLES 

Table 1.1.  Bayes Filter .............................................................................................. 16 
Table 1.2.  Markov localization ................................................................................. 17 
Table 1.3.  Grid localization algorithm ...................................................................... 22 

Table 1.4.  Particle filter algorithm ............................................................................ 27 
Table 2.1.  Monte Carlo Localization algorithm ........................................................ 29 

Table 2.2.  Sample odometry motion model .............................................................. 33 
Table 2.3.  Likelihood field range finder model ........................................................ 42 
Table 2.4.  Multinomial resampling algorithm .......................................................... 45 
Table 2.5.  Augmented MCL algorithm ..................................................................... 47 
Table 3.1.  Effective resampling technique that finds the desired certain region 

around the last robot’s confident pose ..................................................... 52 
Table 4.1.  LiDAR data simulation algorithm ............................................................ 61 
Table 4.2.  Symmetric map results [35m X 26m] ...................................................... 81 
Table 4.3.  Factory map results [42m X 26m] ........................................................... 81 

Table 4.4.  Maze map results [33m X 24m] ............................................................... 81 
Table 4.5.  Simple map results [25m X 25m] ............................................................ 81 

Table A.1. Bresenham’s line drawing algorithm for ray tracing ............................... 89 

 



vii 

 

LIST OF SYMBOLS AND ABBREVIATIONS 

𝛼  : Motion noise parameters (robot-specific error parameters) 

𝛼1  : Rotational error due to rotational motion 

𝛼2  : Rotational error due to translational motion 

𝛼3  : Translational error due to translational motion 

𝛼4  : Translational error due to rotational motion 

𝛼𝑓𝑎𝑠𝑡  : Exponential decay rate for the fast averages weights filter 

𝛼𝑠𝑙𝑜𝑤  : Exponential decay rate for the slow averages weights filter 

𝑏𝑒𝑙(𝑥)  : Belief of robot's pose 

𝑏𝑒𝑙̅̅ ̅̅ (𝑥)  : Predicted belief of robot's pose 

𝑐  : Cumulative samples weight 

𝐷  : Diameter of the robot wheel, (m) 

𝑑  : Distance transform, (m) 

𝛿𝑟𝑜𝑡1  : Initial rotation in the odometry information, (radians) 

𝛿𝑟𝑜𝑡2  : Final rotation in the odometry information, (radians) 

𝛿𝑡𝑟𝑎𝑛𝑠  : translation in the odometry information, (m) 

𝐸𝑛𝑐𝑙  : Left encoder value, (degrees) 

𝐸𝑛𝑐𝑟  : Right encoder value, (degrees) 

𝐿  : Distance between robot wheels, (m) 

𝐿𝐻  : Likelihood 

𝑚  : Occupancy grid map, (grid cells) 

𝜇  : Mean value 

𝑁  : Number of samples in the sample set 

𝑝(𝑥𝑡 | 𝑥𝑡−1, 𝑢𝑡)  : Motion model (state transition probability) 

𝑝(𝑧𝑡 | 𝑥𝑡, 𝑚)  : Sensor model (measurement probability) 

𝑃𝑘  : Decision parameter, (pixel) 

𝑃𝑤
𝑠  : Position vector locates the origin of the s frame relative to the w 

frame, (m) 

𝑟  : Uniform random number in the interval [0,1] 

𝑅  : Radius of the desired area in the resampling step, (m) 

𝑅𝑧(𝜃)  : Rotation matrix about the z-axis  

𝜎  : Standard deviation 

𝜎ℎ𝑖𝑡  : Measurement noise, (m) 

𝑡𝑒𝑙𝑎𝑝𝑠𝑒𝑑  : Elapsed time since the robot was confident about its pose, (sec.) 

𝑡𝑙𝑎𝑠𝑡𝐶𝑜𝑛𝑣  : Real-time at the last filter convergence position, (sec.) 

𝑡𝑟𝑒𝑎𝑙  : Real-time, (sec.) 

𝜃  : Yaw angle, (radians) 

𝜃𝑒𝑝  : Orientation Angle of the laser ray relative to the sensor direction, 

(radians) 

𝜃𝑒𝑠𝑡  : Estimated heading direction of the robot relative to the x-axis of 

the world frame, (radians) 

𝜃𝑠  : Orientation Angle of the sensor frame relative to the robot frame, 

(radians) 



viii 

 

𝑢𝑡 : Control data, ([m m radians]) 

𝑣𝑙  : Rotational speed of the right and left wheels, (radians/sec) 

𝑉𝑙 : Velocity of the left wheel, (m/sec) 

𝑣𝑚𝑎𝑥  : Maximum velocity of the mobile robot, (m/sec) 

𝑣𝑟 : Rotational speed of the right wheel, (radians/sec) 

𝑉𝑟 : Velocity of the right wheel, (m/sec) 

𝑣𝑡 : Linear velocity of the mobile robot, (m/sec) 

𝑤𝑎𝑣𝑔 : Samples average weight 

𝑤𝑓𝑎𝑠𝑡 : Exponential filter of the importance weight over a short time 

𝑤ℎ𝑖𝑡 : Probability of the expected measurement 

𝑤𝑟𝑎𝑛𝑑 : Probability of the random measurement 

𝑤𝑠𝑙𝑜𝑤 : Exponential filter of the importance weight over a long time 

𝜔𝑡 : Angular velocity of the mobile robot, (radians/sec) 

𝑤𝑡
[𝑛]

 : Weight of the predicted sample n in discrete time steps 

𝑥 : Position coordinate in the x-axis direction, (m) 

𝑥𝑒𝑠𝑡 : Estimated x-coordinate of the actual robot pose, (m) 

𝑥𝑘 : x-axis of the first pixel in the grid cell, (pixel) 

𝑥𝑠𝑒𝑛𝑠 : Position coordinate of the sensor in the x-axis of the robot frame, 

(m) 

𝑥𝑡 : Robot's pose vector in a 2D plane in discrete time steps, ([m m 

radians]) 

𝑋𝑡 : Corrected sample set in discrete time steps, ([m m radians]) 

�̅�𝑡 : Predicted sample set in discrete time steps, ([m m radians]) 

𝑦 : Position coordinate in the y-axis direction, (m) 

𝑦𝑒𝑠𝑡 : Estimated y-coordinate of the actual robot pose, (m) 

𝑦𝑘 : y-axis of the first pixel in the grid cell, (pixel) 

𝑦𝑠𝑒𝑛𝑠 : Position coordinate of the sensor in the y-axis of the robot frame, 

(m) 

𝑧𝑚𝑎𝑥 : Maximum sensor range, (m) 

𝑧𝑡 : Sensor data in discrete time steps, (m) 

𝑧𝑡
𝑏 : Individual beam range, (m) 

Abbreviations 

AGV : Autonomous Guided Vehicle 

AMCL : Adaptive Monte Carlo Localization 

ANT : Autonomous Navigation Technology 

AUV : Autonomous Underwater Vehicle 

CCD : Charge-Coupled Device 

CV : Computer Vision 

DBN : Dynamic Bayes Network 

DDA : Digital Difference Analyzer  

DGPS5 : Differential Global Positioning System 

DOF : Degrees of Freedom 

EKF : Extended Kalman Filter 

GPS : Global Positioning System 

HMM : Hidden Markov Model 



ix 

 

HSM : Hough Scan Matching 

IC : Integrated Circuits 

IMU : Inertial Measurement Unit 

LiDAR : Light Detection and Ranging 

MCL : Monte Carlo Localization 

MHT : Multi-Hypothesis Tracking 

OGM : Occupancy Grid Map 

PDF : Probability Density Function 

PF : Particle Filter 

PMD : Point-Mass Distribution 



x 

 

MONTE CARLO LOKALİZASYON ALGORİTMASI İÇİN GELİŞTİRİLMİŞ 

GLOBAL LOKALİZASYON VE YENİDEN ÖRNEKLEME TEKNİKLERİ 

ÖZET 

Global kapalı alan konumlandırma algoritmaları, robot ilk konumunu ve yönünü 

bilmediği durumlarda sensör ölçümlerini kullanarak robotun daha önceden 

haritalandırdığı ortamlardaki konumunu ve yönünü tahmin etmesini sağlar. Standart 

uyarlanır Monte Carlo Lokalizasyon (AMCL), global belirsizliklerle başarılı bir 

şekilde başa çıkabilen yüksek verimli bir konumlandırma algoritmasıdır. Global 

konumlandırma problemi, gezgin robotlar için çok önemli olduğundan, algoritmanın 

doğru konuma yakınsaması için geçen süreyi dikkate değer ölçüde azaltan yeni bir 

yaklaşım sunuyoruz. Hazırlanılan algoritma; verilen harita ve ilk tarama verilerini göz 

önüne alarak sensör modeline göre yüksek olasılıklı bölgeleri tespit eder. Sonuç 

olarak, önerilen örneklem dağılımı konumlandırma sürecini hızlandıracaktır. Biz bu 

çalışmada ayrıca sensörün görüş alanındaki haritalandırılmamış hareketli engeller 

sebebiyle örneklem ağırlıkları düştüğünde, robotun hızlı bir şekilde gerçek konumunu 

kestirmesini sağlayan ve kaçırılan robot problemleriyle başa çıkan etkili bir yeniden 

örnekleme stratejisi sunuyoruz. Hazırlanan teknik; en son başarılı konum bilgilerini 

kullanarak rastgele örneklemi robotun konumunun etrafında merkezlenen dairesel bir 

alana dağıtır. Örneklemler yüksek olasılıklı bölgelere dağıtıldığından, örneklemin 

gerçek konum ve yöne ulaşması daha az zaman almaktadır. Çalışma kapsamında elde 

edilen sonuçlar, küçük örneklem gruplarında bile, önerilen iyileştirmelerin 

konumlandırmadaki etkinliğini göstermektedir. Sonuç olarak, önerilen metotlar 

algoritmanın gerçek zamanlı performansını önemli ölçüde arttırmakta ve hesaplama 

maliyetini düşürmektedir. 

Anahtar Kelimeler: AMCL, Global Konumlandırma, Olasılık, Örneklem Dağılımı, 

Yeniden Örnekleme. 



xi 

 

IMPROVED GLOBAL LOCALIZATION AND RESAMPLING 

TECHNIQUES FOR MONTE CARLO LOCALIZATION ALGORITHM 

ABSTRACT 

Global indoor localization algorithms enable the robot to estimate its pose in pre-

mapped environments using sensor measurements when its initial pose is unknown. 

The conventional Adaptive Monte Carlo Localization (AMCL) is a highly efficient 

localization algorithm that can successfully cope with global uncertainty. Since the 

global localization problem is paramount in mobile robots, we propose a novel 

approach that can significantly reduce the amount of time it takes for the algorithm to 

converge to true pose. Given the map and initial scan data, the proposed algorithm 

detects regions with high likelihood based on the observation model. As a result, the 

suggested sample distribution will expedite the process of localization. In this study, 

we also present an effective resampling strategy to deal with the kidnapped robot 

problem that enables the robot to recover quickly when the sample weights drop-down 

due to unmapped dynamic obstacles within the sensor’s field of view. The proposed 

approach distributes the random samples within a circular region centered around the 

robot’s position by taking into account the prior knowledge about the most recent 

successful pose estimation. Since the samples are distributed over the region with high 

probabilities, it will take less time for the samples to converge to the actual pose. The 

results demonstrate the high efficiency of the proposed scheme, even with small 

sample sets. Consequently, the proposed scheme significantly increases the real-time 

performance of the algorithm in terms of decreasing the computational cost. 

Keywords: AMCL, Global Localization, Likelihood, Sample Distribution, 

Resampling.



1 

 

INTRODUCTION 

Robotics has been a huge hit so far in the industrial manufacturing world. 

Manipulators, or robot arms, which are installed on a fixed board to a specified location 

in the production lines, can move with high precision and speed to carry out repetitious 

functions such as drilling, assembly line for vehicles, spot welding, and painting [1]. 

In electronics manufacturing, robot arms install the Integrated Circuits (IC) with super 

meticulously, making laptops and mobile phones possible. Unfortunately, despite all 

their successes, these manipulators come up with a common drawback: lack of 

mobility, since the fixed robot arms bolted to a specified position, they have a restricted 

workspace. Contrariwise, mobile robots have the ability to roam around the plant, 

allowing their skills to be applied anywhere in the state space. 

Tele-operated systems have been evolved in order to give a human operator the ability 

to execute complicated missions in inhospitable and hostile environments [2]. Mobile 

robots can be regarded as an example of these systems, as they can be remotely 

operated to carry out specific tasks. Tele-operated mobile robots are extensively 

utilized to perform challenging duties in dangerous environments; well-known 

examples are cleaning nuclear plants [3], demining operations [4], and underwater 

structures [5]. Plustech developed the first paradigm of walking robot [6],  the leg 

coordination of Plustech’s walking robot is automated while the localization and 

navigation are still carried out by the human driver. Another example of a tele-operated 

mobile robot is the Autonomous Underwater Vehicle (AUV) [7]; it controls three 

propellers to maintain the stability of the underwater robot autonomously against water 

currents and turbulence, at the same time, the human operator manually directs the 

submarine to the targets. Based on the control scheme of these types of mobile robots 

which provide motion control, the human operator carries out the activities of 

localization and perception. So, the tele-operated mobile vehicles are compelling not 

on mobility reasons but on account of their autonomy. Besides, remote operations have 

proved to be tiring activities that need specialized training for the operator [2]. 



2 

 

Therefore, the ability of mobile robots to perceive its environments and to navigate 

without any human interference is essential. 

The first challenge for the technology of mobility is locomotion itself, how the mobile 

robot should move. Locomotion stands for movement capability, and in order to solve 

locomotion problems, mobile robotics should be able to understand kinematics and 

mechanisms, dynamics and control theory [8]. Mobile vehicles require mechanisms of 

locomotion that endow them unrestricted movement all over their environment. 

However, there is a vast diversity of ways for a mobile robot to move, such as swim, 

roll, skate, jump, fly, slide, run, and of course, walk. Most of those mechanisms of 

locomotion were inspired by their biological counterparts. So, the selection of a robot 

locomotion strategy is an essential part of mobile robot design. Since the natural 

environments are unstructured and rough terrain, it is understandable that the legged 

locomotion is preferred. Anyway, both of the outdoors and indoors human 

environment consists mostly of engineered smooth surfaces. Thus, it is also 

understandable that almost all mobile robotics industrial applications employ a form 

of wheeled locomotion. 

Autonomous mobile robotics is more than only possess the ability to move. However, 

the autonomy of mobile robots indicates their ability to perceive the environment, to 

localize itself, and to navigate robustly from one place to another. As a result, the 

design of autonomous mobile robots comprises the integration of several different 

knowledge bodies, and this makes mobile robotics a multidisciplinary field. The 

mobile roboticist exploits the areas of signal processing and the specialized 

information structures to construct reliable perceptual systems, such as Computer 

Vision (CV), to utilize a multitude of sensing techniques properly. On the other side, 

localization and navigation require information theory, artificial intelligence, 

computer algorithms knowledge, and of course, probability theory. 

From the above, we can summarize the control scheme of the autonomous mobile 

robot systems [6] as follows: 

• Perception. This phase includes sensing, information extraction, and interpretation. 

• Localization. The mobile robot will utilize the perceptual data to localize itself in 

the environment. 



3 

 

• Path planning. Given the robot’s current position and heading direction, the mobile 

robot generates the desired path to the target. 

• Motion control. Based on the generated path, motion control will command the 

robot’s actuators. 

Localization is the first point at which sensing and mobility must meet. As a result of 

the mobile robot control scheme, the mobile robot will be able to navigate 

autonomously throughout the environment. 

Perception is a significant task for autonomous systems, where it enables mobile robots 

to get information about its environment. This process is done by acquiring 

measurements from different types of sensors and then extracting useful information 

from these measures. Therefore, perception is more than sense; it is also performing 

meaningful interpretations of perceptual data. 

There is a broad set of sensors utilized in mobile robots. Some sensors are employed 

to detect simple values such as motors rotational speed or the temperature of the 

electronics parts in the robot; these sensors are called proprioceptive sensors. On the 

other side, exteroceptive sensors are being used to gather information about the 

environment where the robot navigates, or even to find the global location of a robot 

directly, for example, sound amplitude, light intensity, and distance measurements. 

Since autonomous mobile robots are concerned with interacting with the surrounding 

environment, we should take care of sensors utilized to extract meaningful information 

from the robot’s environment, where the robot frequently might face unexpected 

environmental features. Therefore, such sensing is crucial. Some sensors for mobile  

robots are listed below [9]: 

• Motor/wheel sensors 

• Heading sensors 

• Accelerometers 

• Inertial Measurement Unit (IMU) 

• Active ranging 

• Speed/motion sensors 

• Vision sensors 



4 

 

Armed with mechanisms of locomotion and equipped with software and hardware for 

perception, mobile robots can perceive their environment and move. However, the 

mobile robot cannot navigate autonomously from one place to another without having 

accurate knowledge about its current position and heading direction in the world. As a 

result, we must take a step toward a high-level challenge by solving the localization 

problem for mobile robots [10], and of course, it is paramount to get autonomy.  

In mobile robotics, the word pose stands for position and orientation. However, mobile 

robot localization or pose estimation is the problem of estimating a robot’s position 

and orientation in real-time relative to an external reference frame given a sensor data 

and map of the environment [11]. In the past decade, the pose estimation problem has 

received the most research attention. And as a result, considerable progress has been 

created on this aspect. 

In the case of an automobile, the Global Positioning System (GPS) sensor can be used 

to infer its pose, and in general, in the outdoor environments attaching such an accurate 

GPS sensor to a mobile vehicle, much of the positioning issue would be avoided. The 

exact location will be available for the vehicle via GPS; therefore, the answer to the 

question, “Where am I?” would always be available immediately. Unfortunately, the 

technology of GPS cannot be employed indoors or in unstructured areas, because the 

accuracy of existing GPS is provided only within a few feet. So, it is unreasonable to 

use the current GPS network for localizing miniature mobile robots like body-

navigating nanorobots of the future and desk robots as well as human-scale robots. 

Nowadays, a high accuracy framework like Differential GPS (DGPS5) is utilized [12]; 

however, this system is too costly for the general objectives as well as it is also useless 

indoors. 

In fact, the pose estimation problem is sensor noise compensation [13], where the 

mobile robot has to estimate its pose from noisy and not directly observable 

information. Therefore, localization faces difficult challenges due to the 

incompleteness and inaccuracy of the sensors. Since the primary input for the 

perception process is the sensor measurements, the degree at which sensors can 

recognize the environment is crucial. Sensor noise limits the steadiness of measures in 

the same world state, and thus on the number of useful bits obtainable from every 



5 

 

reading of the sensor. Often, sensor noise occurs because some ecological objects are 

not captured by the representation of the robot, and are therefore ignored. For instance, 

some mobile robots use a vision system such as a Charge-Coupled Device (CCD) 

video camera for indoor navigation; the robot navigates in its workplace by detecting 

color values using its CCD camera. The issue is when the clouds hide the sun, the 

lighting of the interior building changes due to the windows around the building. As a 

result, the values of the hue will not be constant. From the robot’s viewpoint, the CCD 

color seems noisy as if it is subject to random error. Therefore, the values of the hue 

acquired by the CCD video camera would be worthless unless the mobile robot can 

notice the location of clouds and the sun in its model. 

In vision-based systems, illumination dependency is just one form of noticeable noise. 

Blurring, picture jitter, blooming, and signal gain are also considered as further noise 

sources, virtually these types of sensor noises reduce the helpful content of the color 

image. 

In the case of sonar sensors (ultrasonic range finder sensors), as a sonar transducer 

transmit the sound wave toward an angled and reasonably smooth surface, much of the 

signal will reflect far away coherently, resulting in failure to produce an echo. Based 

on the properties of the material, some of the energy may return. When the level of 

recovered energy is close to the sonar sensor gain threshold, the sonar sometimes 

succeeds in perceiving the object, and at other times it fails. 

