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HİPERSPEKTRAL GÖRÜNTÜLERİN KENAR DUYARLI KAYIPSIZ 

SIKIŞTIRILMASI 

ÖZET 

Bir imgede kenarın bir tarafındaki pikseller, kenarın karşılıklı tarafındaki piksellerden 

daha yüksek korelasyona sahiptir.  Tez çalışmamıza bu motivasyon ile başlanmıştır. 

Literatürde, hiperspektral görüntülerin sıkıştırılmasında kenar tabanlı tahmin 

algoritması sunan az sayıda çalışma mevcuttur. Bu tez kapsamında, kenar tahmini 

tabanlı kayıpsız hiperspektral görüntü sıkıştırmada daha iyi sonuçlar elde etmek için 

tam aramaya dayanan yeni bir şablon çıkarma yöntemi önerilmiştir. Referans 

algoritma tahminde üç mod içerir: bant içi tahmin, gruplar arası tahmin ve tahmin yok. 

Bantlar arası modda, spektral artıklığı kullanmak için uyarlanabilir kenar tabanlı bir 

öngörücü kullanılır. Güçlü bantlar arası yapısal benzerlik tarafından yönlendirilen 

uyarlanabilir kenar tabanlı öngörücü, önce referans bandına bir kenar algılaması 

uygular ve mevcut öngörülecek pikselin en uygun tahmin içeriğini uyarlamalı olarak 

belirlemek için yerel bir kenar analizi gerçekleştirir. Ardından tahmin katsayılarını en 

küçük kareler optimizasyonu ile hesaplar. Referans çalışmadan farklı olarak, tahmin 

için kullanılan piksellerin sayısını ve konumunu değiştirerek daha iyi sonuçlar veren, 

tam arama stratejisine dayanan, farklı kenar açıları için yeni şablonlar bulmaktayız. 

Deneysel çalışmalar, önerilen yöntemin umut verici sonuçlar verdiğini göstermektedir. 

Anahtar Kelimeler: Hiperspektral Görüntüler, Kayıpsız Sıkıştırma, Uyarlanabilir 

Kenar Tabanlı Tahmin, Uzaktan Algılama , Yerel Kenar Analizi. 
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EDDGE SENSITIVE LOSSLESS COMPRESSION OF HYPERSPECTRAL 

IMAG 

ABSTRACT 

Pixels along an edge have a higher correlation than pixels across the edge in an image. 

Our study was started by exploiting this feature. There are limited methods available 

in the literature that presents edge-based prediction for hyperspectral image 

compression. In this paper, we proposed a new template extraction method based on 

the full search to get better results in edge prediction-based lossless hyperspectral 

image compression. The reference algorithm contains three modes in prediction: intra-

band prediction, inter-band prediction, and no prediction. In the inter-band mode, an 

adaptive edge-based predictor is utilized to exploit the spectral redundancy. The 

adaptive edge-based predictor, which is driven by the strong interband structural 

similarity, applies an edge detection first to the reference band, and performs a local 

edge analysis to adaptively determine the optimal prediction context of the pixel to be 

predicted in the current band, and then calculates the prediction coefficients by least-

squares optimization. Different from the reference work, we able to find new templates 

for distinct edge angles based on the full search strategy that gives better results by 

changing the number and position of pixels used for prediction. Experiments show that 

the proposed method provides promising results. 

Keywords: Hyperspectral Images, Lossless Compression, Adaptive Edge-Based 

Prediction, Remote Sensing, Local Edge Analysis.
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INTRODUCTION 

During most of the past years, hyperspectral images were an area of research and 

development that were only available to researchers.  With the advent of airborne 

hyperspectral imaging systems, hyperspectral imaging entered the mainstream of 

remote sensing [1].  The hyperspectral images are used in a variety of applications in 

mineral exploration, environmental monitoring, and more. 

To be able to effectively use hyperspectral imagery, we need to understand the nature 

of this data, its limitations, and the different strategies for manipulating and 

interpreting it. The hyperspectral images contain various data,  we must understand the 

properties of these materials that we are trying to measure to be able to interpret them 

properly. An instrument called an imaging spectrometer is used to produce 

hyperspectral images [2]. The growth of these sensors has involved the interchange of 

two correlation and various technologies: remote imaging of Earth and spectroscopy. 