In the motor/wheel sensors (Odometry) and heading sensors, the pose is updated based 

on proprioceptive sensors. The motion of the mobile robot, perceived with orientation 

sensors or wheel encoders or both, is integrated to determine the pose. Because the 

errors of sensor measurement are incorporated, over time, the pose error will 

accumulate. Therefore, the mobile robot’s pose should be continuously updated with 

other robust localization methodology. Otherwise, the mobile robot will not be able to 

estimate its pose in the long run accurately. The errors of sensor measurement might 

be deterministic, which means they can be removed by the calibration process. 

However, some other errors are random (non-deterministic) errors, and over time such 

errors increase uncertainties in pose estimation. From a geometric perspective, sensor 

errors are classified into three types [6]: 



6 

 

• Range error, incorporated distance of the robot movement (sum of the wheel 

movement). 

• Turn error, related to the turns of the wheel (wheel motion difference) 

• Drift error, the difference in the wheels error causes an error in the angular 

orientation of the robot. 

The most straightforward localization problem is local position tracking [14], where 

the initial robot’s pose is known. As a result, the uncertainty is local, and the problem 

is only to compensate for cumulative, small errors in the Odometry of the robot. More 

defying is the global localization problem [15]; this problem is raised when the initial 

robot’s pose is unknown, but rather it must infer it from scratch. Here, the created 

uncertainty will be global, which leads to a more complicated problem. The error in 

the global pose estimation problem cannot be postulated to be small. In contrast, when 

a well-localized autonomous mobile robot is carried to an arbitrary location in 

operation mode without being told, the problem is extended to the kidnapped robot 

problem [16,17]. This problem is crucially more difficult than global localization 

where the robot might believe it knows where it is, while it does not. The kidnapped 

robot problem is mostly employed to test the ability of a mobile robot to recover from 

disastrous positioning failures. 

In the robotic literature, there is a wide range of probabilistic approaches that used to 

solve indoor localization problem, including Grid-based algorithm [18,19], Extended 

Kalman Filter (EKF) [20,21], Monte Carlo Localization (MCL) [10,22], and some 

hybrid schemes [23,24]. The probabilistic pose estimation methodologies are part of 

probabilistic robotics. Based on mathematical statistics, probabilistic robotics provides 

autonomous mobile robots with a high level of robustness [25]. Undoubtedly, MCL is 

considered one of the subset approaches that can successfully deal with the created 

global uncertainty. And as a probabilistic approach, MCL can compute the 

instantaneous uncertainty of a mobile robot, and it is convenient to local and global 

pose estimation problem. Moreover, MCL is easy to implement and can solve the 

kidnapped and global localization problems in a very high robust and competent way. 

While other existing schemes cannot survive when the mobile robot is kidnapped or 

when localization failure occurs. Unlike the EKF which guarantees accuracy only for 

a linear system to which Gaussian noise is applied or for systems not dramatically 



7 

 

nonlinear, MCL is capable of representing arbitrary distributions. Besides, MCL is 

more precise than algorithms based on the grid approach with fixed cell size, where 

the amount of memory needed is considerable. 

The high efficiency of the MCL algorithm comes from the fact that it represents the 

uncertainty (robot’s pose) by a collection of particles, which are randomly generated 

over the robot poses in accordance to the posterior distribution. So, MCL uses a 

Particle Filter (PF) to cope with multi-modal distributions. 

Unfortunately, conventional MCL still suffers from some shortcomings. The required 

number of particles is significant, where increasing the size of the particle set, the 

accuracy of MCL will increase. However, employing a higher number of particles will 

increase the complexity of MCL, and of course, the computational burden  will 

increase. Therefore minimizing the number of needed particles is one of the main 

defies to the MCL algorithm [26]. Moreover, the MCL represents the global pose 

uncertainty by a weighted particle set distributed over the whole state space rather than 

focusing on the high-probability poses, and this is one reason why MCL needs more 

particles. Another challenge that faces this family of localization approaches is the 

resampling process. When the probabilities drop-down due to localization failure or 

unnatural sensor noise, augmented MCL tries to add random samples over the entire 

map to overcome these problems [25]. However, as MCL is a stochastic algorithm, 

drawing random particles over the space might discard all poses near the true robot’s 

pose. Definitely, this negatively affects the real-time performance. 

In this thesis, we propose two novel methodologies to reduce uncertainty in the global 

indoor localization problem; both of these methodologies are an extension to the 

conventional MCL. The first improvement introduces an optimized scheme at the 

initialization step that detects mapped regions with high probabilities only based on 

the initial scan data. Given the robot’s environment map and only the initial scan data, 

the proposed algorithm detects regions with high likelihood based on the observation 

model to distribute particles there. As a result, the suggested particle distribution will 

expedite the process of localization. And it will significantly reduce the amount of time 

it takes for the samples to converge to true pose during the global localization problem. 

The second improved scheme presents an effective resampling strategy to deal with 



8 

 

the kidnapped robot problem that enables the robot to recover quickly when the sample 

(particle) weights drop-down due to unmapped dynamic obstacles within the sensor’s 

field of view. While the classical resampling method distributes random particles 

around the entire working space, the proposed scheme distributes the random samples 

within a circular region centered around the robot’s pose by taking into account the 

prior knowledge about the most recent successful pose estimation. Since the particles 

are distributed over the region with high probabilities, it will take less time for the 

mobile robot to estimate its accurate pose. 

 



9 

 

 BACKGROUND KNOWLEDGE 

This chapter introduces the fundamental knowledge of the localization problem. First, 

we will discuss the uncertainty in robotic systems. Then, we will present some 

concepts in probabilistic robotics, includes the probabilistic generative laws and the 

recursive Bayesian filters. After that, the Markov localization approach will be 

discussed as the basic algorithm for the localization techniques. Finally, the most 

popular localization algorithms in the robotic literature, grid-based localization, and 

Monte Carlo localization as a variant of particle filter will be explained.  

 Uncertainty 

The exploitation of computer-controlled devices for real-world manipulating and 

perceiving is called robotics [25]. The systems of robotics are employed in our real-

world to act through physical forces, and to perceive the environmental features 

through sensors. Opening new frontiers for mobile robots and entering the autonomous 

world makes it imperative for mobile robots to adapt to the immense existence of 

uncertainty. There are a variety of factors that causes uncertainty in mobile robots. 

First, the mobile robot environment is generally unpredictable. The uncertainty in the 

organized world, such as production lines is limited. However, environments such as 

homes, offices, and thoroughfares are a dynamic world that results in high uncertainty. 

The second factor is the sensors themselves; they have their restrictions. The resolution 

and range of sensors depend on the noises and their physical constraints. Third, the 

actuation system of mobile robots includes mechanical motors that are unpredictable, 

at least to some degree. Uncertainty originates from impacts such as mechanical failure 

and control noise. Forth, uncertainty is also created by the software of a mobile robot 

as all the world’s internal models are approximate. Finally, more uncertainties are 

generated by approximations in algorithms. Sometimes, accuracy has to be sacrificed 

in a real-time system to get a timely response. 

Dealing with created uncertainties is the primary concern for researchers and arguably 

the most crucial step towards robust mobile robot systems. 



10 

 

 Probabilistic Robotics 

Probabilistic Robotics addresses the uncertainty problem in robot systems by 

employing probability theory. The key idea is through utilizing probability 

distributions; the probabilistic robotics can represent information overall potential 

guesses rather than just a best single guess [25]. Probabilistic approaches are less 

dependent on the robot’s model accuracy compared to classical methods, so it helps 

the programmer to be freer when building the model, instead of trying to develop the 

most accurate model. Besides, probabilistic robotics are less dependent on the 

accuracy of sensors. Based on mathematical statistics, in real environments, the 

probabilistic robotics gives a new level of robustness to autonomous mobile robots; 

and this is evident when mobile robots try to solve localization, mapping, planning, 

control, and even Simultaneous Localization and Mapping (SLAM) [27]. 

 State 

The mobile robot’s world is characterized by state. And it is referred to as all 

characteristics of the mobile robot and its world which may affect the future. A state 

can be classified into two major types: static state represents the characteristics that 

remain constant over time, such as wall location. In contrast, the dynamic state 

represents all features that tend to modify their configurations or locations over time 

such as people, movable furniture, doors, and extend to the mobile robot’s features 

itself like velocity, pose, the status of sensors, and so on. 

Rigid mobile robot has six dynamic state variables relative to the world frame. Three 

of them are the cartesian coordinates used to specify the robot’s position in space, 

while the others used to describe the robot’s orientation (pitch, roll, and yaw). If we 

take the case of a rigid mobile robot that is restricted to the planer world, the 

coordinates will be just three, two of them is the location coordinates in XY-plane and 

the heading direction (yaw). These three coordinates are called the pose of the robot. 

Moreover, many other states may affect the operation of the mobile robot. For instance, 

the battery charge level, the status of the sensor, whether broken or not. However, in 

robotics, we can summarize the state variables as follows [25]: 



11 

 

• Robot’s pose, it involves the 2D position coordinates and heading direction of the 

mobile robot relative to the external reference global frame. 

• Kinematic state, in robot manipulation, variables of the robot’s actuators 

configuration are also included in the robot’s pose. For example, joint angles might 

be added to the state. 

• Dynamic state, the velocity of the mobile robot, and its joints velocities. 

• Characteristics and location of the environment objects are also state variables. The 

object can be a desk, wall, or tree. And features may be texture or color. In some 

cases, objects and features are treated as landmarks. 

• Positions and velocities of moving individuals and objects are also considered as 

state variables. 

In our thesis, the robot’s pose at time 𝑡 was denoted as 𝑥𝑡. However, the time was held 

in discrete steps 𝑡 = 0,1,2 where the zero time refers to the first operation point in the 

beginning. Equation (1.1) represents the mobile robot’s state, which is restricted to the 

planer world. 

t

x

x y



 
 

=
 
  

  (1.1) 

 Environment interaction 

The mobile robot can interact with its environment in two fundamental forms, as 

shown in the following Figure 1.1 [28]. Through its actuators, the mobile robot can 

affect the environment. On the other hand, with the help of sensors, the mobile robot 

can collect information about the environment’s state. 

Perceptional interaction may include a range scan or camera image, and the results are 

called measurements. However, the second form of interaction may involve object 

manipulation or even robot motion. In real life, control actions are executed 

continuously and simultaneously with the measurements. Besides, control actions and 

sensor measurements are different data streams, and the robot records this data 

concurrently. 



12 

 

 

Figure 1.1. Mobile robot interactions with its environment 

Measurement data provides a mobile robot with momentary information concerning 

the environment. We supposed that the mobile robot obtains one sensor data at a time. 

The following notation below stands for all perceptual data gathered between time 𝑡1 

and 𝑡2. 

1: 2 1 1 1 1 2 2 1 2... ,      ( )t t t t t tz z z z z t t+ += + + + +     (1.2) 

In the context of the localization problem of a mobile robot, control data refer to 

motion data or movement data, and it carries information related to the state change in 

the world. The velocity is considered as a typical example of control data. Setting the 

velocity of a mobile robot to 0.5 meters per second for ten seconds indicates that the 

pose of the robot will be around five meters ahead relative to the previous pose. 

Another example of control data is odometers. A sensor that measures the mobile 

robot’s wheels revolution is called odometer. Odometers provide information 

concerning state change. As a result, odometry data treated as control data, as they 

give information about the effect of control action. As we assumed in the case of 

measurement data, we also supposed that there is one odometry information at a time. 

When the mobile robot is in a stopped case, the legal odometry data will be “do 

nothing.”. Exactly as perceptual data, the sequence of control data from time 𝑡1 to 𝑡2 

is denoted as below. 

1: 2 1 1 1 1 2 2 1 2... ,      ( )t t t t t tu u u u u t t+ += + + + +     (1.3) 



13 

 

Both control data and measurement data have essential roles in probabilistic robotics. 

The perceptual data increase the knowledge of the robot by providing information 

concerning the environment’s state. On the other side, as the environment of a mobile 

robot is stochastic, and due to noise inherent in the robot actuation, the control data 

tends to create a loss of knowledge. Once again, we emphasized that the control data 

and perceptual data are co-occurring. In probabilistic robotics, there are two separate 

models used to address these data. One is the motion model, while the other is the 

measurement model. Both of these two models will be discussed in the next chapter in 

detail. 

 Probabilistic generative laws 

Measurements and state can be evolved in accordance with the probabilistic laws. The 

mobile robot state xt is generated based on all previous states, controls, and 

measurements. Hence, the state evolution could be presented by a probability 

distribution as follows: 𝑝(𝑥𝑡 | 𝑥0:𝑡−1, 𝑧1:𝑡−1, 𝑢1:𝑡). We supposed first of all the mobile 

robot performs a control action 𝑢𝑡 and then acquire sensor measurement 𝑧𝑡. The 

completed state x covers all previous events. Which means that the state 𝑥𝑡−1 comprise 

all previous measurement data 𝑧1:𝑡−1 , and control data 𝑢1:𝑡−1. So, the expression of 

the probability distribution that is in our hands can be expressed as follows. 

0: 1 1: 1 1: 1( | , , ) ( | , )t t t t t t tp x x z u p x x u− − −=   (1.4) 

This equality contains conditional independence. If the value of the conditioning 

variables such as 𝑥𝑡−1 and 𝑢𝑡 are known, then the variable such 𝑥𝑡 is independent of 

other variables like 𝑢1:𝑡−1 and 𝑧1:𝑡−1. The probability density shown in Equation (1.4) 

is called motion model or action. 

On the other hand, based on the generated state 𝑥𝑡 we can model the procedure which 

generates the measurements. As we have a completed state 𝑥𝑡, we can get another 

crucial conditional independence that is called the perceptual model or the sensor 

model: 

0: 1 1: 1 1:( | , , ) ( | )t t t t t tp z x z u p z x− − =   (1.5) 



14 

 

Once again, previous equality states that when the completed state 𝑥𝑡 is present, no 

need for knowing the value of any other variables, such as previous states 𝑥0:𝑡−1, 

control data 𝑢1:𝑡, or even previous measurements 𝑧1:𝑡−1. In another way, the variable 

𝑥𝑡 is adequate to estimate the noisy measurement data 𝑧𝑡. 

The probability distribution 𝑝(𝑥𝑡 | 𝑥𝑡−1, 𝑢𝑡) is termed as state transition probability, 

and it shows how the probability of robot control ut to prompt a transition from the 

prior state 𝑥𝑡−1 to the current state 𝑥𝑡 the state xt is generated based on the previous 

state 𝑥𝑡−1 and the robot controls 𝑢𝑡. It is worth noting that the state transition 

probability is not a deterministic function; instead, it is a probability distribution. The 

probability distribution 𝑝(𝑧𝑡 | 𝑥𝑡) is termed as measurement probability, and it 

specifies how the measurement 𝑧𝑡 are produced from the environment state 𝑥𝑡. The 

measurement probability and state transition probability characterize the robot’s 

dynamical stochastic system and its world. Figure 1.2 describes the development of 

states and measurements. The current state depends randomly on the prior state and 

recent control. And the most recent measurement data is randomly dependent on the 

current environment state. The following structure is also known as Dynamic Bayes 

Network (DBN) or Hidden Markov Model (HMM) [29,30]. 

 

Figure 1.2. The hidden Markov model that describes the development states, and 

measurements 



15 

 

 Belief 

The internal knowledge of a mobile robot regarding the environment state is called 

belief. However, the environment state is not directly measurable, so the robot should 

estimate its belief from the collected data. The representation of belief is done using 

conditional probability distributions [25]. As a result of this representation, the 

distribution of belief allocates a density value (probability) to each possible hypothesis 

state regarding the actual state. The following symbolization below referred to the 

belief value at time 𝑡. 

1: 1:( ) ( | , )t t t tbel x p x z u=   (1.6) 

The previous equation of belief represents the posterior probability distribution over 

the environment state, conditioned on all previous perceptual data and all prior robot’s 

control data. Equation (1.6) presumes that the belief is calculated after integrating the 

measurement data. On occasion, it is vital to compute the posterior before integrating 

the most recent perceptual data. Such a belief is often called prediction, and it 

represents as follows. 

1: 1 1:( ) ( | , )t t t tbel x p x z u−=   (1.7) 

Only based on the prior posterior, the above prediction can estimate the environment 

state at a time 𝑡 before integrating the most recent perceptual data. In probabilistic 

robotics, computing the posterior 𝑏𝑒𝑙(𝑥) from the prediction 𝑏𝑒𝑙̅̅ ̅̅ (𝑥) is called 

measurement update or correction [25]. 

 Bayes filter 

Bayes filter is considered as the fundamental algorithm for computing the posterior 

using control and perceptual data. This filter is recursive; it estimates the belief at time 

t from the previous belief one-time step before [11,25]. Table 1.1 [25] shows the 

primary Bayes Filter with only a single iteration (update rule). The inputs for the Bayes 

Filter are the prior belief, most recent control data, and most recent perceptual data, 

while its output is the most recent belief at the current time. 

 



16 

 

Table 1.1. Bayes Filter 

1: Bayes_Filter_Algorithm (𝑏𝑒𝑙(𝑥𝑡−1), 𝑢𝑡, 𝑧𝑡) 

2: for all 𝑥𝑡 do 

3: 𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑡) = ∫ 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡) 𝑏𝑒𝑙(𝑥𝑡−1) 𝑑𝑥𝑡−1 

4: 𝑏𝑒𝑙(𝑥𝑡) = 𝜇 𝑝(𝑧𝑡|𝑥𝑡) 𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑡) 

5: end for 

6: return 𝑏𝑒𝑙(𝑥𝑡) 

 

The calculations of the current belief using Bayes Filter are done in two important 

stages: prediction (control update) (line3) and correction (measurement update) 

(line4). In the prediction step, Bayes Filter computes the belief over the current 

environment state based on the state transition probability and last belief over the prior 

environment state. Notably, the predicted belief is calculated via integration 

(summation) of the product of two probability densities. On the other side, the 

correction phase addresses the probability of observing the most recent sensor data at 

the current state, and this is done by multiplying the measurement probability by the 

predicted belief. However, as the continuous probability density integrates to one, the 

corrected belief could not integrate to one. So, the returned belief is normalized by the 

normalization factor. 

Bayes filtering algorithm invokes the initial belief at zero time to calculate the next 

belief recursively. So, the boundary condition bel(x0) should be provided to the 

algorithm as input at initialization. if the initial state x0 is determined with certainty, 

then the initial posterior belief distribution initialized around the actual initial state as 

point mass distribution. At the same time, zero probability should be assigned 

elsewhere. On the other hand, if the initial state x0 is unknown, based on the uniform 

distribution, the initial posterior density should be initialized over all possible states in 

state space. Finally, the belief is voiced by nonuniform distributions when the initial 

state is partly known. 

 Markov Localization 

Probabilistic pose estimation methodologies are variants of the Bayes filter. In 

localization problems, Bayes filter is however called Markov localization [31]. The 

basic Markov algorithm illustrated in Table 1.2 [25] is developed from the Bayes filter 



17 

 

algorithm depicted in Table 1.1. As we note, the map of the robot environment has 

been added to the algorithm arguments and incorporated in the measurement model 

and (but not always) plays a role in the motion model. 

Table 1.2. Markov localization 

1: Markov_Localization_Algorithm (𝑏𝑒𝑙(𝑥𝑡−1), 𝑢𝑡, 𝑧𝑡, 𝑚) 

2: for all 𝑥𝑡 do 

3: 𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑡) = ∫ 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡, 𝑚) 𝑏𝑒𝑙(𝑥𝑡−1) 𝑑𝑥𝑡−1 

4: 𝑏𝑒𝑙(𝑥𝑡) = 𝜇 𝑝(𝑧𝑡|𝑥𝑡 , 𝑚) 𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑡) 

5: end for 

6: return 𝑏𝑒𝑙(𝑥𝑡) 

 

In analogy with the Bayes filter, the Markov localization algorithm estimates the 

beliefs recursively. Moreover, Markov localization can solve the localization problems 

(position tracking, global localization, and kidnapped robot problem) in static worlds. 

However, the initial belief is initialized in three forms based on the localization 

problem, and it represents the initial knowledge of the robot’s state. 

• Position tracking. When the initial state of the mobile robot is known, then the 

initial belief is initialized by a discrete distribution such as Point-Mass Distribution 

(PMD), which does not have a density. Suppose �̃�0 indicates the actual initial 

robot’s pose, then the value of initial belief will be: 

00
0

1,
( )

0,

x x
bel x

otherwise

 =
= 


  (1.8) 

However, in practical applications, the robot’s initial state is roughly known. 

Therefore, the initial belief is typically initialized through such a narrow Gaussian 

distribution with a mean �̃�0. Normal Gaussian distribution for a scalar value 𝑥 with a 

mean �̃�0 and variance 𝜎2 is given by Equation (1.9). Often, 𝑥 is a multidimensional 

vector. In such a case, the normal distribution is called Multivariate normal 

distribution, as shown in Equation (1.10). Figure 1.3 below illustrates the Normal 

Gaussian distribution curve. 



18 

 

( )
( )

2
1 0

2 2
2

1
( ) 2  exp

2

x x
p x  



−
 − 

= − 
 
 

  (1.9) 

( ) ( ) ( )
1

1
2 0 0

1
( ) det 2 exp

2

T

p x x x x x
− − 

=  − − − 
 

  (1.10) 

Here ∑ stands for the covariance matrix (positive semidefinite matrix) of the initial 

state uncertainty. 

 

Figure 1.3. Normal Gaussian distribution (68-95-99.7 Rule) 

• Global localization. This problem deals with the unknown initial state of the 

mobile robot. In this case, the initial belief is initialized via uniform distribution 

over all possible legal states in the robot’s state space. So, the initial belief value is 

given by: 

0

1
( )bel x

V
=   (1.11) 

V refers to the volume of all states in the world of the mobile robot. 

• Partial knowledge regarding the robot’s pose. Sometimes the robot knows the 

characteristic of its current place, but cannot specify its exact pose, such areas as 

if the robot starts near a door or starts in a corridor. In this case, the initial belief 

can be represented by multi distributions. The uniform distribution is used to 



19 

 

describe the belief in the expected areas while the density will be zero anywhere 

else. 

From the above, we noticed that the Markov localization algorithm is independent of 

the state space representation, and it can be realized utilizing various techniques of 

state representation. In the next section, we will discuss the most effective practical 

algorithms from the robotic literature that can perform real-time pose estimation. We 

will start with the grid representation (discrete representation); after that, we will 

address an algorithm that employs particle filter for state representation. 

 Localization Algorithms 

Localization problem has received great attention in the robotic literature, as it was 

considered the key and first question to the Autonomous Guided Vehicle (AGV) 

navigation problem and one of the essential challenges in autonomous mobile robots 

[32]. The control scheme of the autonomous mobile robot systems shown in Figure 

1.4 [6] illustrates how the mobile robot can navigate autonomously in its environment. 

As we see, the localization problem should be solved first to answer the question 

(Where am I?) where the robot after that can start the navigation process. 

 

Figure 1.4. Control scheme for mobile robot systems 



20 

 

For instance, the AGV robot shown in Figure 1.5 [6] (a) below by SWISSLOG used 

to carry motors from one assembly line to another. This robot uses electrical 

guidewires built-up on the floor as a localization technology that allows the robot to 

know its position in real-time. AGV robot shown in Figure 1.5 (b) outfitted with 

BlueBotics Autonomous Navigation Technology (ANT). Instead of relying on 

electrical guidewires, this robot utilizes onboard safety lasers to do localization within 

a pre-defined map. Figure 1.5 (c) shows the Helpmate AGV used to transport 

medication and food in the hospital. Helpmate has different on-board sensors that help 

it to navigate autonomously through corridors. The installed lights on the ceiling play 

a role as landmarks, where the robot’s camera can detect these landmarks for 

localization purposes. 

  

(a) (b) 

 
(c) 

Figure 1.5. Different designs of autonomous guided vehicles 



21 

 

Localization methodologies are variants of the Markov localization algorithm. In the 

probabilistic context, we can find several localization algorithms that can help mobile 

robots to be autonomous. One of these algorithms uses Gaussian filters, such as EKF. 

As the Gaussian distribution is a uni-modal, the Kalman filter can handle the 

assumption of local uncertainty. Thus, EKF only solves the position tracking problem 

where the initial robot’s pose is known in approximate. EKF guarantees accuracy for 

the system to which Gaussian noise is applied and only for a linear system or systems 

not dramatically nonlinear. On the other side, the global localization problem requires 

multi-modal distribution to represent the created uncertainty. However, EKF cannot 

cover the global localization problem. Multi-Hypothesis Tracking (MHT) [33] was 

introduced to overcome Gaussian limitations. MHT represents the robot’s pose belief 

by employing multiple normal Gaussian distributions. As a result, multiple Gaussians 

can address the global localization problem, but this will come up at a very high 

computational cost. 

In contrast, Grid-based localization and MCL algorithms can deal with the multi-

modal distribution and address the created global uncertainty with high performance. 

Therefore, these algorithms are appropriate for global localization and kidnapped robot 

problems. 

 Grid-based localization 

Grid localizer is a modified version of the discrete Bayes filter. This localizer utilizes 

the histogram filter to estimate the beliefs over the grid of state space. The following 

Figure 1.6 [25] depicts a grid decomposition example. The robot’s map is decomposed 

into several grids. Each cell denotes a robot’s state in its world, and each grid layer 

denotes a different robot head direction. 

Table 1.3 [25] shows the grid-based localization algorithm. Here, 𝑥𝑘 stands for the grid 

cell, and as the grid localizer is based on the discrete Bayes filter, it handles a belief as 

a set of discrete values of probability 𝑏𝑒𝑙(𝑥𝑡) = {𝑝𝑘,𝑡}, where 𝑝𝑘,𝑡 itself is the 

probability of a mobile robot to be in grid cell k in real-time. mean(𝑥𝑘) denotes the 

mass center of the grid cell. For inputs, as a recursive filter, the localizer asks for the 

prior discrete probability set {𝑝𝑘,𝑡−1}, the current sensor data 𝑧𝑡, control data ut, and 



22 

 

the robot’s environment map m. At each iteration, the algorithm updates all grid cell’s 

probability. The motion model in line 3 includes the control data, while the sensor data 

incorporated in the measurement model in line 4. 

 

Figure 1.6. Grid decomposition example over the robot’s state space. (appears just 

three orientations) 

Table 1.3. Grid localization algorithm 

1: Grid_Localization_Algorithm ({𝑝𝑘,𝑡−1}, 𝑢𝑡, 𝑧𝑡, 𝑚) 

2: for all 𝑘 do 

3: 
�̅�𝑘,𝑡 =  ∑ 𝑝𝑖,𝑡−1𝐦𝐨𝐭𝐢𝐨𝐧_𝐦𝐨𝐝𝐞𝐥(𝑚𝑒𝑎𝑛(𝑥𝑘), 𝑢𝑡 , 𝑚𝑒𝑎𝑛(𝑥𝑖))

𝑖

 

4: 𝑝𝑘,𝑡 = 𝜇 �̅�𝑘,𝑡𝐦𝐞𝐚𝐬𝐮𝐫𝐞𝐦𝐞𝐧𝐭_𝐦𝐨𝐝𝐞𝐥(𝑧𝑡, 𝑚𝑒𝑎𝑛(𝑥𝑘), , 𝑚) 

5: end for 

6: return {𝑝𝑘,𝑡} 

 

Two challenges face grid localization during implementation. The first is the trade-off 

between the results accuracy and processing time. The accuracy of the returned value 

from the algorithm relies on the grid cell resolution. With a fine grid, the results are 

very accurate, but the fine grid imposes a higher computational burden leads to a very 

slow localization. However, the coarse grid leads to losing some information through 

discretization, and the results will be inaccurate. The second challenge is related to the 

motion model, especially when the algorithm employs a high-resolution sensor model 

with coarse grid cells. The results may be poor as the grid localizer describes the grid 

cell by its center mean(𝑥𝑘). 



23 

 

 Monte Carlo Localization (MCL) 

 Monte Carlo Localization methodology 

MCL is a localization technique based on PF [11]. It provides a new methodology to 

cope with multi-modal distribution, where it can localize the mobile robot in a global 

environment. With this technology, the created uncertainty in the robot pose estimation 

is represented by addressing a particle set which is randomly inferred from PF [34]. 

Most of the problems in the real world are nonlinear systems, so rather than describing 

the robot world by Probability Density Function (PDF), MCL represents such an 

arbitrary distribution shown in Figure 1.7 by a bunch of particles. Each particle created 

on the state space represents a hypothesis state of the mobile robot. 

 

Figure 1.7. An arbitrary distribution represented by a set of 

particles 

Representing the belief  𝑏𝑒𝑙(𝑥𝑡) by a set of particles allows the MCL the ability to 

solve position tracking problem, global localization, and even kidnapped robot 

problem. So, when the initial robot’s pose is unknown, MCL tries to estimate the 

robot’s state by generating equal-probability particles uniformly distributed all over 

the robot space. Although MCL is a comparatively new approach in the world of 

autonomous mobile robots, it has already become one of the most popular pose 

estimation techniques in robotic systems. Moreover, the implementation of the MCL 

algorithm is easy. And in order to understand how the MCL algorithm works and how 



24 

 

it is implemented, first and foremost, we will explain the particle filter in the next 

section. 

 Particle Filter (PF) 

PF is an advanced form of recursive Bayes filter. It represents the belief distribution 

by a collection of random particles estimated from this distribution, as shown in Figure 

1.7. Each particle generated from the corresponding posterior distribution represents a 

potential estimated state in real-time. So, PF is used by the MCL technique to estimate 

the robot’s pose in global environments and when the robot has a kind of unreliable 

sensor. The key idea of PF is the samples, where it uses multiple samples to represent 

any arbitrary distribution from our real life. Therefore, the sampling procedure is called 

PF. Each sample has its weight; the higher the weight means higher the probability of 

the corresponding area, and the density of the particles within a specified area 

describes the density of distribution. Equation (1.12) depicts a set of weighted samples, 

where each sample m includes a state hypothesis 𝑥𝑡
[𝑛]

 and its importance weight 𝑤[𝑛]. 

The more samples in the sample set, the better the approximation. 

 [ ] [ ], ,            n=1,...,Nn nX x w=   (1.12) 

 

Figure 1.8. Generating samples from Gaussian distribution by closed-

form sampling 



25 

 

For Gaussian distributions, such as one illustrated in Figure 1.8, the samples are 

generated using the closed-form sampling method [35], as shown in Equation (1.13) 

below. The technique is by taking 12 random numbers between minus plus of the 

standard deviation of Gaussian distribution, then sum all of them up and divide it by 

two. 

( )
12

1

1
,

2 i

x rand  
=

= −   (1.13) 

However, closed-form sampling is only applicable for a few distributions, such as 

Gaussian distributions. Unfortunately, in most cases, the target distribution has an 

arbitrary form where we cannot generate samples by closed-form sampling. PF uses 

importance sampling principle to generate samples from an arbitrary distribution. As 

shown in Figure 1.9 below, PF uses a different distribution called proposal distribution, 

such as Gaussian to generate samples from the target distribution. This process is 

called sampling. Then, in the importance process, PF accounts for the difference 

between the target and proposal distributions by calculating the importance weight for 

each generated sample. MCL algorithm utilizes motion model 𝑝(𝑥𝑡 | 𝑥𝑡−1, 𝑢𝑡) as a 

proposal function and measurement model 𝑝(𝑧𝑡 | 𝑥𝑡) to calculate the importance 

weight for each sample. 

 

Figure 1.9. Importance sampling principle 



26 

 

Through the following steps below, PF can estimate the actual state precisely [36]. 

Steps 2 to 5 are frequently executed to infer the pose of the mobile robot. In other 

words, it is a technique of estimating the robot’s pose by updating the distribution of 

the samples, which represents the probability of the robot’s pose based on the 

perceptual data. 

• Initialization. In global localization, samples are randomly distributed over all 

possible states. While the robot’s pose is unknown, the weight of all samples is 

sum up to one. 

• Prediction (sampling). Based on the motion model that uses the previous sample 

set, PF predicts the current new samples. 

• Update (Importance). PF uses the measurement model to correct the pose estimate 

by calculating the weight of each sample. 

• Pose estimation. The pose and weight of all samples are used to calculate the 

maximum weight value, median value, and the average weight for estimating the 

robot’s pose. 

• Resampling. PF gets rid of less weighted samples and generates new samples that 

inherit the characteristic of samples with a high importance weight. The weight of 

all samples is sum up to one again. 

After two iterations of prediction and correction, the filter will resample the particles. 

And after a complete filter iteration, the algorithm gives a new bunch of weighted 

samples (new distribution) that represent the probability of the robot’s pose. 

Table 1.4 [25] below, illustrates the PF algorithm. As the PF constructs the next 

posterior recursively from the previous posterior, the inputs include the previous 

sample set 𝑋𝑡−1 along with the current control data 𝑢𝑡 and most recent sensor data 𝑧𝑡. 

The algorithm iterates over all samples in the previous sample set, where in the line 4 

the proposal function (action model) is used to generate a new sample. In line 5, PF 

uses the sensor model to compute the importance factor (weight) for each generated 

sample. The state hypothesis and its weight were added together in line 6 to create the 

predicted sample set. Line 8 to 11 represent the resampling process, where PF keeps 

tracking the actual pose. In fact, resampling is the trick of PF. If the number of the 

used samples is infinite, the filter does not care if there are a large number of samples 



27 

 

going to unlikely regions, as long as it has enough samples in the areas with a high 

likelihood. But in all practical applications, the number of used samples that we can 

represent in the computers is finite. So, resampling will let the bad samples (samples 

with low weight) die out and use the sample actually to represent the high likelihood 

areas. In practice, the resampling step is essential because if the PF does not use the 

resampling, it will not be able to track the pose of a robot over long periods as the PF 

will diverge.  Every sample in the sampling process makes an error. These errors will 

accumulate. So, there is no way to recover it unless having an infinite number of 

samples or do a resampling. 

Table 1.4. Particle filter algorithm 

1: Particle_Filter_Algorithm (𝑋𝑡−1, 𝑢𝑡 , 𝑧𝑡) 

2: �̅�𝑡 = 𝑋𝑡 = ∅ 

3: for 𝑛 = 1 to 𝑁 do 

4: Sample:   𝑥𝑡
[𝑛]

= 𝑝(𝑥𝑡|𝑥𝑡−1
[𝑛]

, 𝑢𝑡) 

5: Correct:  𝑤𝑡
[𝑛]

= 𝑝(𝑧𝑡|𝑥𝑡
[𝑛]

) 

6: �̅�𝑡 = �̅�𝑡 + 〈𝑥𝑡
[𝑛]

, 𝑤𝑡
[𝑛]〉 

7: endfor 

8: for 𝑛 = 1 to 𝑁 do 

9: draw 𝑖 with probability ∝  𝑤𝑡
[𝑖]

 

10: add 𝑥𝑡
[𝑖]

 to 𝑋𝑡 

11: endfor 

12: return 𝑋𝑡 

 

Finally, PF is a non-parametric approach, which means it does not utilize a particular 

function to represent the belief. Instead, it uses random samples to represent the 

posterior distribution. 

 



28 

 

 MONTE CARLO LOCALIZATION ALGORITHM 

MCL algorithm is considered one of the subset approaches that can successfully deal 

with the created global uncertainty. And as a probabilistic approach, MCL can 

compute the instantaneous uncertainty of a mobile robot, and it is convenient to local 

and global pose estimation problem. Moreover, MCL is easy to implement and can 

solve the kidnapped and global localization problems in a very high robust and 

competent way. The high efficiency of the MCL algorithm comes from the fact that it 

represents the uncertainty (robot pose) by a collection of particles, which are randomly 

generated over the robot poses in accordance to the posterior distribution. So, MCL 

uses PF to cope with multi-modal distributions and achieving pose tracking for 

autonomous mobile robots against a known map. 

MCL employs the term sample rather than a particle, where each sample represents 

the predicted robot pose over the state space. In analogy with PF, MCL proceeds in 

these primary stages: 

• Initialization. All samples are randomly scattered all over the state space via 

uniform distribution. The total weight of the samples is one.  

• Prediction phase. Samples are distributed based on the change in the robot’s state 

and the motion model. 

• Correction phase. Based on the probability of receiving the sensor reading for each 

sample, the weight of the samples is assigned. 

• Pose estimation. Based on the calculated importance weights, the robot can 

estimate its pose. The set of samples with the highest weight is utilized to infer the 

robot pose. 

• Resampling. It is a crucial key for adapting to changes and maintain relevant 

samples to estimate the robot’s pose. 

The algorithm of MCL is derived from the PF algorithm that is explained in Table 1.4 

above. Besides, MCL incorporates the map of the robot environment in inputs and 

utilizes motion model function 𝑝(𝑥𝑡 | 𝑥𝑡−1, 𝑢𝑡) as a proposal function to calculate the 



29 

 

predicted hypothesis states (line 4), and measurement model function 𝑝(𝑧𝑡 | 𝑥𝑡) to 

calculate the importance weight for each sample (line 5). Table 2.1 [25] below 

illustrates the algorithm of the MCL technique. 

Table 2.1. Monte Carlo Localization algorithm 

1: MCL_algorithm (𝑋𝑡−1, 𝑢𝑡 , 𝑧𝑡, 𝑚) 

2: �̅�𝑡 = 𝑋𝑡 = ∅ 

3: for 𝑛 = 1 to 𝑁 do 

4: 𝑥𝑡
[𝑛]

= 𝐬𝐚𝐦𝐩𝐥𝐞_𝐦𝐨𝐭𝐢𝐨𝐧_𝐦𝐨𝐝𝐞𝐥 (𝑥𝑡−1
[𝑛]

, 𝑢𝑡) 

5: 𝑤𝑡
[𝑛]

= 𝐦𝐞𝐚𝐬𝐮𝐫𝐞𝐦𝐞𝐧𝐭_𝐦𝐨𝐝𝐞𝐥 (𝑧𝑡, 𝑥𝑡
[𝑛]

, 𝑚) 

6: �̅�𝑡 = �̅�𝑡 + 〈𝑥𝑡
[𝑛]

, 𝑤𝑡
[𝑛]〉 

7: endfor 

8: for 𝑛 = 1 to 𝑁 do 

9: draw 𝑖 with probability ∝  𝑤𝑡
[𝑖]

 

10: add 𝑥𝑡
[𝑖]

 to 𝑋𝑡 

11: endfor 

12: return 𝑋𝑡 

 

In the next two sections, the motion and measurement models used in our thesis will 

be explained in detail. We will focus totally on mobile robots that working on the 

planer world. Moreover, differential drive mobile robots are used in our work. 

 Probabilistic Motion Models 

Motion models or probabilistic kinematic model includes the state transition 

probability 𝑝(𝑥𝑡 | 𝑥𝑡−1, 𝑢𝑡). And it plays a crucial role in the prediction phase of the 

MCL. The motion model function is a representation of the kinematics of a robot and 

can predict how samples change their poses over time. Without the probabilistic 

kinematic model, it is difficult to predict the next move. There are two probabilistic 

motion models in the robotic literature. The first is the velocity motion model, while 

the other is the odometry motion model. Both of them are utilized for mobile robots 

moving in flat environments. The velocity motion model supposes that the control data 

ut provides velocity commands to the motors of the mobile robot. Most of the 

industrial mobile robots, such as synchro drive or differential drive, are driven by 



30 

 

independent rotational and translational velocities. However, the odometry motion 

model assumes that the control data ut contains the relative motion information which 

has access to the odometer data. Odometry information provided by kinematic 

information (travel distance and the angle turned). 