Spectroscopy is the evaluation of light that is emitted by or reflected from materials 

and its variation in energy with wavelength. Spectroscopy deals with the spectrum of 

sunlight that is reflected or scattered by objects on the ground. 

By using thousands of sensors, we can make narrow bands of 10 nanometers of 

spectral measurements over a wide wavelength range. Hyperspectral imaging tools can 

collect information by differentiated the electromagnetic spectrum. Contrary to the 

human eye and traditional camera sensors, which can only pick up visible light from 

360 to 760 nm. Spectral imaging techniques allow a large portion of the wavelengths 

to be wrapped. It is important to remind that the spectrum is separated into various 

spectral bands. 

Thereafter, hyperspectral imaging can be viewed as 3-dimensional data or data cubes. 

For instance, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) [3] 

hyperspectral sensor (NASA Jet Propulsion Laboratory (JPL) [4]) measures the 

electromagnetic spectrum from 400 to 2500 nm. Especially, spectral information is 

quantized into 224 neighboring bands, with a bandwidth close to 10 nanometers each.
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Hyperspectral data are usually obtained by a remote platform like an aircraft or 

satellite, then it is connected to a ground station. 

In inorganic materials such as minerals, the shape of the spectral curve is controlled 

by the chemical composition and crystal structure of the mineral. By the analysis of 

hyperspectral data, it is possible to see and assort materials and objects. Some materials 

and objects have an unrivaled signature in the spectrum, so we could use these 

fingerprints for identification purposes. The width between two adjacent bands known 

as the spectral resolution is the most decisive parameter to evaluate the precision of a 

sensor. 

We know that computer stores and works on digital values which are known as bits 

represented by zeros and ones. These bits are then used to state significant information, 

based on the context. The bit series 01001000 represents the number 69 while 

representing the letter ‘H’ in the word program, and color in a photoshop program. So, 

these data are becoming meaningless without contextual information [5], this data can 

be processed in many ways like image compression. 

The compression of hyperspectral images has latterly become a public research field. 

Spectral imagery in close identifies the same scene at several wavelengths. Each image 

pixel is exemplified by hundreds of values, congruous to different wavelengths. These 

values match to a sampling of the continuous spectrum emitted by the pixel, this 

sampling at high resolution allows pixel matching. The availability of spectral 

information per pixel leads to new applications in all areas that use remote sensing 

data. Lossless compression algorithms provide compression ratios up to three. The 

AVIRIS instrument produces several gigabytes of data, which are recorded and stored 

onboard. Thus, compression of this image is requisite to extend storage and 

transmission [6].  

Many works have been done related to lossless compression of hyperspectral data, 

where prediction based [7] and wavelet-based mechanisms have been typically 

utilized. Lossy compression has also been treated in which the 3-dimensional 

transform coding approach has largely been prevailing [8]. The use of the 

multicomponent transformation feature of JPEG 2000 part 2 has been very popular, 

wavelet-based compression attains rate scalability, high compression, and progressive 
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transmission [9]. These properties are possible since the introduction of Shapiro’s 

embedded zero tree wavelet (EZW) coder [10]. In Hierarchical Trees (SPIHT) [11,12], 

proposed an amended version known as Set Partitioning. 

Unfortunately, most of the algorithms that are developed suffer from some problems, 

such as low image compression ratio, the relatively long time that the algorithm takes 

to work, or the difficulty of applying it in practice. 

In our study, we will focus on developing a solution to increase the compression ratio. 

And in future works, we will try to control the time spent through this algorithm and 

make it small as possible. We used the standard AVIRIS images- Jasper, Cuprite, and 

CCSD datasets to get new templates using full search methodology [3,13]. The image 

size used was 512 × 512 × 224 for Jasper and Cuprite, for a total of 112 MB, and 512 

× 680 × 224 for CCSD datasets, for a total of 149 MB. As we have seen, the size of 

hyperspectral imagery is rather large and therefore compression is inevitable in 

hyperspectral images. 

The remaining work is discussed in the various chapters as outlined below: 

Chapter 1 contains background information that is important for the thesis work, this 

includes the literature review  of image types, data compression types, Spectral 

Oriented Least Square Algorithm, band ordering, and finally edge-based prediction 

algorithm. 

Chapter 2 contains a detailed explanation of the algorithm used in this thesis named 

the Full Search Method. 

Chapter 3 represents the experimental results and discussion. 

Chapter 4 provides conclusions of the thesis and future works. 
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1. HYPERSPECTRAL IMAGE COMPRESSION 

As previously mentioned in the introduction, compression of hyperspectral images is 

a very important process to achieve the transfer of images from space to earth stations 

without losing important data. In this chapter, we give the general history behind 

hyperspectral imaging, exploring the introduction to images in general and their types, 

hyperspectral imagery, image compression techniques, and previous work done in the 

hyperspectral image compression field which we based on during our search. 

 Types of Images 

An image is a two-dimensional signal processed by the human visual system which is 

usually representing in analog form. However, for processing, storage, and 

transmission by computer applications, they should be in digital form. Digital images 

are assorted as the following. 

Joint Photographic Group (JPG) is optimized for continuous-tone images that contain 

many numbers of colors [14]. JPG works to get rid of information that the human eye 

does not notice and it stores information as 24-bit color. It is difficult for the human 

eye to distinguish any difference from the original image, compression factors of more 

than 20 are often acceptable. 

Tagged Image File Format (TIFF) can be lossless or lossy compression [10]. Details 

of the image storage algorithm are contained within the image file. This format is 

generally not used for image compression. So, it is quite large. 

Joint Photographic Experts Group (JPEG) is an eminent way to store 24-bit 

photographic images in multimedia applications. JPEG 24- bit which has 16 million 

colors, is superior in appearance and is at its most spectacular when using 24-bit 

display hardware [15]. 

Portable Network Graphics (PNG) is a file format for lossless image compression. In 

this file, the image can be compressed by 10 to 30 percent [16], produces smaller files,
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and allows for additional colors.  Graphics Interchange Format (GIF) is profitable for 

images that have less than 256 colors. Grayscale images, and black and white text. The 

main requirement for this type is that it works on images of 8 pixels or less,  most color 

images are 24 bits per pixel [16]. 

The Bitmap (BMP) file format process graphics files in Microsoft Windows OS. These 

images are usually large as they are not compressed [2]. 

 Remote Sensing 

Remote sensing is the science of gaining information about the surfaces on the earth 

without really contact with it [17]. This is done by sensing and recording emitted or 

reflected energy and analyzing that information. Remote sensing can sentence the 

object or the natural phenomenon following the collected electromagnetic wave 

because every object has a different reflection of electromagnetic waves due to 

different chemical and physical compositions. Remote sensing technology works on 

the principle of the unique reflection of electromagnetic waves characteristic of each 

object. Hyperspectral remote sensing and imaging spectroscopy involves acquiring 

images in a vast number of tight contiguous spectral bands, and it is the new technique 

in the remote-sensing progress. 

 Hyperspectral Imagery 

Satellite-based remote sensing techniques necessitate massive data acquisition, which 

is particularly hyperspectral images. Hyperspectral imaging began about 50 years ago 

with fundamental applications in remote sensing  [18–21], when it began to bloom in 

many other fields, such as pharmaceutical science [22–28], development of 

pharmaceutics [29–34], assurance of food safety [35–41], or heritage cultural [42,43]. 

The feasibility of a way ready to measure a  total spectrum for all pixels in the sample 

made it very likable for several applications [44–46]. One goal of hyperspectral 

imagery is to obtain a picture with selective and specific information on the 

conforming compounds of the measured surface.  In hyperspectral images, the term 

"hyper" meaning "over" and denotes the vast number of wavelength bands measured. 

Hyperspectral remote sensing exploits the fact that all materials emit, absorb, and 

reflect electromagnetic energy at certain wavelengths. Hyperspectral imaging 
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technology is widely used in many remote sensing applications because the 

hyperspectral images possess large spatial and spectral resolution [47]. Sometimes, we 

have to collect a series of hyperspectral images of the same spatial region but at 

different times, these images, which were collected at different times, are called the 

multitemporal hyperspectral images [48,49]. 

Hyperspectral images are spectrally overly specific, this ensures that sufficient spectral 

information is given for identifying and distinguishing particular materials. 