While both motion models suffer from drift and slippage, practical experience suggests 

the odometry motion model over the velocity motion model to solve localization 

problems. The reason, the accuracy of the odometry model is higher than the velocity 

model, where the velocity model also suffers from a mismatch between the actual 

motion controllers and its mathematical model. In other words, in most mobile 

industrial robots, the velocity measured by the revolution of the mobile robot’s wheels 

does not fully match the executed velocity command. However, odometry information 

is only obtainable in retrospect, which means after the motion command is executed. 

Therefore, the odometry model cannot be employed for planning algorithms. So, the 

velocity motion models are utilized for probabilistic motion planning, whereas 

odometry motion models are applied for localization. 

 Odometry motion model 

In our thesis, we assumed a differential drive mobile robot moves on a planer 

environment. The mobile robot is outfitted with incremental encoders that measure the 

rotation of the wheels, but not directly the position and orientation of the robot to a 

fixed world frame. Wheel sensors, such as incremental optical encoders, are a type of 

proprioceptive sensors that measure the dynamics and internal state of a robot. Wheel 

sensors used in mobile robots have a low cost and high quality that provide excellent 

resolution. A map-free odometry motion model is utilized to calculate the motion of 

the mobile robot over time. The odometry motion model is typically created by 

incorporating the motion information from wheel encoders. Therefore, the robot’s 

odometer is sensor measurements, but we treated it like controls. 

Based on PF, odometry motion model generates random samples from the state 

transition probability 𝑝(𝑥𝑡 | 𝑥𝑡−1, 𝑢𝑡). The following Figure 2.1 illustrates the robot 

motion from a state 𝑥𝑡−1 to state xt. However, odometry employs relative motion 

information in pose estimation. Here, the motion information (control 𝑢𝑡) is given by 

the two successive poses as below: 



31 

 

1t

t

t

x
u

x

−
 

=  
  

  (2.1) 

The bar sign above poses demonstrates that the odometry measurements are given 

relative to the internal coordinate system of the robot whose relationship to the world 

frame is unknown. 

 

Figure 2.1. Odometry information from sensor measurements 

Odometry information is represented by a sequence of three parameters as a result of 

the relative difference between two successive states. Initial rotation δrot1 followed by 

translation δtrans, and finally, the second rotation δrot2, as shown in Figure 2.1 above. 

Equation (2.2) below shows how to extract these three parameters from odometry 

reading ut. 

( )
1

2 2

2 1

atan 2 ,

( ) ( )

rot

trans

rot rot

dy dx

dx dy

d






  

 −
  
  

= +
  
   − 
  

  (2.2) 

Odometry information is noise-free. And the probabilistic approach postulates that 

there is independent noise incorporated with the odometry information. For example, 



32 

 

if the Odometry says that the mobile robot moves one meter forward, the pose 

estimation algorithm takes a sample out from the previous sample set and move it a 

meter forward by applying control 𝑢𝑡. Then may add some sampling noise around this 

sample, where the measured motion is given by the actual motion corrupted with noise. 

So, modeling the motion error is done by subtracting or adding independent noise 𝜖𝜎2 

to the odometry information. We can generate noise samples from Gaussian normal 

distribution with zero mean and variance 𝜎2 by using the closed-form principle shown 

in Equation (1.13). Equation (2.3) demonstrates noise modeling for odometry 

information. 

2 2
1 1 2

2 2 2
1 2

2 2
1 2 2

1 1

3 4( )

2
2

rot trans

trans rot rot

rot trans

rot rot

trans trans

rot
rot

   

    

   

 

  

  

+

+ +

+

   −
  
   = −
  
 −    

  (2.3) 

Where, 𝛼1 to 𝛼4 stand for the motion noise parameters (error parameters). 𝛼1 refers to 

the rotational error due to rotational motion, 𝛼2 indicates the rotational error due to 

translational motion, 𝛼3 indicates the translational error due to translation motion, and 

𝛼4 refers to the translational error due to rotational motion. 

As a variant of recursive Bayesian filters, the estimated robot’s pose 𝑥𝑡 is obtained 

from the robot’s pose one step time back 𝑥𝑡−1 by the first rotation 𝛿𝑟𝑜𝑡1, followed by 

a straight motion 𝛿𝑡𝑟𝑎𝑛𝑠, finally by the second rotation 𝛿𝑟𝑜𝑡2. Thus, the odometry 

motion model suggests the estimated real robot’s pose, as shown in the following 

Equation (2.4). 

( )

( )

1

11

1 2

 cos

 sin

trans rot

trans rott t

rot rot

x x

  

  

 

−

 +
 
 

= + + 
 

+ 
 

  (2.4) 

The following Table 2.2 [25] demonstrates the odometry motion model algorithm. The 

algorithm takes the previous robot’s pose and the most recent control as input, and it 

returns the estimated robot’s pose at the current time as output. Lines 2 to 4, represent 

free noisy Odometry measurement, lines 5 to 7 represent noise modeling for odometry 



33 

 

information. The function sample (𝜎2) generates a random sample from a zero 

centered distribution with variance 𝜎2. Finally, lines 8 to 10 calculates the estimated 

robot’s pose at the current time. 

Table 2.2. Sample odometry motion model 

1: Sample_Odometry_Motion_Model_Algorithm (𝑥𝑡−1, 𝑢𝑡) 

  

2: 𝛿𝑟𝑜𝑡1   = 𝑎𝑡𝑎𝑛2(𝑑𝑦̅̅̅̅ , 𝑑𝑥̅̅̅̅ ) − 𝜃 

3: 𝛿𝑡𝑟𝑎𝑛𝑠 = √(𝑑𝑥̅̅̅̅ )
2

+ (𝑑𝑦̅̅̅̅ )2 

4: 𝛿𝑟𝑜𝑡2   = 𝑑𝜃̅̅̅̅ − 𝛿𝑟𝑜𝑡1 

  

5: 𝛿𝑟𝑜𝑡1     = 𝛿𝑟𝑜𝑡1   − 𝐬𝐚𝐦𝐩𝐥𝐞(𝛼1𝛿𝑟𝑜𝑡1
2 + 𝛼2𝛿𝑡𝑟𝑎𝑛𝑠

2 ) 

6: 𝛿𝑡𝑟𝑎𝑛𝑠   = 𝛿𝑡𝑟𝑎𝑛𝑠 − 𝐬𝐚𝐦𝐩𝐥𝐞(𝛼3𝛿𝑡𝑟𝑎𝑛𝑠
2 + 𝛼4(𝛿𝑟𝑜𝑡1

2 + 𝛿𝑟𝑜𝑡2
2 )) 

7: 𝛿𝑟𝑜𝑡1     = 𝛿𝑟𝑜𝑡2   − 𝐬𝐚𝐦𝐩𝐥𝐞(𝛼1𝛿𝑟𝑜𝑡2
2 + 𝛼2𝛿𝑡𝑟𝑎𝑛𝑠

2 ) 

 
 

8: �́� = 𝑥 + 𝛿𝑡𝑟𝑎𝑛𝑠  𝑐𝑜𝑠 (𝜃 + 𝛿𝑟𝑜𝑡1) 

9: �́� = 𝑦 + 𝛿𝑡𝑟𝑎𝑛𝑠  𝑠𝑖𝑛 (𝜃 + 𝛿𝑟𝑜𝑡1) 

10: �́� = 𝜃 + 𝛿𝑟𝑜𝑡1 + 𝛿𝑟𝑜𝑡2 

11: return 𝑥𝑡 = [�́� �́� �́�]𝑇 

 

 Robot forward kinematics model 

Most of the industrial mobile robots, such as differential drive shown in Figure 2.2 

below, are driven by independent rotational and translational velocities. Thus, the 

orientation and position of mobile robots can be calculated using forward kinematics. 

 

Figure 2.2. Differential drive mobile robot driven by rotational and translational 

velocities. 



34 

 

Our robot has 3 Degrees of Freedom (DOF), and can only move in XY-plane. 

However, the differential drive system is non-holonomic, where some of the DOFs are 

uncontrollable [37]. Differential drive mobile robot changes its heading orientation by 

differentiating the relative rotation rate of wheels. So, for example, differential drive 

is unable to move sideways. While in the holonomic system, the number of 

controllable DOFs equals the total number of DOFs. By utilizing mecanum or omni 

wheels, mobile robots can change their locations without changing the direction of 

their orientation [38]. However, our differential drive mobile robot is equipped with 

incremental encoders that measure the rotation of the wheels. The motion information 

ut used in the algorithm of the odometry motion model shown in Table 2.2 is obtained 

based on the robot’s wheels rotation measurements. 

 

Figure 2.3. Differential drive mobile robot changes its pose during the time. 

For a discrete system with a fixed sampling interval ∆𝑡, we assumed the movement of 

a robot as incremental distances. The mobile robot illustrated in Figure 2.3 above, 

traveled ∆𝑠 distance in a short time ∆𝑡. Relying on the robot’s odometer, Equations 

(2.5) and (2.6) calculates the rotational speed of the right and left wheels respectively. 

( ), , 1

180

r t r t

r

Enc Enc

t




−−
= 


  (2.5) 



35 

 

( ), , 1

180

l t l t

l

Enc Enc

t




−−
= 


  (2.6) 

Where, (𝐸𝑛𝑐𝑟,𝑡 , 𝐸𝑛𝑐𝑟,𝑡−1) is the current and previous right encoder values 

respectively. while (𝐸𝑛𝑐𝑙,𝑡 , 𝐸𝑛𝑐𝑙,𝑡−1) are the current and previous left encoder values 

respectively. The rotational speed of wheels in (radian/sec). 

If the diameter of the wheels is 𝐷 and the distance between two wheels is 𝐿, then the 

velocity of the right and left wheels is calculated as in Equations (2.7) and (2.8) 

respectively. And the linear velocity and angular velocity of the mobile robot can be 

calculated as shown in Equations (2.9) and (2.10). 

2
r r

D
V =    (2.7) 

2
l l

D
V =    (2.8) 

( )
2

r l

t

V V


+
=   (2.9) 

( )r l

t

V V

L


−
=   (2.10) 

Equations (2.11) and (2.12) calculates the path traveled during the last time duration. 

ts t =    (2.11) 

t t  =    (2.12) 

Finally, Equations (2.13) calculates the robot’s pose. The result of the following 

equation is considered as the motion information 𝑢𝑡 for the odometry motion model. 

( )

( )1

cos
2

sin
2

t

t t t

s

x x s







−

   +
 
 = +   + 
 

 
 

  (2.13) 



36 

 

 Probabilistic Measurement Models 

Measurement models or observation models solve for the measurement probability 

𝑝(𝑧𝑡 | 𝑥𝑡, 𝑚). It plays an essential role in the correction phase of the MCL directly 

after the motion model, and it directly affects the robustness and performance of the 

mobile robot. Since PF uses proposal distribution rather than the target distribution to 

generate samples as illustrated in Figure 1.9 above, the observation model takes an 

essential role to account for the differences between these two distributions by 

calculating the importance factor (weight) for each created sample n. 

[ ] target_distribution
( | , )

proposal_distribution

n

t t tw p z x m= =   (2.14) 

In the above equation 𝑧𝑡 is the sensor measurements at time 𝑡, 𝑥𝑡 indicates the predicted 

robot’s pose, and 𝑚 is the robot’s environment map. So, the correction is done through 

the observation model. Global localization assumes that all samples are distributed 

normally over the state space with the same weight. However, in the updating phase, 

the weight of the samples will be updated according to the sensor measurements. 

Therefore, the sum of the weights after the correction will not be equal to one. 

Probabilistic approaches provide different models to perform the measurement 

probability,  such as beam-based model, likelihood field, and landmarks [25]. 

However, the characteristic of the measurement model relies on the sensor used. In 

industrial applications, there are a wide variety of sensors utilized by mobile robots, 

such as sonar sensors, the best model for these sensors is by depicting the reflection of 

the sound wave on surfaces. In contrast, the best model for visual sensors is done by 

projection geometry. 

MCL algorithm typically uses the odometry motion model as proposal distribution. 

Therefore, the importance weight is corrected by the observation likelihood model. 

This model ignores the physical properties of the beam and just uses the endpoints to 

check for the obstacles; it is highly efficient and smooth to small changes in the robot’s 

pose. 



37 

 

 

Figure 2.4. Occupancy grid map 

The robot’s environment map is a table of objects in the world and their positions. A 

known map, such as Occupancy Grid Map (OGM) [39] shown in Figure 2.4 above, is 

used to help the mobile robot to localize itself. The white area in the map indicates the 

free space where the mobile robot can move, occupied area denoted by the black color, 

and the gray area stands for the unknown region. 

 Likelihood field range finder model 

The likelihood field model uses 2D Light Detection and Ranging sensor (LiDAR) [40] 

to perceive the robot’s environment. 2D LiDAR is a laser distance sensor that employs 

the light to find the ranges from the sensor to the features around based on the time it 

takes for the laser to reflect. LiDAR sensor collects data ranges at given angle intervals. 

The measurement data obtained from the LiDAR sensor at a time t is a collection of 𝑏 

measurements, and it is indicated as follows: 

1 2 3, , ,..., b

t t t t tz z z z z =     (2.15) 

where 𝑧𝑡 stands for the most recent sensor data, 𝑏 refers to the individual beam from 

the current scan. However, the individual measurements are independent and the single 

beam 𝑧𝑡
𝑏 has a range value from zero to the maximum sensor range 𝑧𝑚𝑎𝑥. 



38 

 

Rather than accounting for the physical properties of the laser rays, the likelihood field 

model just uses the endpoints of the beams to check for the obstacles there. And the 

weight of each sample is allocated based on the calculated likelihood. The key idea is 

to match the obtained laser scan with the pre-mapped environment. The likelihood 

field represents the probability of obstacle detection as a function of global XY 

coordinates, as illustrated in Figure 2.5 (b). 

 

 

 

 

(a) (b) 

Figure 2.5. (a) OGM of the robot’s environment. (b) Likelihood field 

Figure 2.5 (b) illustrates the likelihood field representation extracted from the OGM 

of the environment. The black regions of the map demonstrate that an obstacle is 

unlikely to be perceived there. The likelihood of the beam’s endpoint to hit an obstacle 

is calculated based on the distance transform, which indicates the minimum distance 

from the endpoint of the ray to the nearest obstacle. Relying on the normal Gaussian 

distribution shown in Equation (1.9) with a zero center, Equation (2.16) computes the 

likelihood of a single beam’s endpoint as follows. 

( )
2

2

1
endpoint exp

22

b bd
likelihood

 

  
=  −  
   

 (2.16) 

𝑑𝑏 refers to the distance transform of the beam 𝑏, while the standard deviation 𝜎 stands 

for the measurement noise. However, since the measurement noise is constant, the first 

term of Equation (2.16) can be normalized for all samples. Now, the likelihood of the 

individual beam is given in the following Equation (2.17). 



39 

 

2
[ ]

2
( | , ) exp

2

b n b
t t

d
p z x m



 
= − 

 
  (2.17) 

Equation (2.17) demonstrates that the likelihood of the beam’s endpoint to hit an 

obstacle will decrease as the distance transform increases. However, the value of the 

distance transform at obstacles is zero; this leads to a high likelihood value (almost 

one) for the relevant beam’s endpoint. 

Now, the measurement probability 𝑤𝑡
[𝑛]

 of the expected robot’s pose obtained from 

the odometry motion model can be calculated by multiplying the likelihood values of 

the scan endpoints, as shown in the following Equation (2.18). 

[ ] [ ]

1

( | , ) ( | , )
b

n b n

t t t t

b

p z x m p z x m
=

=   (2.18) 

where 𝑝(𝑧𝑡 | 𝑥𝑡
[𝑛]

, 𝑚) is the weight of the sample 𝑛. The environment map 𝑚 used to 

compute the distance transform for each grid cell. While the state 𝑥𝑡
[𝑛]

 used to apply 

scan data on each generated sample 𝑛. Since the obtained scan data is relative to the 

sensor pose, the endpoints of the scan should be projected into the world coordinate 

system. LiDAR sensor is installed on the robot, and its pose is assumed to be fixed 

over time. The following Figure 2.6 describes the sensor coordinate system relative to 

the global frame, and the general transformation mapping [41] of the sensor frame to 

the world frame is defined by Equation (2.19) below. 

sens, , sens,ORG( ) w w w r

ORG r ORG r zP P R P= +   (2.19) 

𝑃𝑤
𝑠𝑒𝑛𝑠,𝑂𝑅𝐺 is the position vector locates the origin of the sensor frame relative to the 

world frame, 𝑃𝑤
𝑟,𝑂𝑅𝐺 refers to the position vector that describes the origin of the 

robot’s frame relative to the world frame, 𝑅𝑧(𝜃)𝑟
𝑤  stands for the rotation matrix about 

z-axis which describes the orientation of the robot’s frame relative to the world frame, 

and 𝑃𝑟
𝑠𝑒𝑛𝑠,𝑂𝑅𝐺 is the position vector locates the origin of the sensor frame relative to 

the robot’s frame. 



40 

 

 

Figure 2.6. Sensor and robot coordinates in the world coordinate system, where each 

of these coordinates has a rotation about z-axis of the world frame 

Now, Equation (2.20) describes the sensor frame relative to the world frame. where 

[𝑥, 𝑦, 𝜃]𝑇 is the predicted state in world frame, and [𝑥𝑠𝑒𝑛𝑠, 𝑦𝑠𝑒𝑛𝑠]𝑇 is the position 

coordinates of the sensor in the robot’s frame. 

sens,

cos( ) sin( )

sin( ) cos( )

sensw

ORG

sens

xx
P

yy

 

 

−     
= +     
     

  (2.20) 

Equation (2.21) describes the rotation of the sensor coordinates in the world coordinate 

system. 

( ) ( )w w r

sens z r z sens z sR R R =   (2.21) 

𝑅𝑠𝑒𝑛𝑠
𝑤  stands for the rotation matrix about z-axis which describes the orientation of the 

sensor frame relative to the world frame, while 𝑅𝑧(𝜃𝑠)𝑠𝑒𝑛𝑠
𝑟  describes the orientation of 

the sensor frame relative to the robot’s frame. 



41 

 

So, 

cos( ) sin( )cos( ) sin( )
  

sin( ) cos( )sin( ) cos( )

cos( ) sin( )
         

sin( ) cos( )

s sw

sens

s s

s s

s s

R
  

  

   

   

−−   
=   

   

+ − + 
=  

+ + 

 (2.22) 

𝜃𝑠 denotes the angular orientation of the sensor relative to the heading direction of the 

mobile robot. 

The target in the likelihood field representation is the scan endpoints. So, the following 

Equation (2.23) describes the endpoint coordinates in the world frame. 

ep, , ep,ORG w w w sens

ORG sens ORG sensP P R P= +   (2.23) 

𝑃𝑠𝑒𝑛𝑠
𝑒𝑝,𝑂𝑅𝐺 is the position vector locates the scan endpoint relative to the sensor 

coordinate system. 

Now, 

ep,

cos( ) sin( )
        

sin( ) cos( )

cos( ) sin( ) cos( )
                 

sin( ) cos( ) sin( )

sensw

ORG

sens

b

s s t ep

b

s s t ep

xx
P

yy

z

z

 

 

    

    

 −     
= + +     

      

 + − + 
  

+ +     

 (2.24) 

from Equation (2.24), Equation (2.25) describes the trigonometric transformation used 

to map the scan endpoint into the world coordinate system. 

cos( )cos( ) sin( )
  

sin( )sin( ) cos( )

t

t

b

z s epsens b

tb
s epsensz

x xx
z

yyy

   

   

  + +−      
= + +        + +         

 (2.25) 

[𝑥𝑧𝑡
𝑏 , 𝑦𝑧𝑡

𝑏 ]𝑇 stands for the endpoint coordinates in the global frame, 𝜃𝑒𝑝 denotes the 

angular orientation of the laser ray relative to the sensor direction. Notice that the 

coordinates computed in Equation (2.25) are meaningless in the real world if the beam 



42 

 

range has a maximum value of the sensor range 𝑧𝑡
𝑏 = 𝑧𝑚𝑎𝑥. Simply, the likelihood 

model rejects readings with maximum range. 

We took for granted three different types of uncertainty and noise sources. The first 

one is the noise which arises when calculating for the distance to the nearest obstacle, 

which describes the probability of getting a correct measurement phit and it is modeled 

by a Gaussian with zero-centered. Besides we assumed another noise source as a result 

of readings with a max range which have a significant likelihood, PMD distribution 

used to model this type of uncertainty pmax. Moreover, random measurements increase 

uncertainty in sensor readings, so the random noise modeled by the uniform 

distribution prand. These distributions should be integrated to obtain the desired 

likelihood 𝑝(𝑧𝑡
𝑏  | 𝑥𝑡

[𝑛]
, 𝑚) [25]. 

Table 2.3. Likelihood field range finder model 

1: Likelihood_Field_Range_Finder_Model_Algorithm (𝑧𝑡, 𝑥𝑡, 𝑚) 

  

2: 𝐿𝐻 = 1 

3: for all 𝑏 do 

4: if 𝑧𝑡
𝑏 ≠ 𝑧𝑚𝑎𝑥 

5: 𝑥𝑧𝑡
𝑏 = 𝑥 + 𝑥𝑠𝑒𝑛𝑠 𝑐𝑜𝑠 𝜃 − 𝑦𝑠𝑒𝑛𝑠 𝑠𝑖𝑛 𝜃 + 𝑧𝑡

𝑏 𝑐𝑜𝑠(𝜃 + 𝜃𝑠 + 𝜃𝑒𝑝) 

6: 𝑦𝑧𝑡
𝑏 = 𝑦 + 𝑥𝑠𝑒𝑛𝑠 𝑠𝑖𝑛 𝜃 + 𝑦𝑠𝑒𝑛𝑠 𝑐𝑜𝑠 𝜃 + 𝑧𝑡

𝑏 𝑠𝑖𝑛(𝜃 + 𝜃𝑠 + 𝜃𝑒𝑝) 

7: 𝑑𝑖𝑠𝑡 = 𝑚𝑖𝑛 {√(𝑥𝑧𝑡
𝑏 − �́�)

2

+ (𝑦𝑧𝑡
𝑏 − �́�)

2

|〈�́�, �́�〉occupied in 𝑚} 

8: 𝐿𝐻 = 𝐿𝐻 ∗ [𝑤ℎ𝑖𝑡 .  𝑝𝑟𝑜𝑏(𝑑𝑖𝑠𝑡, 𝜎ℎ𝑖𝑡) +
𝑤𝑟𝑎𝑛𝑑

𝑧𝑚𝑎𝑥
] 

9: return 𝐿𝐻 

 

The algorithm of the likelihood field model used for computing the measurement 

probability by utilizing the distance transform is summarized in Table 2.3 [25]. 

𝑝𝑟𝑜𝑏(𝑑𝑖𝑠𝑡, 𝜎ℎ𝑖𝑡) is the distance transform probability computed by Gaussian 

distribution under a zero center with a measurement noise 𝜎ℎ𝑖𝑡. 𝑤ℎ𝑖𝑡 denotes the 

expected measurement weight, and 𝑤𝑟𝑎𝑛𝑑 denotes the random measurement weight. 

Line 7 calculates for the minimum distance between the beam endpoint and the nearest 

obstacle, where 〈�́�, �́�〉 indicates the occupied cell coordinates around the endpoint. 



43 

 

Since the computations of the Euclidean distance transform is smooth, the likelihood 

model is smoother than any other models used to achieve the measurement probability. 

Moreover, the precomputations of the Euclidean distance done in a 2D table rather 

than 3D tables. However, there are three shortcomings to this model. First, the 

likelihood field model does not model dynamic objects that might cause a drop in 

probabilities. Second, it does not see obstacles that encounter the beam when mapping 

to the samples as it looks just for the endpoints. Third, the likelihood field model does 

not model the uncertainty in the map itself. 

 Pose Estimation 

According to the Odometry motion model, previous samples move to new states on 

the state space as a result of the motion control, which is applied to the last sample set. 

After that, the likelihood field range finder model assigns the weight of each new 

sample generated. The updated weights describe the probability of a sample to match 

the actual robot’s pose on the map. Now, based on the Bayes rule [42] shown in the 

Equation (2.26) the estimated pose can be found. Bayes rule provides an efficient 

technique to estimate the posterior 𝑝(𝑥|𝑧) by utilizing the inverse conditional 

probability 𝑝(𝑧|𝑥) and the prior probability 𝑝(𝑥), where 𝑝(𝑧) is the evidence. 

(z | ) ( )
( )

(z)

P x P x
P x z

P
=   (2.26) 

Based on the Bayes rule, Equations (2.27) and (2.28) used to compute the estimated 

coordinates (𝑥𝑒𝑠𝑡, 𝑦𝑒𝑠𝑡) of the actual pose. 

1

1

n
n n

t t

n
est n

n

t

n

x

x





=

=

=



  (2.27) 

1

1

n
n n

t t

n
est n

n

t

n

y

y





=

=

=



  (2.28) 



44 

 

Equations (2.29) to (2.31) utilized to estimate the mobile robot’s heading direction 

relative to the x-axis of the world frame. 

1

1

cos

cos

n
n n

t t

n
est n

n

t

n

 





=

=

=



  (2.29) 

1

1

sin

sin

n
n n

t t

n
est n

n

t

n

 





=

=

=



  (2.30) 

atan2(sin ,  cos )est est est  =   (2.31) 

 Resampling 

The resampling phase in MCL is essential since all practical applications use a limited 

number of samples. During the sampling phase, every sample makes an error, and 

these errors will accumulate over time, leading to a divergence in the filter. As a result, 

the estimator will not be able to track the actual state over long periods. Resampling 

methodology was utilized to prevent the degeneration of the samples [43,44] through 

sampling a new equally weighted sample set (corrected sample set) from the 

degenerate samples (predicted sample set). Here, each sample will survive based on 

its importance weight obtained from the measurement model. Generally, the 

resampling process will prompt low weighted samples to inherit the pose of high 

weighted samples. Therefore, the probability of losing the filter to track the pose will 

be reduced. Moreover, since all samples will be redistributed over regions with a high 

likelihood, the computational effort of the MCL algorithm will also focus on the areas 

with high probability. However, some low-weight samples are useful in handling 

disturbances. Thus, the resampling algorithm should preserve low-weight samples 

[45]. 

 Multinomial resample 

Multinomial resampling methodology utilizes a single random number to resample 

from the predicted sample set �̅�𝑡. However, the probability of a sample being 



45 

 

regenerated is proportional to its importance weight. This resampling process is 

accomplished by generating a uniform random number in the period [0,1]. 

Table 2.4. Multinomial resampling algorithm 

1: Multinomial_resampler_algorithm (�̅�𝑡, 𝑊𝑡) 

  

2: 𝑋𝑡 = ∅ 

3: 𝑐 = 𝑤𝑡
[1]

 

4: 𝑖 = 1 

5: for 𝑛 = 1 to 𝑁 

6: 𝑟 = rand(0,1) 

7: while 𝑟 > 𝑐 

8: 𝑖 = 𝑖 + 1 

9: 𝑐 = 𝑐 + 𝑤𝑡
[𝑖]

 

10: endwhile 

11: add 𝑥𝑡
[𝑖]

 to 𝑋𝑡 

12: endfor 

13: return 𝑋𝑡 

  

 

The algorithm shown in Table 2.4 describes the multinomial resampling process, 

where the predicted sample set �̅�𝑡 is transformed into the corrected sample set 𝑋𝑡 with 

the same size. Normalized weights are passed to the algorithm as input. The variable 

𝑐 in line 3 represents the cumulative sum of the normalized weights; line 4 stands for 

the index variable of the selected state, 𝑟 is a uniform random number. Usually, the 

returned corrected sample set 𝑋𝑡 holds many duplicated samples, since samples are 

inferred by replacement. 

The loop in line 7 performs two tasks; it checks if the cumulative weight at the index 

𝑖 exceeds the random number 𝑟, and it adds the weight of sample 𝑖 to the cumulative 

weights. This while loop creates complexity in the algorithm. Processing time is 

essential when handling the localization problem. Thus, the binary search method [46] 

can be used to perform the search for a sample index that its corresponding sample 

exceeds the generated random number. 

In summary, the weight of the samples was initialized by one and then corrected 

multiplicatively under the observation model. After two update iterations, the 

resampling phase takes place, and again the weights of all samples sum up to one. 



46 

 

  Augmented MCL 

The previous resampling process keeps the samples to track the robot’s pose by 

prompting low weight samples to inherit the state of high weight samples. 

Unfortunately, this method cannot survive samples in global localization failures, or 

when the robot kidnapped, since over time, all samples will converge to a specific area 

in the robot’s space and no alternative poses can be envisaged by the algorithm. 

Moreover, since the MCL algorithm is stochastic, during the resampling phase, it may 

unintentionally ignore all samples around the actual robot’s pose. This problem can be 

solved by adding random samples to the sample set to represent random poses over the 

state space. Even if the probabilities still high, random samples provide an extra level 

of robustness. 

At each iteration, one may introduce a certain number of random samples. However, 

too many random samples will weaken localization capability, and also a few random 

samples will have no significant impact on the algorithm’s efficiency. The 

probabilistic approach suggests adding samples based on the performance of 

localization through monitoring measurement probability [25]. One thought is by 

checking for the average weight of the samples. However, other reasons may cause 

dropping in measurement probability, such as a high LiDAR noise, or the samples may 

still be scattered all over the state space during a global localization step. Therefore, 

the trick to compute the number of needed random samples is by observing the fast 

average weight and the slow average weight of the measurement probability. The 

desired measurement probability, long-term average, and short-term average are 

calculated in Equation (2.32), Equation (2.33), and Equation (2.34), respectively. 

[ ]

1

1 N
n

avg t

n

w w
N =

=    (2.32) 

( )slow slow slow avg sloww w w w= + −   (2.33) 

( )fast fast fast avg fastw w w w= + −   (2.34) 

𝑤𝑎𝑣𝑔 stands for the empirical measurement likelihood, 𝑤𝑠𝑙𝑜𝑤, and 𝑤𝑓𝑎𝑠𝑡 refer to the 

exponential filters of the importance weight over a reasonably long and short time, 



47 

 

respectively. The parameters 𝛼𝑠𝑙𝑜𝑤, and 𝛼𝑓𝑎𝑠𝑡 are the decay rates of these filters, which 

infer the slow weight and fast weight averages. This technique discussed above is 

known as augmented MCL, and its illustrated in Table 2.5 [25] below. augmented 

MCL works well if  0 ≤ 𝛼𝑠𝑙𝑜𝑤 ≪ 𝛼𝑓𝑎𝑠𝑡 where a sudden descent in short-term 

average’s value compared to long term average’s value, signposts a decrease in 

localization efficiency. 

Table 2.5. Augmented MCL algorithm 

1: Augmented_MCL_Algorithm (𝑋𝑡−1, 𝑢𝑡  , 𝑧𝑡, 𝑚) 

2: Static 𝑤𝑠𝑙𝑜𝑤, 𝑤𝑠𝑙𝑜𝑤 

3: 𝑤𝑎𝑣𝑔 = �̅�𝑡 = 𝑋𝑡 = ∅ 

4: for 𝑛 = 1 to 𝑁 do 

5: 𝑥𝑡
[𝑛]

= 𝐬𝐚𝐦𝐩𝐥𝐞_𝐦𝐨𝐭𝐢𝐨𝐧_𝐦𝐨𝐝𝐞𝐥 (𝑥𝑡−1
[𝑛]

, 𝑢𝑡) 

6: 𝑤𝑡
[𝑛]

= 𝐦𝐞𝐚𝐬𝐮𝐫𝐞𝐦𝐞𝐧𝐭_𝐦𝐨𝐝𝐞𝐥 (𝑧𝑡, 𝑥𝑡
[𝑛]

, 𝑚) 

7: �̅�𝑡 = �̅�𝑡 + 〈𝑥𝑡
[𝑛]

, 𝜔𝑡
[𝑛]〉 

8: 𝑤𝑎𝑣𝑔 = 𝑤𝑎𝑣𝑔 +
1

𝑁
𝑤𝑡

[𝑛]
 

9: endfor 

10: 𝑤𝑠𝑙𝑜𝑤 = 𝑤𝑠𝑙𝑜𝑤 + 𝛼𝑠𝑙𝑜𝑤(𝑤𝑎𝑣𝑔 − 𝑤𝑠𝑙𝑜𝑤) 

11: 𝑤𝑓𝑎𝑠𝑡 = 𝑤𝑓𝑎𝑠𝑡 + 𝛼𝑓𝑎𝑠𝑡(𝑤𝑎𝑣𝑔 − 𝑤𝑓𝑎𝑠𝑡) 

12: for 𝑛 = 1 to 𝑁 do 

13: With probability max{0.0, 1.0 − 𝑤𝑓𝑎𝑠𝑡/𝑤𝑠𝑙𝑜𝑤} do 

14: Add random pose to 𝑋𝑡 

15: else 

16: draw 𝑖 with probability ∝  𝑤𝑡
[𝑖]

 

17: add 𝑥𝑡
[𝑖]

 to 𝑋𝑡 

18: endwith 

19: endfor 

20: return 𝑋𝑡 

 

The key idea of augmented MCL found in line 13, where the random samples are 

added to the sample set based on the ratio 𝑤𝑓𝑎𝑠𝑡/𝑤𝑠𝑙𝑜𝑤. However, if the short-term 

average is better than the long-term average, the algorithm will keep tracking of 

samples with high measurement likelihood. The random sample added in line 14 is 

generated according to the uniform distribution on the robot’s state space. 



48 

 

 PROPOSED SCHEMES 

 Motivation 

We proposed two novel methodologies that can significantly reduce uncertainty in the 

global indoor localization problem; both of these methodologies are an extension to 

the standard MCL. The first improvement introduces an optimized scheme at the 

initialization step that detects mapped regions with high probabilities only based on 

the initial scan data. Given the robot’s environment map and only the initial scan data, 

the proposed algorithm detects regions with high likelihood based on the observation 

model to distribute samples there. As a result, the suggested sample distribution will 

expedite the process of localization. And it will significantly reduce the amount of time 

it takes for the robot to find its actual pose when it starts moving. The second improved 

scheme presents an effective resampling strategy to deal with the kidnapped robot 

problem that enables the robot to recover quickly when the sample weights drop-down 

due to unmapped dynamic obstacles within the sensor’s field of view. While the 

conventional resampling method propagates random samples around the entire 

working space, the proposed scheme distributes the random samples within a circular 

region centered around the robot’s pose by taking into account the prior knowledge 

about the most recent successful pose estimation. Since the samples are distributed 

over the region with high probabilities, it will take less time for the mobile robot to 

infer its accurate pose. 

 Improved Global Localization Algorithm 

The initial belief 𝑏𝑒𝑙(𝑥0), as discussed in the Markov Localization in section 1.3 can 

be initialized in three forms based on the localization problem we maintain, and it 

represents the initial knowledge about the actual pose of the mobile robot. The standard 

MCL algorithm solves the global localization problem by introducing the uniform 

distribution over all possible legal states in the pose configuration space to represent 

the initial belief. However, in our proposed scheme, we can treat the global localization 

problem as a partial problem regarding the robot’s pose. Based only on the initial 



49 

 

LiDAR scan 𝑧1 collected in the immobile state at the initialization phase, the mobile 

robot gets knowledge about the features of its current place. Still, it cannot specify its 

pose precisely because of the uncertainty in the OGM map itself, symmetrical areas in 

the robot’s environment, and unnatural sensor noise. In this case, the initial belief can 

be represented by multi distributions (multi-modal belief). The uniform distribution is 

used to describe the belief in the expected areas while the density will be zero 

anywhere else. 

 

Figure 3.1. OGM with all possible poses over the pose configuration space. Black cells 

represent occupied areas, while the white cells represent free areas 

Each free grid cell in the OGM depicts the robot’s position coordinate (𝑥, 𝑦) with 

different orientations 𝜃, where (0 ≤ 𝜃 < 2𝜋) as illustrated in Figure 3.1 above, which 

means different hypothesis states in one grid cell. Given a map of the robot’s 

environment m and the initial perceptual data 𝑧1, the proposed algorithm searches for 

the poses with high likelihood within state space according to the observation model 

𝑝(𝑧𝑡 | 𝑥, 𝑚) discussed in the section 2.2.1 above and illustrated again in Equation 

(3.1) below. 

2
[ ]

1 1 hit 2
1 max

1
( | , )  .exp( )

2

b
s b

rand

b

d
p z x m w w

z=

 
= − + 

 
  (3.1) 



50 

 

The measurement probability calculations iterate over all possible hypothesis states 

𝑥[𝑠]. However, to reduce the computational effort, instead of searching the robot's 

configuration space over all grid cells, we skipped some cells on the map (i.e., in our 

case we skipped every 3 cells) resulting in a 15cm search resolution in x and y 

directions. Equivalently, 3 degrees resolution is adapted for the angle search space in 

each grid cell. Consequently, for a map of size 15m x 15m, 101x101x120 different 

pose values are evaluated. During this process, the robot should be in an immobile 

state. And as a result of these calculations, the proposed method will nominate only 

the first N high probability states to represent the initial belief as shown in Equation 

(3.2), where N indicates the number of samples employed to track the actual pose of 

the mobile robot. 

( )[1... ]

1 1 1max ( | , ) |s Nposes poses p z x m =
 

  (3.2) 

In this case, the generated samples can be drawn directly into the high likelihood 

regions within a map. Moreover, the suggested initial distribution as samples 

concentrated on a small portion of space with a high likelihood will reduce uncertainty 

at start-up. 

Now, once the mobile robot starts its motion, the MCL filter incorporates the proposed 

initial posterior with the motion model 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡). As a result, the odometry 

motion model discussed before in the section 2.1.1 will focus on the entire continuum 

of states concentrated around the expected robot’s pose. After only a few resampling 

steps, all the particles are expected to converge to the actual robot’s state. 

 Effective Resampling Strategy for Augmented MCL 

The probability of sensor data is measured given a particle’s pose and a known map 

𝑝(𝑧𝑡 | 𝑥𝑡
[𝑛]

, 𝑚). As discussed in section 2.2.1, the endpoints of sensor scans are 

projected into the global coordinate space of the given map. A likelihood value is 

computed for each ray in the scan, which is inversely proportional to its end point’s 

distance to nearest mapped obstacle point, as illustrated in Equation (2.17). Assuming 

independence, these probabilities are then multiplied to obtain the measurement 

probability for the scan as presented in Equation (2.18). When the mobile robot 



51 

 

encounters unmapped dynamic obstacles, the probabilities of individual rays that hit 

the dynamic obstacle will drop based on the distance between the dynamic obstacle 

and the closest mapped obstacles. The higher this distance, the lower the probabilities 

will be. When the probabilities drop, the robot will think that it is getting lost (although 

it is not) and random samples will be added to the sample set based on the divergence 

between fast and slow average weights to estimate the correct distribution accurately. 

However, the conventional resampling method draws these random samples over the 

pose configuration space without taking into account any prior knowledge about the 

last confident robot’s state. So, this might result in total randomization of the samples 

over the entire map region turning this temporary case into the global localization 

problem. Global localization problem requires thousands of samples, especially with 

large maps which increases the computational burden negatively affecting real-time 

performance. 