Hyperspectral imagery provides the potential for accurate information extraction of 

data [50]. The hyperspectral image uses hundreds of spectral bands to obtain data such 

as airborne visible infrared imaging spectrometer AVIRIS [3] images. It contains a 

large series of images corresponding to hundreds of continuous narrow spectral bands. 

The spectral band includes all spectral bands of the visible light, near-infrared, mid-

infrared, and thermal infrared areas. The first Aero Imaging Spectrometer-1 AIS-1 was 

ready to work in 1983 in the American Jet Propulsion Laboratory AJPL and was 

successful in the application of vegetation, mineral mapping, chemistry, and others, 

then, it prepared the AVIRIS of America relevant to aero-imaging spectrometer [51]. 

A hyperspectral image can represent in form of a two-dimensional matrix or image 

cube [52] as shown in Figure 1.1. Hyperspectral images are best described as image 

cubes with two spatial dimensions and a third spectral dimension. It is used in many 

fields such as coastal and inland water studies, planetary and earth geology, 

atmospheric studies, forestry, agriculture, and military fields.  

Each material absorbs the energy of specific wavelengths, so reflectance varies 

according to absorbed wavelength. Spectroscopy involves measuring spectral 

reflectance for each material. By using thousands of sensors, we can make narrow 

bands of 10 nanometers of spectral measurements over a wide wavelength range. 

Hyperspectral imaging tools can collect information by differentiated the 

electromagnetic spectrum. Contrary to the human eye and traditional camera sensors, 

which can only pick up visible light from 360 to 760 nm. Spectral imaging techniques 

allow a large portion of the wavelengths to be wrapped. It is important to remind that 

the spectrum is separated into various spectral bands. Thereafter, hyperspectral 

imaging can be viewed as three-dimensional data or data cubes. For instance, the 



7 

 

AVIRIS  hyperspectral sensor (NASA Jet Propulsion Laboratory (JPL) [4]) measures 

the electromagnetic spectrum from 400 to2500 nm [3]. 

 

Figure 1.1.  Two-dimensional projection 

of a hyperspectral cube [53]. 

Spectral information is quantized into 224 adjacent bands with 10 nm for each one, 

with a spatial resolution of 20 m at operational altitude. Spectral components are 

represented with 16-bit precision after calibration and geometric corrections. The unit 

size of the image is called a scene, a data cube of 512 lines by 512 columns by 224 

bands, for a total of 112 MB. 

This massive volume of data slows down transmission and processing rates. 

Hyperspectral imaging is a potent technique used to obtain precise and accurate 

information on surface and material contents, Superscalar sensors possess both spatial 

and spectral resolution. Image compression is a challenge due to the high cost of 

transporting and storing a large amount of collected hyperspectral images. Several 

factors make this challenge big, adding a third dimension to the images greatly 

increases the data that needs to be processed during the data processing process [54]. 

The critical importance of hyperspectral data also requires assurance that compression 

will not contaminate data quality. Compression is necessary as it saves a reasonable 

amount of data transmission over the network, reduces storage requirements and also 

total execution time [55], it also reduces the possibility of transmission errors because 

fewer bits are transmitted, and provides a level of security against phishing or 

monitoring information from outside. 



8 

 

 Image Compression 

In the past decade, we have witnessed a revolution in most scientific fields, and this 

rapid development continues now, this transformation includes communication 

technologies. Data compression is one of these technologies for the multimedia 

revolution. It would be difficult to use images, audio, and video on websites without 

compression. The same applies to wireless communications that will suffer from slow 

communication. Currently, data compression is available to everyone, while it was 

only available to a relatively small group of scientists in the past. 

If we had a square image of 256 x 256 pixels, this would require us to have 65,536 

bytes to store it. Whereas if the image is compressed and its size is reduced to 16,384 

bytes, then the compression ratio is 4:1, another way to describe compression 

performance is to determine the average bits required to represent a pixel, this is 

generally referred to as the rate.  

In the previous case, if we assume 8 bits per pixel, the average number of bits per pixel 

in the compressed image is 2. Thus, we can say that the rate is 2 bits per pixel. 

Reducing the time needed to transmit images over the wireless or wired medium, the 

sufficient amount of storage space has increased, display images in web data, archiving 

satellite data, and editing using multimedia applications. 