The proposed resampling strategy deals with the kidnapped robot problem that enables 

the robot to recover quickly when the sample weights drop-down due to unmapped 

dynamic obstacles within the sensor’s field of view. While the random samples are 

added to the sample set based on the divergence between fast and slow average 

weights, the proposed algorithm infers their poses in accordance with the uniform 

normal distribution over a specified area rather than drawing them over all possible 

poses on the map. Our proposed algorithm takes place when the filter diverges after it 

was in convergence mode. In this case, the mobile robot knows its last confident pose 

and can predict where it can reach as time progresses based on its maximum velocity, 

as shown in Equation (3.3) below. 𝑅 represents the predicted traveled distance by the 

robot from the last confident pose, 𝑣𝑚𝑎𝑥 denotes the maximum velocity of the robot, 

and 𝑡𝑒𝑙𝑎𝑝𝑠𝑒𝑑 is the elapsed time since the last time the robot was confident about its 

pose estimate. 

max  elapsedR v t=   (3.3) 

Thus, random samples will be confined to a circular region centered around the last 

filter convergence position by taking into account the prior knowledge about the most 

recent successful pose estimation, as shown in Figure 3.2 below. Since the random 



52 

 

samples are distributed over the region with high probabilities, it will take less time 

for the mobile robot to infer its accurate pose. 

 

Figure 3.2. The specified area around the last confident position (P) of two-

dimensional coordinates where random samples can be added. The second robot’s 

pose represents the unknown new pose after the filter gets diverged 

Table 3.1. Effective resampling technique that finds the desired certain region around 

the last robot’s confident pose 

1: Desired_Specified_Area_Algorithm (𝑚, 𝑃, 𝑣𝑚𝑎𝑥, 𝑡𝑙𝑎𝑠𝑡𝐶𝑜𝑛𝑣) 

  

2: 𝐴 = ∅ 

3: 𝑡𝑒𝑙𝑎𝑝𝑠𝑒𝑑 = 𝑡𝑟𝑒𝑎𝑙 − 𝑡𝑙𝑎𝑠𝑡𝐶𝑜𝑛𝑣 

4: 𝑅 = 𝑣𝑚𝑎𝑥 ∗ 𝑡𝑒𝑙𝑎𝑝𝑠𝑒𝑑 

5: for 𝑥 = 1 to length(𝑚(𝑥)) 

6: for 𝑦 = 1 to length(𝑆(𝑦)) 

7: if {[𝑚(𝑥) − 𝑃(𝑥)]2 + [𝑚(𝑦) − 𝑃(𝑦)]2} ≤ 𝑅2 

8: add 〈𝑥, 𝑦〉 to 𝐴 

9: endif 
10: endfor 

11: endfor 

12: return 𝐴 

  

 



53 

 

Table 3.1 shown above describes the proposed resampling algorithm utilized to 

determine the exact certain area within the pose configuration space (𝑚) where the 

robot might be. The Radius (𝑅) of the desired region where the random samples will 

be added depends on the elapsed time from the last filter convergence position to the 

current robot’s position (line 4), where 𝑡𝑟𝑒𝑎𝑙 is the current real-time, and 𝑡𝑙𝑎𝑠𝑡𝐶𝑜𝑛𝑣 is 

the real-time at the last filter convergence position. The desired certain area increases 

as time increase. The algorithm checks all possible positions from the pose space to 

judge if the position will be included in the desired region (line 7). In line 8, the 

algorithm adds the correct position to the specified area (𝐴) which contains a set of 

two-dimensional poses. 

The proposed approach also takes into account the measurement probability to adjust 

the desired area. The desired region gradually increases as the probabilities continue 

to the dropdown. If the localization performance keeps down, the samples will be 

totally randomized over the pose configuration space. Finally, the problem turns again 

to be a global localization problem. Through this approach, fewer samples will be 

enough to re-infer the true belief of the mobile robot’s state. Therefore, the real-time 

performance of the algorithm will increase in terms of decreasing the computational 

burden. Besides, since the samples are distributed over a specified region with high 

probabilities, the samples will take less time to converge to the actual robot’s pose. 

 



54 

 

 SIMULATION SET-UP AND RESULTS 

This chapter demonstrates the simulation results we conducted for all of the algorithms 

previously explained in chapter 2 utilized to achieve the augmented MCL filter and 

outlines the simulation results and some analysis for evaluating the efficacy of our 

proposed methodologies, which are described in chapter 3. Besides, we presented a 

fair comparison between our proposed schemes and the conventional approaches for 

augmented MCL when applied to solve robot positioning problems in terms of sample 

set size, traveled distance, and time required for the robot to localize itself in its world.  

The conducted experiments were performed in a simulated robot environment. 

MATLAB software is widely used for scientific research approaches and utilized in 

this thesis to design, analyze, and evaluate the proposed schemes. Besides, we wrote 

and tested the presented standard augmented MCL algorithm in MATLAB software. 

All tests were examined on a Laptop with 2.53 GHz (4 CPUs). 

Section 4.1 presents the implementation details to perform pose estimation in a 

simulated environment based on the augmented MCL method. We discussed how we 

generate our robot’s environments (OGM maps). Moreover, the Bresenham line 

algorithm [47] that is used to simulate ray tracing, which provides range data for the 

sensor model has been explained. Also, we have made clear the method we utilized to 

make the results more authentic. Section 4.2 provides the results and discussions for 

the models of standard augmented MCL, such as the odometry motion model and the 

likelihood measurement model. Besides, we discussed the term convergence to judge 

the localization performance of the mobile robot. Also, we discussed the results of the 

resampling phase in MCL. In section 4.3, we presented the results of our proposed 

schemes compared to the conventional methods of augmented MCL. Also, the results 

obtained will be discussed in parallel.



55 

 

 Implementation Details 

The goal of the augmented MCL algorithm presented in Table 2.5 is to localize the 

differential drive mobile robot outfitted with incremental encoders and LiDAR sensor 

in its pre-mapped world. In this section, we will discuss the essential simulation parts 

needed to implement our proposed algorithms. 

 Occupancy grid map 

2D binary OGM map utilized to describe and visualize the mobile robot’s 

environment, as well as obstacles. We simulated different indoor OGM maps of 

different sizes. First, we drew the indoor environments using 2D AutoCAD software 

and then converted them to 2D binary OGM using MATLAB software. Figure 4.1 

depicts our prepared OGM environments. Different maps of different sizes enable us 

to evaluate the performance of our proposed approaches. 

(a) 

 

(b) 

 

(c) (d) 

  

Figure 4.1. OGM indoor environments. The resolution for each is 5cm per cell. (a) 

simple map, (b) symmetric map, (c) factory map, (d) maze map 



56 

 

All the prepared OGM maps come with 20 cells per meter resolution. The simple map 

is a small and simple environment, while the symmetric environment contains a 

hallway with somewhat symmetric places in the right and left sides. Figure 4.1 (c) and 

(d) represent a factory and maze maps, respectively. The mobile robot can be randomly 

placed in any possible pose over the state space, and then it is tele-operated within the 

free spaces. Since we have clean binary maps, we will check for the free and occupied 

locations over the OGM map based on the cell value as shown in the Formula (4.1) 

below, where the cell’s occupancy status is determined. 

1, occupied
cell _ value

0, free


= 


  (4.1) 

 LiDAR data simulation 

LiDAR is a distance sensor that provides the distance information from the target to 

the obstacle within the maximum sensor range. Simulated LiDAR data employed to 

detect obstacles in the robot’s workspace, and it collects data ranges at given angle 

intervals. The Aperture angle of the laser sensor is 270° with 1°  angle resolution, so 

the maximum number of rays we have is 271 beams. The Bresenham line-drawing 

algorithm [47]  used to visualize the laser rays, and it provides accurate LiDAR data 

for the measurement model. This algorithm draws a straight line connecting two grid 

cells (the one occupied by the LiDAR sensor, while the other cell occupied by a scan 

endpoint) on an OGM map by determining all 2D coordinates of the discrete cells that 

should be chosen to build a reasonable approximation to the laser ray. 

Other algorithms, such as the Digital Difference Analyzer (DDA) algorithm used to 

draw a straight line in a picture grid or display [48]. However, DDA algorithm uses 

float values in its calculations, and to be able to represent the integer number of the 

pixel, it rounds off the float number which ends with alias line. Besides, the processing 

time for float values is more than the time taken for integers. Another professional 

algorithm is Wu’s algorithm that addresses the anti-aliasing technique and is used 

today in computer graphics [49]. However, Wu’s algorithm still slower than the 

Bresenham algorithm. The simplicity and speed of the Bresenham algorithm 

demonstrate its importance. The error in the Bresenham algorithm is incremental. 



57 

 

The following formulas are used to draw any straight line. 

y mx c= +   (4.2) 

2 1
1 1

2 1

( )
( )

( )

y y
y y x x

x x

−
− = −

−
  (4.3) 

1
x y

a b
+ =   (4.4) 

In Equation (4.2),  𝑐 is a constant number that holds the value of y when the line 

intersects the y-axis, 𝑚 is the gradient or the slope of the line. In Equation (4.4), 𝑎 and 

𝑏 represent the values when the line intersects x-axis and y-axis, respectively. 

In computer graphics, the vector Equation (4.2) is used in the rasterization process. 

The conversion process of a line from vector form 𝑦 = 𝑚𝑥 + 𝑐 to pixels (𝑥, 𝑦) is called 

rasterizing [50] as illustrated in Figure 4.2 below. 

 
(a) (b) 

Figure 4.2. Line Representation. (a) vector representation in world frame, (b) raster 

representation in grid 

The goal of the Bresenham algorithm is to find the pixels in the grid that gives a good 

approximation for the vector line. If the slope is one, then it’s simple to select all 

diagonal pixels to represent our line, where the value of x equals the value of y. 

However, sometimes the ray has a positive slope (𝑚 > 1), and at other times a negative 

slope (𝑚 < 1). To imagine this problem, suppose there is a gap between pixels, and 

the line passes through that gap whether the slope is positive or negative as depicted 



58 

 

in Figure 4.3 below. Our suggestion take place in the global frame, after that we can 

map points into the grid.  

 
(a) (b) 

Figure 4.3. (a) Positive slope, (b) negative slope 

Figure 4.3 (a) illustrates the problem when the line has a positive slope. In this case, 

the next point in the y-axis will be incremented, while in the x-axis, we do not know 

whether we should increment the value of x or keep the previous value in order to 

represent a smooth line. In analogy with the positive slope, if the line has a negative 

slope as shown in Figure 4.3 (b), the next point in the x-axis will be incremented. 

However, in order to get a smooth line should we select the next pixel in the y-axis or 

keep the previous value for y. 

So, in the case of a positive slope, we should sample y value: 

1

( 1)

1

next k

k

next

k

y y

m x
x

x

= +


  
=  +

  (4.5) 

Contrariwise, in the case of negative slope, we should sample x value: 

1

( 1)

1

next k

k

next

k

x x

m y
y

y

= +


  
=  +

  (4.6) 

The decision in these cases will depend on the distance between the next pixel and the 

nearest point (𝑥, 𝑦) on the line. First, let us take the case of a negative slope described 



59 

 

in Formula (4.6). Based on the difference between the distances we can decide which 

pixel should be selected as shown in the next formula. 

1 2

1 2

, 0

1, 0

k

next

k

y d d
y

y d d

− 
= 

+ − 
  (4.7) 

Equation (4.8) and (4.9) find the value of each distance. 

1

( 1)

k

k k

d y y

m x c y

= −

= + + −
  (4.8) 

2 ( 1)

( 1) ( 1)

k

k k

d y y

y m x c

= + −

= + − + −
  (4.9) 

Now, Equation (4.10) calculates for the error (𝑑1 − 𝑑2). 

   1 2 ( 1) ( 1) ( 1)

       2 ( 1) 2 2 1

k k k k k

k k

d d m x c y y m x c

m x y c

− = + + − − + − + −

= + − + −
 (4.10) 

Since the slope (𝑚 =
∆𝑦

∆𝑥⁄ ), multiply the left and right terms by ∆𝑥 to avoid float 

numbers. 

( )

   
1 2 2 ( 1) 2 2 1

              2 2 2 2

k k

k k

x d d y x y c

yx xy y c x x

 − =  + − + −

=  −  +  +  −
 (4.11) 

∆𝑥(𝑑1 − 𝑑2) is called the decision parameter and denoted by the symbol 𝑃𝑘. The 

second term on the right side is constant and can be normalized as we calculate for all 

pixels. 

 2 2k k kP yx xy=  −    (4.12) 

However, every time we increase the x value, we should make a decision. The decision 

for the next pixel is shown in the following Equation (4.13). 

 2 2next next nextP yx xy=  −    (4.13) 



60 

 

Now, subtract Equation (4.13) from (4.12) to see how much decision variable changes 

every time. 

   

( ) ( )

2 2 2 2

          2 2

next k next next k k

next k next k

P P yx xy yx xy

y x x x y y

− =  −  −  − 

=  − −  −
 (4.14) 

Here, based on the value of the current decision parameter 𝑃𝑘 = ∆𝑥(𝑑1 − 𝑑2) there 

are two scenarios for the next decision: 

• if (𝑃𝑘 < 0), then no change in decision (𝑦𝑛𝑒𝑥𝑡 = 𝑦𝑘), and: 

( ) ( )2 1 2

  2

next k k k k k

k

P P y x x x y y

P y

= +  + − −  −

= + 
  (4.15) 

• if (𝑃𝑘 ≥ 0), then there is a change in the decision (𝑦𝑛𝑒𝑥𝑡 = 𝑦𝑘 + 1), and: 

( ) ( )2 1 2 1

  2 2

next k k k k k

k

P P y x x x y y

P y x

= +  + − −  + −

= +  − 
 (4.16) 

As we note from the Equation (4.15) and (4.16), the next decision relies on the previous 

decision. So, in order to compute the initial value for the decision parameter go back 

to Equation (4.11) and substitute the value of parameter c from Equation (4.2). The 

initial value for the decision parameter shown in the Equation (4.17) below. 

   2 2 2 2 2

2

k k k k kP yx xy y xy yx x

y x

=  −  +  +  −  −

=  −
 (4.17) 

The second case is when the slope is positive. Here, we sample y value.  If we follow 

the same procedure as for the negative slope, then we can get the same two scenarios 

for the next decision parameter based on the value of the current decision parameter 

𝑃𝑘 = ∆𝑥(𝑑1 − 𝑑2): 

• if (𝑃𝑘 < 0), then no change in decision (𝑥𝑛𝑒𝑥𝑡 = 𝑥𝑘), and 

2next kP P x= +    (4.18) 

 



61 

 

• if (𝑃𝑘 ≥ 0), then there is a change in the decision (𝑥𝑛𝑒𝑥𝑡 = 𝑥𝑘 + 1), and 

2 2next kP P x y= +  −    (4.19) 

The basic ray tracing algorithm that summarizes all the above equations is mentioned 

in Appendix A. Bresenham algorithm is effective concerning execution speed and 

memory use. 

The following Table 4.1 below describes the LiDAR model which utilized to simulate 

the rays. Map, actual current robot’s pose, sensor’s pose relative to the mobile robot, 

maximum sensor range, and all ray angles provided to the algorithm as inputs. The 

algorithm returns the 2D coordinates of the endpoints of the rays that hit obstacles or 

return the 2D coordinates of the endpoints of the maximum range in the absence of 

obstacles. 

Table 4.1. LiDAR data simulation algorithm 

1: LiDAR_Model_Algorithm (𝑚, 𝑥𝑡,𝑎𝑐𝑡𝑢𝑎𝑙 , 𝑥𝑠𝑒𝑛𝑠𝑜𝑟 , 𝑧𝑚𝑎𝑥, 𝜃𝑒𝑝) 

2: 𝑋𝑒𝑝 = 𝑌𝑒𝑝 = ∅ 

3: 𝑥𝑠 = 𝑥𝑡 + 𝑥𝑠𝑒𝑛𝑠 𝑐𝑜𝑠 𝜃 − 𝑦𝑠𝑒𝑛𝑠 𝑠𝑖𝑛 𝜃 

4: 𝑦𝑠 = 𝑦𝑡 + 𝑥𝑠𝑒𝑛𝑠 𝑠𝑖𝑛 𝜃 + 𝑦𝑠𝑒𝑛𝑠 𝑐𝑜𝑠 𝜃 

5: for all 𝑏 do 

6: 𝑥𝑒𝑝
𝑏 = 𝑥𝑠 + 𝑧𝑚𝑎𝑥 𝑐𝑜𝑠(𝜃 + 𝜃𝑠𝑒𝑛𝑠 + 𝜃𝑒𝑝) 

7: 𝑦𝑒𝑝
𝑏 = 𝑦𝑠 + 𝑧𝑚𝑎𝑥  𝑠𝑖𝑛(𝜃 + 𝜃𝑠𝑒𝑛𝑠 + 𝜃𝑒𝑝) 

8: (𝑋, 𝑌)  = Ray_Tracing_Algorithm (𝑥𝑠, 𝑦𝑠, 𝑥𝑒𝑝
𝑏 , 𝑦𝑒𝑝

𝑏 ) 

9: for all 𝑋 
10: If  𝑚(𝑦, 𝑥) = 1 

11: add endpoint (𝑥, 𝑦)  to  (𝑋𝑒𝑝, 𝑌𝑒𝑝) 

12: break 

13: endif 

14: endfor 

15: return [𝑋𝑒𝑝, 𝑌𝑒𝑝] 

 

 Robot trajectory 

Our differential mobile robot can be randomly placed in any possible pose over the 

working space. Then the user can tele-operate the robot within the free space over the 

map. Continuously the augmented MCL algorithm tries to localize the mobile robot in 



62 

 

its environment map. However, to make a fair comparison between the conventional 

methods of augmented MCL and our proposed schemes, we enabled the robot to 

follow the same pre-defined path under the same environment features. First, over the 

same map, we created a standard robot trajectory by controlling the robot remotely, 

and then we performed our tests using these trajectories, such as one shown in the 

following Figure 4.4 below. 

 

Figure 4.4. Predefined trajectory for the comparison purpose over the factory map. 

According to the Robot forward kinematics model discussed in section 2.1.2 the robot 

is driven by independent rotational and translational velocities controlled by the user. 

The output of the forward kinematics is the 2D coordinates of the robot’s position and 

heading direction. In the first time, the user will drive the robot by controlling its 

rotational and translational velocities, our algorithm will save these inputs 

continuously. Later in the comparison step, the algorithm will be allowed to use the 

memorized values of velocities to control the movement of the robot. 

 MCL phases 

This section provides the results and discussions of the Odometry motion model and 

the Likelihood field range finder model that explained above in section 2.1.1 and 2.2.1, 



63 

 

respectively. Besides, we discuss the term convergence to judge the localization 

performance of the mobile robot. Finally, we will provide results for the resampling 

technique, and these results will be discussed. 

 Odometry motion model 

Map-free odometry motion model illustrated in Table 2.2 is utilized to calculate the 

motion of the mobile robot over time. Odometry motion model generates random 

samples from the state transition probability 𝑝(𝑥𝑡 | 𝑥𝑡−1, 𝑢𝑡). We represented 

odometry information by a sequence of three free noise parameters, initial rotation 

𝛿𝑟𝑜𝑡1 followed by translation 𝛿𝑡𝑟𝑎𝑛𝑠, and finally, the second rotation 𝛿𝑟𝑜𝑡2. Formula 

(2.3) demonstrates the noise modeling for the odometry information, where the 

measured motion is given by the actual motion corrupted with noise. However, noise 

samples generated from Gaussian normal distribution with zero mean and variance 𝜎2 

by using the closed-form principle given in Equation (1.13). 

  
            (a)            (b) 

 
(c) 

Figure 4.5. Generating 700 samples from the odometry motion model at different noise 

motion parameters 



64 

 

Figure 4.5 above, depicts a sampling of 700 samples based on the designed odometry 

motion model when the robot changes its pose from [0m, 0m, 0rad] to 

[0.3m, 0.25m,
pi

3
rad]. These samples were generated by using different values of 

robot specific error parameters 𝛼. Figure 4.5 (a) denotes a high noise in translation, 

Figure 4.5 (b) shows a high noise in rotation, while Figure 4.5 (c) demonstrates the 

typical noise parameters. Motion noise parameters model the accuracy of the robot 

motion. These parameters are larger in cases when the robot is less accurate. In our 

thesis, the typical values for motion noise parameters were 0.2 for each. 

 Likelihood field range finder model 

Our observation likelihood model uses the simulated LiDAR data discussed in the 

previous section to perceive the robot’s environment. First and foremost, to increase 

the real-time performance of the observation model we pre-computed the likelihood 

in the form of a two-dimensional table. The results of the precomputation process 

discussed in Equation (2.17) are shown in Figure 4.6 below where we transformed the 

OGM map of the robot’s environment to the likelihood field. As we see in the figure 

below, the likelihood value is one at the obstacles where the distance transform has a 

zero value, while going to the darker locations means that an obstacle is unlikely to be 

perceived there and the distance transform increases. The following Figure 4.6 from 

(b) to (c) depicts the likelihood field of the simple map at different values of 

measurement noise. The typical value of the measurement noise we have considered 

is 0.2 meters as illustrated in Figure 4.6 (b). Figure 4.6 (c) describes the likelihood 

field at a very small value for the measurement noise and it appears as if we neglect 

the noise in measurement data. However, Figure 4.6 (d) represents the likelihood field 

with high measurement noise that may affect adversely the results of the measurement 

model. 

The likelihood model computes a likelihood for each scan endpoint independently, 

then multiply these values to obtain the measurement probability for the current scan 

as described in Table 2.3 (line 8). Therefore, we have to handle the large distance 

transform of the individual beam that leads to a likelihood value close to zero which 

in turn makes the measurement probability zero. We defined the maximum distance to 

find nearest obstacles on the map to be two meters, this distance prevents the likelihood 



65 

 

of one ray to be zero at very long distance transform, then avoid the overall weight of 

the sample to be zero through multiplication process described in Equation (2.18). On 

the other side, we can improve the performance speed of the likelihood filed model by 

decreasing the number of rays included in the likelihood calculations. By skipping 

some rays, we reduced memory use, increased the real-time performance in terms of 

decreasing the execution time, also we prevented the total weight to be zero when 

multiplying very small fractional numbers of likelihood values. 

 

 

 

 

(a) (b) 

  
(c) (d) 

Figure 4.6. (a) OGM simple map, (b)-(d) likelihood field of the map with a standard 

deviation: (b) 𝜎 = 0.2m, (c) 𝜎 = 0.05m, (d) 𝜎 = 0.5m 

In global localization, the samples are randomly distributed over the robot’s working 

space. The weight of all samples before the correction step is equal. Figure 4.7  below, 

depicts the scan rays after skipping some of them and shows five samples generated 

normally across the predicted robot’s space. The likelihood field model just uses the 



66 

 

scan endpoints to check for the obstacles. The key idea is to match the most recent 

laser scan with the pre-mapped environment via the likelihood field. The current 

perception is applied to each hypothesis state and then we read the likelihood value of 

each endpoint from the likelihood table that computed beforehand. 

 

Figure 4.7. Scan rays emitted from the actual sensor’s pose. 

The randomly generated samples appear in green color 

Figure 4.8 below, demonstrates the likelihood approach for calculating the weight of 

the samples. Figure 4.8 (a) shows the actual robot’s pose in blue and scan endpoints in 

red. Figures (b) to (f) represent the colored likelihood filed of the simple map and 

describe how the algorithm applies the current perception on each hypothesis state. 

Figure 4.8 (b) shows the perception data when applied to one sample that has the same 

state as the actual robot’s state, we can note that the LiDAR data completely match the 

map. Thus, the likelihood of each endpoint will be high, and the weight of the 

corresponding sample will also be high. However, the scan endpoints shown in Figures 

(c) to (f) do not match the map, and the weight of each sample here will be different 

according to the number of rays hitting the obstacle. Special cases in Figure (c) and 

(d) where there are some endpoints off the map, such cases, we assumed the minimum 

likelihood value to handle the scan endpoints that occur outside the map. 



67 

 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 4.8. (a) actual robot’s pose with the scan endpoints. figures (b)-(f) likelihood 

field of the simple map, also show how the scan applied on hypothesis states in green 



68 

 

In the updating phase, the weight of the samples will be updated according to the 

sensor measurements (to what degree the scan matches the map). Therefore, the sum 

of the weights after the correction will not be equal to one. PDF of the multivariate 

normal distribution is evaluated based on the updated importance factors for the 

samples. Uncertainty was explicitly modeled in the observation model. 

 Pose estimation 

After assigning the weight of the samples based on the observation model, the MCL 

filter tries to estimate the robot’s pose. The updated weights describe the probability 

of a sample to match the actual robot’s pose. One way to infer the robot’s pose is to 

take the sample with the maximum weight (best sample) as the estimated pose. 

However, by taking into account the error in each hypothesis state we consider all the 

samples around 0.50 meters of the best sample then we apply Equations (2.27) to 

(2.31) on these hypothesis states to compute the estimated pose. 

The convergence term means that all hypothesis states are sufficiently close to each 

other. MCL filter convergence is achieved if 90% of samples are one meter close to 

the best sample. In the simulation environment, convergence quality is measured by 

checking the distance between the best sample and the actual robot’s pose. However, 

in real life, we judge the quality of convergence based on the match ratio between the 

actual and emitted rays by the imaginative sensor installed on the best sample. If the 

filter is converged and the quality of convergence is greater than 90% then we postulate 

that the mobile robot has successfully localized itself in its indoor environment. 

Figure 4.9 (a) below, illustrates the normal distribution of 15,000 samples of equal 

weight over the robot’s state space within the factory map. The convergence quality is 

approximately zero where the scan measurement does not match the map (the best 

sample’s state does not match the actual robot’s pose). However, after two update 

iterations, the weight of samples change under the likelihood model and the best 

sample is inferred near the robot’s pose as shown in Figure 4.9 (b). The match ratio 

was 90%. 



69 

 

 

(a) 

 

(b) 

Figure 4.9. Global Localization problem. The mobile robot appears in blue, while the 

scan in red. (a) 15,000 particles (dark green) were distributed uniformly over the 

working space of the factory map. (b) Robot’s pose is estimated (light green) after 

two corrections 



70 

 

 Resampling phase 

 

(a) 

 

(b) 

Figure 4.10. Resampling phase. (a) after the first iteration of resampling, (b) after the 

third iteration of resampling 

The weight of the samples was initialized by one and then corrected multiplicatively 

under the likelihood observation model. Since the number of samples is limited, each 

sample will survive based on its importance weight. After two update iterations, the 



71 

 

resampling phase takes place to concentrate the computational burden of the MCL 

filter on the high-likelihood regions in the state space. 

As discussed before in section 2.4.2 we have two different directions to do resampling 

based on the ratio between fast and slow average weight of the likelihood observation 

model. On the first side when the short-term average is better than the long-term 

average, low-weight samples will inherit the pose of high-weight samples (samples are 

inferred by replacement). Figure 4.10 above shows the continuation of the pose 

estimation process that started in Figure 4.9, where Figure 4.10 (a) shows how some 

of the low weight samples inherit the pose of high weight samples after one resampling 

iteration. However, some low weight samples survived by the stochastic resampling 

method, and this will help overcome disturbances. The localization performance in this 

step was 93%. Figure 4.10 (b) depicts how all samples converged to the robot’s pose 

(high likelihood region) after three resampling iterations. The convergence quality was 

97%. 

However, a sudden descent in the short-term average value compared to the long term 

average signposts a decrease in the localization efficiency, and the resampling 

algorithm discussed in Table 2.5 will try to add random samples that are proportional 

to the amount of decrease in the performance of localization to envisage other poses. 

During the mission, the mobile robot may be kidnapped or the localization may fail 

due to a drop in probabilities. The following Figure 4.11 illustrates the reaction of the 

filter when the robot encounters dynamic obstacles for a couple of seconds, where the 

probabilities dropped down and the localization performance was 32%. MCL filter 

adds random samples according to the uniform distribution all over the state space as 

illustrated in Figure 4.11 (a). The number of generated samples was based on the 

divergence between long-term and short-term averages of the observation model. After 

5 resampling iterations, the mobile robot successfully localizes itself on the map as 

shown in Figure 4.11 (b), the quality of convergence was 93%. 

Again, after each resampling iteration, the weights of all samples sum up to one. 

Resampling transforms a set of samples into another collection of the same sized 

samples. The resampling of samples should be stopped when the mobile robot stops 

moving. 



72 

 

 

(a) 

 

(b) 

Figure 4.11. Resampling based on augmented MCL. (a) scattering random samples as 

a result of localization failure, (b) robot successfully localize itself again after 5 

iterations of resampling 

However, determining the appropriate frequency to sample is a matter of experience. 

High frequency is likely to result in loss of diversity, while low frequency results in 

loss of samples in a low likelihood states. The estimator variance or loss of diversity 



73 

 

is demonstrated in the sample distribution as an approximation error. Our MCL 

algorithm sample when the mobile robot moves at least linear distance 20 cm or rotates 

30 degrees since the robot can localize itself based on the odometry reading when it 

moves small movements, and resample the particles every two update iterations. 

 Proposed Schemes 

This section outlines the simulation results and analyses for evaluating the efficacy of 

our proposed schemes compared to the conventional approaches of augmented MCL. 

A fair comparison is conducted on the basis of the number of samples needed to solve 

the global localization problem, to recover the robot in localization failures, and to 

recover the kidnapped robot. Besides, this comparison is done in terms of traveled 

distance, and the time required for the robot to localize itself in its world. First, we 

presented the results and analysis of the optimized global localization technique that 

detects mapped regions with high probabilities only based on the initial scan data. 

Second, we outlined the results of our effective resampling strategy that deals with the 

kidnapped robot problem and enables the robot to recover quickly when the sample 

weights drop-down due to unmapped dynamic obstacles within the sensor’s field of 

view. Both of these novel methodologies have the potential to significantly reduce 

uncertainty in the global indoor localization problem. 

Our differential mobile robot has a maximum linear velocity of 0.5 meters per second. 

For each sample set (10k, 5k, 1k, 500 samples), the localization algorithm was 

executed 30 times over each prepared OGM map. After that, we took the average 

results for these executions. As we discussed above, each sample drawn with the 

odometry motion model will be updated twice before resampling it. 

 Improved global localization 

Our optimized technique relies only on the initial LiDAR scan 𝑧1 gathered in the 

immobile state at the initialization phase. In this case, the mobile robot gets knowledge 

about the features of its current region while it has no prior knowledge of its current 

initial state. The proposed algorithm begins estimating the best sample distribution 

based on the initial perceptual data using the observation model. When getting this 

estimation, the available samples will spread over the high likely areas with high  



74 

 

(a)  

(b)  

(c)  

Figure 4.12. Maze map. (a) The logarithmic scale of grid cells probability. (b) and 

(c) represent distributing 10k and 500 samples over the areas with the highest 

probabilities while the mobile robot still in the immobile state 



75 

 

measurement probabilities, starting from the highest probability until all samples are 

distributed.  

By applying the likelihood model on each grid cell with different orientations as 

discussed in section 3.2, the robot gets the information about how the measurement 

probabilities carried on the pose configuration space with respect to its current pose as 

illustrated in Figure 4.12 (a) above. While the mobile robot randomly placed on the 

maze map, the algorithm shows that the region around the mobile robot has the highest 

probabilities. However, it keeps also some far-away regions with high probabilities to 

prevent any localization failures due to unnatural sensor noise. 

Figure 4.12 (b) and (c) above represent the scattering of 10k and 500 samples 

according to the uniform normal distribution over the pose space, respectively. As we 

see, even with a few numbers of samples, the proposed technique achieved a precise 

initial distribution that represents the initial belief. We utilized the uniform distribution 

to describe the belief in the expected areas while the density is zero anywhere else. 

However, we reduced the computational burden by searching the robot's pose every 3 

cells, resulting in a 15cm search resolution in x and y directions. Equivalently, 3 

degrees resolution is adapted for the angle search space in each grid cell. Thus, for a 

map of size 15m x 15m, 101x101x120 different pose values are evaluated. 

Since the pose estimation is done after the update phase, we tried in Figure 4.12 (b) 

and (c) to estimate the mobile robot’s pose based on the sample with the maximum 

weight. The actual pose for the robot was [4.20m 8.66m 45degrees], we noticed that 

the initial robot’s state that matches the map achieved precisely by our proposed 

technique. 

Once the robot makes a simple movement, the filter that uses our proposed method 

converges to the actual robot’s state faster than the traditional approach, as shown in 

Figure 4.13 below. In the proposed algorithm, there are many high probability samples 

near the true robot’s pose, so, after one iteration of the resampling process, all samples 

with low probabilities converge to the true pose. By employing the proposed method, 

the mobile robot successfully localized itself in the global environment for the two 

sample sets (10k & 500 samples) in record time, while the traveled distance was 

(0.41m & 0.26m), respectively. Since the computational time for small sample sets is 



76 

 

faster than the larger sets, they survive faster and maintains high performance during 

missions. But this is not applicable at all for the conventional approach, since at the 

global localization, samples are scattered randomly over the pose space, and they need 

time to catch the high likelihood region. The two sample sets (10k & 1k samples) that 

used the conventional method were able to locate the robot in its environment after 

traveling a distance of 4.34m and 15.15m, respectively. 

 

Figure 4.13. The ratio of successful confident during the global localization problem 

of the proposed and traditional method on the maze map 

However, in the traditional approach that illustrated in Figure 4.13, the sample set (500 

samples) failed to locate the robot within 60 seconds in the maze map, since this type 

of maps includes a lot of similar areas. Contrariwise, the same sample set (500 

samples) was able to locate the mobile robot in the simple map after the robot traveled 

7.34 meters as shown in Figure 4.14 below, since this map is small and simple. 



77 

 

 

Figure 4.14. The ratio of successful confident during the global localization problem 

of the proposed and traditional method on the simple map 

 Improved resampling scheme 

The crux of our proposed algorithm is how the robot behaves when losing its 

convergence during tasks. Since the mobile robot locates itself reliably in the 

environment using our proposed global localization algorithm illustrated above, the 

filter may lose the convergence when the robot encounters unmapped dynamic 

obstacles like humans or due to sensors noise or whatever that causes dropping in 

probabilities. In this case, the augmented MCL will add random samples to the sample 

set based on the divergence between fast and slow average weights. However, the 

proposed resampling technique infers the poses of random samples under the uniform 

normal distribution over a specified area rather than drawing them over all possible 

poses on the map as the traditional MCL does. 

Figure 4.15 below, illustrates how our proposed resampling method compared to the 

traditional resampling approach behaves when the mobile robot runs across unmapped 

dynamic objects. 



78 

 

  

(a) (b) 

  

(c) (d) 

Figure 4.15. The robot is trying to recover itself on the symmetric map after losing its 

convergence due to two dynamic objects. (a) the response of the resampling algorithm 

of the conventional stochastic MCL. (b)-(d) the response of our improved resampling 

strategy 

As the measurement probabilities drop-down, the robot will think that it is getting lost 

(although it is not) and random samples will be added to the sample set based on the 

divergence between fast and slow average weights to estimate the correct distribution 

accurately. Figure 4.15 (a) illustrates how the classical MCL distributes the samples 

over the robot’s state space without taking into account any prior knowledge about the 

last confident robot’s state. However, Figure 4.15 (b), (c), and (d) depict the response 

of our resampling method at the same criteria. Figure 4.15 (b) demonstrates how the 

improved resampling strategy restricts the region to add samples to a circular region 

around the last successful estimation based on the maximum velocity of the mobile 

robot. The area of the selected region where the robot has a chance to locate itself there 

increases over time if the robot still cannot recover itself as shown in Figure 4.15 (c). 



79 

 

As a result of this technique, our robot has a great opportunity to estimate its pose 

promptly once the impact of the dynamic obstacles is gone as depicted in Figure 4.15 

(d). 

 

Figure 4.16. The proposed and conventional resampling scheme responses when the 

probabilities drop down due to disturbances on the symmetric map 

The new approach guarantees to resample any high probability samples to a certain 

area around the robot’s pose rather than publishing them randomly over the robot’s 

working space. In this way, the probability of the robot recovering itself in record time 

is very high and the distance traveled by the robot when it loses itself will be very short 

compared to the classical approach as shown in Figure 4.16 above. Figure 4.16 

compares the responses of the proposed and conventional resampling schemes 

discussed in Figure 4.15; the robot performs its mission at maximum velocity. After 

10 seconds, the robot encounters two unmapped dynamic objects that cause a drop in 

probabilities for three seconds. The proposed approach recovered the robot directly 

when the effect of the dynamic objects disappeared. In this case, the distance traveled 

by the robot around one meter for two tested sample sets (10k & 500 samples). As we 

see, even a small sample set (500 samples) recovered the robot very efficiently. 



80 

 

Under the same criteria, the conventional method recovered the robot after 4.37 meters 

in 9.77 seconds for 10k samples and around 7.47 meters in 14.09 seconds for 1k 

samples as illustrated in Figure 4.16. Also, we noticed that when the size of the sample 

set decreases the filter needs more time for recovering as the samples spread over the 

pose space, where the small sample set needs time to catch the high probability area. 

Again, the sample set (500 samples) failed to locate the robot within 60 seconds in this 

map, since it contains symmetric regions. Note, regarding fast converging for the 

classical approach at initialization that shown in the figure above, instead of using 

global localization we used the local distribution method to publish all samples around 

the robot pose in order to speed up the convergence process at a start-up where we 

were not interested in this test. 

By utilizing the proposed approach, fewer samples will be enough to re-infer the true 

belief of the mobile robot’s state. Therefore, the real-time performance of the 

algorithm will increase in terms of decreasing the computational burden. Besides, 

since the samples are distributed over a specified region with high probabilities, the 

samples will take less time to converge to the actual robot’s state. 

Table 4.2 through Table 4.5 below summarizes the results for our proposed approaches 

compared to the conventional methods regarding the global localization and 

resampling schemes over different environments by employing different sample sets 

(10k, 5k, and 500 samples). We noticed that our proposed approaches showed 

significant improvement in terms of time and distance traveled by the robot until 

successfully localize itself, either at global localization or even when it loses itself 

during missions. The small sample set (500 samples) showed very efficient results 

where the percentage of improvement exceeded 90% over the large maps and played 

a big role in reducing computational resources. On the other hand, the percentage of 

improvement over the simple map was less than 75% and in other cases less than 50%, 

this is a result of the map’s simplicity and its small size. However, the results of the 

proposed resampling strategy show an increase in time and distance as the sample set 

size decreases, this is because when the specified area increases the large sample set is 

able to cover that area better than small sample set, which means there are many 

samples will be around robot’s pose. But this is solved by AMCL, where it can adapt 

the number of samples when the robot loses its pose. 