We discussed in the previous sections the types of images which including JPEG and 

MPEG, which are two standards for representing images, video, and audio. Data 

compression algorithms are used to reduce the number of bits required to represent an 

image, video, or music. Data compression is the science concerned with representing 

information by compressing it and reducing its size. An example of data compression 

is Morse code that developed in the mid-nineteenth century, letters are encoded with 

dots and dashes  [56], to reduce the average time required to send a message, shorter 

sequences are assigned to characters that occur less frequently, and longer sequences 

for characters that occur less frequently. Huffman coding is based on the same idea of 

using short-codes for the most frequent characters, the structure in the data is not the 

only thing that can be used in data compression. For example, we can take advantage 

of the limited human capabilities to compress data, the human ear cannot hear the high-

frequency sounds that dogs hear [56]. When we reduce the amount of data transmitted, 
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the capacity of the communication channel increases. Likewise, when compressing a 

file to a quarter of its size, it means that we quadrupled the storage capacity. Thus, we 

will be able to store data faster and more accurately [57]. 

The image is one of the most common types of data in our daily life. Image 

compression is the implementation of data compression on digital images, the purpose 

is to reduce the frequency of image data so that it can store or transfer data effectively. 

An image in the original form consists of a massive amount of data that request not 

only a large number of memory demands for storage but also gives rise to 

uncomfortable transmission over limited bandwidth channels. Therefore, to store or 

transfer images via any communication media, image compression is an important 

factor, compression makes it possible to create file sizes with dimensions that can be 

managed, stored, and sent. Compression indicates lowering the quantity of data used 

to represent an image content without extremely reducing the original data quality. A 

compressed image is represented by fewer bits compared to the original image. 

Consequently, the desired storage size will be miniatured [58]. 

 

Figure 1.2. General compression-decompression scheme [58]. 

As we see in Figure 1.2 the mapper converts the input image, which was taken from 

the image dataset, into inter-pixel coefficients. Transformation for the mapper may be 

Curvelet, Wavelet, or DCT transform. The next stage is the quantizer which reduces 

the number of bits needed to store the transformed coefficients. It is many to one 

mapping in which larger values are quantized into smaller values, it is the main process 

in compression steps and could be lossy or lossless compression. Quantization reduced 

the number of bits so it results in some kind of information loss, the quantizer can be 

scalar or vector quantization. Finally, the entropy encoder compressed the new 
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quantized values and improves the compression. In image compression science, data 

redundancies are assorted into three types: inter-pixel redundancy, coding redundancy, 

and psycho visual system. 

Coding redundancy is present when less than optimal codewords are used, which 

results in coding redundancy. Inter-pixel redundancy is the result of correlations 

between the pixels of an image. Psycho visual redundancy indicates the deleted data 

by the Human Visual System (HVS) which is not important data, recovering the 

original image can be done by decompression. 

 

Figure 1.3. Classification of compression techniques [58]. 

The digital image is an array of different pixel values [59]. In the digital image, 

adjacent pixels are bound so that they have extra bits. With compression algorithms, 

extra bits are removed from the image so that the image size is reduced and image 

compression. As shown in Figure 1.3, depending on how important the information 

retrieval is, data compression algorithms can be divided into two main types: lossless 

compression and lossy compression. 

 Lossy compression 

Irreversible or lossy compression will reduce the file size by permanently removing 

specific information, especially redundant information. The compressed image is not 

the same as the inserted image, there is some amount of loss in the image data. When 
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the file is uncompressed, only a part of the original information is recovered. Thus, we 

can get a high compression ratio, although some quality is lost in the restored image. 

This technique is the most common and widely used, at the same time, we can control 

some parameters to reduce the bitrate in exchange for increasing the distortion and 

vice versa. To find out the compression efficiency of these algorithms, we need to have 

some way of determining the difference, the difference between the reconstruction and 

the original is called the distortion. 

Examples of lossy compression techniques: transform encoding, vector quantization, 

and fractal encoding. The lossy compression algorithms of hyperspectral images are 

typically based on 3-dimensional frequency transforms: for example, Karhunen–

Loève transforms (KLT) [60], 3-D Discrete Cosine Transform (3D-DCT) [61],3-D 

Discrete Wavelet Transform (3D-DWT) [62],  etc. 