81 

 

Table 4.2. Symmetric map results [35m X 26m] 

 
 Conventional approach Proposed approach 

 
Global 

Localization 
Resampling 

Global 

Localization 
% Resampling % 

10k 
[sec.] 5.529 9.771 1.152 79.16 1.886 80.70 

[m] 2.16 4.37 0.37 82.87 0.92 78.95 

5k 
[sec.] 8.590 15.010 0.993 88.44 2.069 86.22 

[m] 3.39 6.64 0.33 90.27 0.94 85.84 

500 
[sec.] >60 >60 0.833 98.61 3.035 94.94 

[m] >25 >25 0.24 99.04 1.34 94.64 

 

Table 4.3. Factory map results [42m X 26m] 

 
 Conventional approach Proposed approach 

 
Global 

Localization 
Resampling 

Global 

Localization 
% Resampling % 

10k 
[sec.] 4.503 9.712 1.539 65.82 3.510 63.86 

[m] 1.71 4.08 0.52 69.59 1.46 64.22 

5k 
[sec.] 6.992 15.310 1.120 83.98 3.597 76.51 

[m] 2.62 6.36 0.38 85.50 1.51 76.26 

500 
[sec.] >60 >60 0.855 98.58 5.110 91.48 

[m] >25 >25 0.25 99.00 2.12 91.52 

 

Table 4.4. Maze map results [33m X 24m] 

 
 Conventional approach Proposed approach 

 
Global 

Localization 
Resampling 

Global 

Localization 
% Resampling % 

10k 
[sec.] 10.263 9.027 0.997 90.29 2.318 74.32 

[m] 4.07 5.23 0.33 91.89 1.68 67.88 

5k 
[sec.] 13.386 10.806 0.860 93.58 2.903 73.14 

[m] 5.31 6.52 0.29 94.54 1.96 69.94 

500 
[sec.] >60 >60 0.753 98.75 3.999 93.34 

[m] >25 >25 0.23 99.08 2.10 91.60 

 

Table 4.5. Simple map results [25m X 25m] 

 
 Conventional approach Proposed approach 

 
Global 

Localization 
Resampling 

Global 

Localization 
% Resampling % 

10k 
[sec.] 3.526 7.013 1.312 62.79 3.389 51.68 

[m] 1.58 3.90 0.52 67.09 2.03 47.95 

5k 
[sec.] 4.234 7.854 1.129 73.33 3.808 51.52 

[m] 1.95 4.07 0.44 77.44 2.63 35.38 

500 
[sec.] 13.437 13.637 0.738 94.51 5.304 61.11 

[m] 6.58 6.61 0.25 96.20 3.50 47.05 

 



82 

 

 CONCLUSIONS AND FUTURE WORK 

This thesis demonstrates two novel approaches that improve mobile robot global 

positioning and resampling process in indoor environments. The proposed techniques 

allow the mobile robot to infer its initial belief precisely and recover itself promptly 

when the robot kidnapped or when the localization fails. 

First, the MCL algorithm is implemented based on the PF to overcome the uncertainty 

in the mobile robot’s localization problems. The odometry motion model and the 

likelihood field range finder model were carried out to originate and correct samples 

over the robot’s configuration space, respectively. MCL filter estimates the mobile 

robot’s state by utilizing noisy sensors data, such as LiDAR sensor. Besides, the 

augmented MCL is presented to accomplish the resampling phase. 

The problem of global localization involves thousands of samples, especially when 

processing large maps, which reduces the real-time performance of the localization 

due to the increase in the computational effort. However, we presented two techniques 

that improve the global localization and resampling phase in indoor environments. 

First, by taking the initial scan measurements into account, our improved global 

localization approach can detect the high likelihood regions based on the observation 

model, leading to the best sample distribution in high-probability areas instead of 

randomly scattering samples. Second, we devised a novel scheme that urged the 

localization algorithm to add the random samples around the robot’s position rather 

than over the robot’s state space when the probabilities drop-down by taking into 

account the prior knowledge about the most recent confident estimate pose. 

Several simulations were carried out to evaluate our localization approaches. The 

results demonstrate great superiority of the proposed schemes over the conventional 

localization methods. Where it showed reliable and fast global localization, even with 

small sample sets. Moreover, it showed a smart resampling technique that enables the 

robot to recover quickly when probabilities drop-down.  This resulted in a noticeable 

increase in real-time performance in terms of decreasing the computational cost. Both 



83 

 

of these novel methodologies demonstrate their potential to significantly reduce 

uncertainty in the global indoor localization problem. Furthermore, small sample sets 

have demonstrated their ability and high efficiency to localize mobile robots regardless 

of the size of indoor environments. 

However, there are limitations to the proposed approaches. The environment of the 

mobile robot should not be highly symmetric nor should the dynamic map differ 

significantly. 

To further improve the computational time at global localization, we will combine our 

improved global localization algorithm with the Hough Scan Matching (HSM) [51] 

method to perform a global angle search. Based on the HSM the algorithm will filter 

a very specific number of heading directions to provide them for the observation model 

to start the process of searching the high probability areas. 

Moreover, since the step of the skipping beams that have done before providing laser 

rays to the observation model helped in reducing the effect of the dynamic obstacles 

in dropping the probabilities, we will propose a method to actually detect dynamic 

obstacles based on comparing consecutive sensor scans. Sensor rays that hit the 

detected dynamic obstacles will be excluded from measurement probability 

estimation. Consequently, measurement probabilities will not drop due to dynamic 

obstacles. 

 



84 

 

REFERENCES 

[1] Wongphati M., Matsuda Y., Osawa H., Imai M., Where Do You Want to Use a 

Robotic Arm? And What Do You Want from the Robot?, Proceedings - IEEE 

International Workshop on Robot and Human Interactive Communication, 

2012. 

[2] Diolaiti N., Melchiorri C., Teleoperation of a Mobile Robot through Haptic 

Feedback, Proceedings: HAVE 2002 - IEEE International Workshop on Haptic 

Virtual Environments and their Applications, 2002. 

[3] Kim K., Lee H., Park J., Yang M., Robotic Contamination Cleaning System, 

IEEE International Conference on Intelligent Robots and Systems, 2002. 

[4] Smith F. M., Backman D. K., Jacobsen S. C., Telerobotic Manipulator for 

Hazardous Environments, Journal of Robotic Systems, 1992, 9(2), 251–260. 

[5] Lin Q., Kuo C., Virtual Tele-Operation of Underwater Robots, Proceedings - 

IEEE International Conference on Robotics and Automation, 1997. 

[6] Siegwart R., Nourbakhsh I. R., Scaramuzza D., Introduction to Autonomous 

Mobile Robots, 2nd ed., MIT Press, Massachusetts, 2011. 

[7] Williams S. B., Pizarro O., Webster J. M., Beaman R. J., et al., Autonomous 

Underwater Vehicle-Assisted Surveying of Drowned Reefs on the Shelf Edge of 

the Great Barrier Reef, Australia, Journal of Field Robotics, 2010, 27(5), 675–

697. 

[8] Ishikawa M., Trident Snake Robot: Locomotion Analysis and Control, IFAC 

Proceedings Volumes (IFAC-PapersOnline), 1 September 2004. 

[9] Everett H. R., Sensors for Mobile Robots, Crc Press, New York, 1995. 

[10] Dellaert F., Fox D., Burgard W., Thrun S., Monte Carlo Localization for Mobile 

Robots, Proceedings - IEEE International Conference on Robotics and 

Automation, Detroit, USA, 1999. 

[11] Fox D., Burgard W., Dellaert F., Thrun S., Monte Carlo Localization: Efficient 

Position Estimation for Mobile Robots, Proceedings of the National Conference 

on Artificial Intelligence, 1999. 

[12] Rohani M., Gingras D., Gruyer D., Dynamic Base Station DGPS for 

Cooperative Vehicle Localization, 2014 International Conference on 

Connected Vehicles and Expo, ICCVE 2014 - Proceedings, 2014. 

[13] Milstein A., Sánchez J. N., Williamson E. T., Robust Global Localization Using 



85 

 

Clustered Particle Filtering, Proceedings of the National Conference on 

Artificial Intelligence, 2002. 

[14] Weiss G., Wetzler C., von Puttkamer E., Keeping Track of Position and 

Orientation of Moving Indoor Systems by Correlation of Range-Finder Scans, 

Proceedings of IEEE/RSJ International Conference on Intelligent Robots and 

Systems (IROS’94), 1994. 

[15] Burgard W., Derr A., Fox D., Cremers A. B., Integrating Global Position 

Estimation and Position Tracking for Mobile Robots: The Dynamic Markov 

Localization Approach, IEEE International Conference on Intelligent Robots 

and Systems, 1998. 

[16] Engelson S. P., Passive Navigation and Visual Place Recognition, Doctoral 

dissertation, Yale University, 1994. 

[17] Engelson S. P., McDermott D. V., Error Correction in Mobile Robot Map 

Learning, Proceedings - IEEE International Conference on Robotics and 

Automation, 1992. 

[18] Burgard W., Fox D., Hennig D., Schmidt T., Estimating the Absolute Position 

of a Mobile Robot Using Position Probability Grids, Proceedings of the 

National Conference on Artificial Intelligence, 1996. 

[19] Schultz A. C., Adams W., Continuous Localization Using Evidence Grids, 

Proceedings - IEEE International Conference on Robotics and Automation, 

1998. 

[20] Fantian K., Youping C., Jingming X., Gang Z., Zude Z., Mobile Robot 

Localization Based on Extended Kalman Filter, Proceedings of the World 

Congress on Intelligent Control and Automation (WCICA), 2006. 

[21] Kwon S. J., Yang K. W., Park S., An Effective Kalman Filter Localization 

Method for Mobile Robots, IEEE International Conference on Intelligent 

Robots and Systems, 2006. 

[22] Liu J., Yuan K., Zou W., Yang Q., Monte Carlo Multi-Robot Localization 

Based on Grid Cells and Characteristic Particles, IEEE/ASME International 

Conference on Advanced Intelligent Mechatronics, AIM, 2005. 

[23] Gasparri A., Panzieri S., Pascucci F., Ulivi G., A Hybrid Active Global 

Localisation Algorithm for Mobile Robots, Proceedings - IEEE International 

Conference on Robotics and Automation, 2007. 

[24] Zhang X., Chen X., Li J., Li X., Vision-Based Monte Carlo - Kalman 

Localization in a Known Dynamic Environment, 9th International Conference 

on Control, Automation, Robotics and Vision, 2006, ICARCV ’06, 2006. 

[25] Thrun S., Burgard W., Fox D., Probabilistic Robotics, 3rd ed., MIT Press, 

United States, 2005. 



86 

 

[26] Grisetti G., Stachniss C., Burgard W., Improved Techniques for Grid Mapping 

with Rao-Blackwellized Particle Filters, IEEE Transactions on Robotics, 2007, 

23(1), 34–46. 

[27] Csorba M., Simultaneous Localisation and Map Building, PhD.Thesis, 

University of Oxford, Department of Engineering Science, Oxford, 1997, 8547. 

[28] Thrun S., Fox D., Burgard W., Dellaert F., Robust Monte Carlo Localization 

for Mobile Robots, Artificial Intelligence, 2001, 128(1–2), 99–141. 

[29] Thrun S., Bayesian Landmark Learning for Mobile Robot Localization, 

Machine Learning, 1998, 33(1), 41–76. 

[30] Cassandra A. R., Kaelbling L. P., Kurien J. A., Acting under Uncertainty: 

Discrete Bayesian Models for Mobile-Robot Navigation, IEEE International 

Conference on Intelligent Robots and Systems, 1996. 

[31] Fox D., Burgard W., Thrun S., Markov Localization for Mobile Robots in 

Dynamic Environments, Journal of Artificial Intelligence Research, 1999, 11, 

391–427. 

[32] Leonard J. J., Durrant-Whyte H. F., Mobile Robot Localization by Tracking 

Geometric Beacons, IEEE Transactions on Robotics and Automation, 1991, 

7(3), 376–382. 

[33] Jensfelt P., Kristensen S., Active Global Localization for a Mobile Robot Using 

Multiple Hypothesis Tracking, IEEE Transactions on Robotics and Automation, 

2001, 17(5), 748–760. 

[34] Thrun S., Particle Filters in Robotics, Proceedings of the Eighteenth conference 

on Uncertainty in artificial intelligence, 12 August 2002. 

[35] Winkler G., Image Analysis, Random Fields and Markov Chain Monte Carlo 

Methods, 2nd ed., Springer Science & Business Media, Neuherberg, 2012. 

[36] Pyo Y., Cho H., Jung L., Lim D., ROS Robot Programming (English), 1st ed., 

ROBOTIS, South Korea, 2017. 

[37] Anvari I., Non-Holonomic Differential Drive Mobile Robot Control & Design : 

Critical Dynamics and Coupling Constraints, Master Thesis, Arizona State 

University, Electrical Engineering, Arizona, 2013. 

[38] Jia Q., Wang M., Liu S., Ge J., Gu C., Research and Development of Mecanum-

Wheeled Omnidirectional Mobile Robot Implemented by Multiple Control 

Methods, M2VIP 2016 - Proceedings of 23rd International Conference on 

Mechatronics and Machine Vision in Practice, 19 January 2017. 

[39] Konolige K., Improved Occupancy Grids for Map Building, Autonomous 

Robots, 1997, 4(4), 351–367. 

[40] Catapang A. N., Ramos M., Obstacle Detection Using a 2D LIDAR System for 



87 

 

an Autonomous Vehicle, Proceedings - 6th IEEE International Conference on 

Control System, Computing and Engineering, ICCSCE 2016, 5 April 2017. 

[41] Craig J. J., Introduction to Robotics: Mechanics and Control, 3rd ed., Prentice 

Hall, New Jersey, 2005. 

[42] Pawlak Z., Decision Rules, Bayes’ Rule and Rough Sets, Lecture Notes in 

Computer Science (including subseries Lecture Notes in Artificial Intelligence 

and Lecture Notes in Bioinformatics), 1999. 

[43] Gordon N. J., Salmond D. J., Smith A. F. M., Novel Approach to 

Nonlinear/Non-Gaussian Bayesian State Estimation, IEE Proceedings, Part F: 

Radar and Signal Processing, 1993. 

[44] Kong A., Liu J. S., Sequential Imputations and Bayesian Missing Data 

Problems, Journal of the American Statistical Association, 1994, 89(425), 278–

288. 

[45] Choe G. M., Wang T. jiang, Liu F., Choe C. H., et al., Anadvanced Integrated 

Framework for Moving Object Tracking, Journal of Zhejiang University: 

Science C, 2014, 15(10), 861–877. 

[46] Hoang Vo T., BinarySearch(A, n, Num), MATLAB Central File Exchange, 

https://www.mathworks.com/matlabcentral/fileexchange/56271-binarysearch-

a-n-num, (Access date: 1 June 2020). 

[47] Bresenham J. E., Algorithm for Computer Control of a Digital Plotter, IBM 

Systems Journal, 1965, 4(1), 25–30. 

[48] Zhou X., Li X., Improved DDA Line Drawing Anti-Aliasing Algorithm Based 

on Embedded Graphics System, 2010 3rd International Conference on 

Advanced Computer Theory and Engineering (2010 3rd International 

Conference on Advanced Computer Theory and Engineering(ICACTE), 20 

August 2010. 

[49] Wu X., An Efficient Antialiasing Technique, ACM SIGGRAPH Computer 

Graphics, 1991, 25(4), 143–152. 

[50] Zingl A., A Rasterizing Algorithm for Drawing Curves, Na, 2012. 

[51] Censi A., Iocchi L., Grisetti G., Scan Matching in the Hough Domain, 

Proceedings - IEEE International Conference on Robotics and Automation, 

2005. 

 

 



88 

 

APPENDICES



89 

 

APPENDIX-A 

Table A.1. Bresenham’s line drawing algorithm for ray tracing 

1: Ray_Tracing_Algorithm (𝑥1, 𝑦1, 𝑥2, 𝑦2) 

2: 𝑋 = 𝑌 = ∅ 

2: 𝑑𝑥 = 𝑥2 − 𝑥1 

3: 𝑑𝑦 = 𝑦2 − 𝑦1 

4: 𝑃 = 2𝑑𝑦 − 𝑑𝑥 

5: If  𝑑𝑦 > 𝑑𝑥 

6: for 𝑥 = 𝑥1 to 𝑥2 do 
7: add pixel (𝑥, 𝑦)  to  (𝑋, 𝑌) 

8: 𝑥 = 𝑥 + 1 

9: If  𝑃 < 0 

10: 𝑃 = 𝑃 + 2𝑑𝑦 

11: else 

12: 𝑃 = 𝑃 + 2𝑑𝑦 − 2𝑑𝑥 

13: 𝑦 = 𝑦 + 1 

14: endif 

15: endfor 

16: else 

17: for y= 𝑦1 to 𝑦2 do 

18: add pixel (𝑥, 𝑦)  to  (𝑋, 𝑌) 

19: 𝑦 = 𝑦 + 1 

20: If  𝑃 < 0 

21: 𝑃 = 𝑃 + 2𝑑𝑥 

22: else 

23: 𝑃 = 𝑃 + 2𝑑𝑥 − 2𝑑𝑦 

24: 𝑥 = 𝑥 + 1 

25: endif 

26: endfor 

27: endif 

28: return [𝑋, 𝑌] 

 



90 

 

PUBLICATIONS 

[1] Abualkebash H., Ocak H., Improved Global Localization and Resampling 

Techniques for Monte Carlo Localization Algorithm, 9th International 

Conference on Advanced Technologies (ICAT'20), Istanbul, Turkey, 10-12 

August 2020. 

[2] Abu-Alkebash H., Bader A., Hashlamon I., Three Degree of Freedom Delta 

Robot, Design, Control, and Implementation for Educational Purposes, 

Australian Journal of Basic and Applied Sciences, 2017, 11(5), 126–132. 



91 

 

RESUME 

Humam AbuAlkebash was born in 1992 in Jebel Akhdar, Libya. After finishing his 

high school from Hisham Ben Abdalmalik Secondary School Jericho, Palestine, he 

started Mechatronics Engineering from Palestine Polytechnic University (PPU) 

Hebron, Palestine, and graduated in 2015. Amid his BS studies in Mechatronics, he 

trained in several factories, such as Palestinian Joint Venture for the Manufacture of 

Iron and Steel, and Nieroukh Scales & Metallic Furniture Company. Moreover, he has 

participated as a trainee in several training courses such as programming of 

microcontrollers, principles & foundations of solar energy, and energy & electronics 

principles in Jerusalem District Electricity Company (JDECO). In 2015, he started 

working in the Royal Industrial Trading Company in various maintenance sections. In 

2016, he joined the PPU university as a teaching assistant in the Department of 

Mechanical Eng. / Mechatronics Engineering. During his stay at PPU University, he 

prepared himself for higher studies. In the year 2017, he was awarded the Turkish 

government scholarship (YTB) for his master’s degree in Mechatronics Engineering 

from Kocaeli University, Turkey. 


	ACKNOWLEDGMENT
	contents
	list of figures
	list of tables
	list of symbols and abbreviations
	ÖZET
	ABSTRACT
	INTRODUCTION
	1. Background Knowledge
	1.1. Uncertainty
	1.2. Probabilistic Robotics
	1.2.1. State
	1.2.2. Environment interaction
	1.2.3. Probabilistic generative laws
	1.2.4. Belief
	1.2.5. Bayes filter

	1.3. Markov Localization
	1.4. Localization Algorithms
	1.4.1. Grid-based localization
	1.4.2. Monte Carlo Localization (MCL)
	1.4.2.1. Monte Carlo Localization methodology
	1.4.2.2. Particle Filter (PF)



	2. Monte Carlo Localization Algorithm
	2.1. Probabilistic Motion Models
	2.1.1. Odometry motion model
	2.1.2. Robot forward kinematics model

	2.2. Probabilistic Measurement Models
	2.2.1. Likelihood field range finder model

	2.3. Pose Estimation
	2.4. Resampling
	2.4.1. Multinomial resample
	2.4.2.  Augmented MCL


	3. Proposed schemes
	3.1. Motivation
	3.2. Improved Global Localization Algorithm
	3.3. Effective Resampling Strategy for Augmented MCL

	4. Simulation set-up and results
	4.1. Implementation Details
	4.1.1. Occupancy grid map
	4.1.2. LiDAR data simulation
	4.1.3. Robot trajectory

	4.2. MCL phases
	4.2.1. Odometry motion model
	4.2.2. Likelihood field range finder model
	4.2.3. Pose estimation
	4.2.4. Resampling phase

	4.3. Proposed Schemes
	4.3.1. Improved global localization
	4.3.2. Improved resampling scheme


	5. conclusions and Future work
	references
	APPENDICES
	PUBLICATIONS
	RESUME