 Lossless compression 

In some areas, the original hyperspectral image quality cannot be abandoned. So, 

lossless compression is mandatory, lossless compression involves no loss of 

information and allows for a perfect re-creation of the original image from the 

compressed image. There is no amount of loss in the image, the restored information 

after compression in the lossless. The compression scheme is numerically equivalent 

to the original, it is utilized in many applications like the ZIP file format when the first 

data and therefore the decompressed data are important to be identical.  

With the advance of hyperspectral sensors, many gigabytes of data are collected daily 

and sent back to earth stations for more analysis, all of this data should be compressed 

before sending due to the limitation of storage capacities and bandwidths. Because 

hyperspectral data are very valuable, we need a method of lossless compression to 

keep their full quality [63]. Spectral components are represented with 16-bit precision 

after calibration and geometric corrections.  

The scene is the unit size of the recorded hyperspectral image, a typical image consists 

of three or more consecutive scenes. Examples of lossless compression techniques: 

run-length encoding, entropy encoding, and predictive encoding.Lossless compression 

of hyperspectral images is usually supported by the model of predictive coding. There 
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are various benefits to predictive-based approaches: they use limited resources in terms 

of computing power and use of memory and achieve good compression efficiency. 

Sometimes, these templates are sufficient for implementations on board. There are 

many lossless compression algorithms used and presented in past, for example, The 3-

Dimensional Set Partitioning Embedded block (3D SPECK) algorithm [9], 

Asymmetric Tree (AT) 3D SPIHT algorithm was first described in [11]. Some state-

of-art predictive-based technique are CALIC-3D [64],Linear Predictor (LP) [65], RLS 

[66], Spectral-oriented Least Squares (SLSQ) [65] , M-CALIC [64] and Fast Lossless 

(FL) [67]. Different lossless compression techniques are based on clustered differential 

pulse code modulation [68], or dimensionality reduction through principal component 

transform [69]. 

 Arithmetic Encoding 

The focus on the basic concept of arithmetic encoding began in the mid-1980s, with 

the paper by Witten et al, which is considered one of the most important papers in this 

field [70]. Entropy encoding is one of the lossless data compression techniques that is 

unaffiliated with the fixed characteristics of the medium. One of the main types of 

entropy coding sets an adorable, prefix-free code for each unique code that occurs in 

the entry, entropy codecs then compress the data by replacing each fixed-length input 

code with a coded word free of the variable-length prefix, the length of each coded 

word is approximately proportional to negative [58]. Some of the other techniques 

used in lossless data compression are run-length encoding and Huffman coding. 

Arithmetic encoding is the most effective technique for statistical lossless encoding, it 

has gained a lot of attention within recent years, it aims to define a method that 

provides an ideal length for code words. Similar to the entropy coder, the probability 

of the individual symbols appearing needs to be identified according to the likelihood. 

Arithmetic encoding is the most powerful tool for coding symbols, the average code 

length is extremely on the brink of the possible minimum given by information theory. 

The arithmetic encoding assigns to each symbol the interval whose size represents the 

likelihood of this symbol occurring [71]. In arithmetic coding, an individual identifier 

or tag is created for the sequence to be encoded, this identifier identifies a binary 

fraction, which becomes the binary code for the sequence [56]. In this thesis, we use 

this technique to enhance compression. 
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 Articles Related to This Research 

In this thesis, many previous studies and research related to the subject of study were 

studied and reviewed. The most important of these studies, which form the basis of 

our thesis, is the Spectral-oriented Least SQuares (SLSQ) algorithm, which was 

presented in Low-Complexity Lossless Compression of Hyperspectral Imagery via 

Linear Prediction [65], and Lossless Compression of Hyperspectral Images using 

Adaptive Edge-based Prediction article, which was published in [63]. 

 Spectral oriented least squares (SLSQ) algorithm 

One of the much spread of low-complexity algorithms for hyperspectral image 

compression which uses linear prediction method in the spectral domain was presented 

in [65], as in AVIRIS, remote-sensed images show two main forms of correlation that 

can be exploited, first is the correlation between pixels in adjacent bands, and the other 

is a spatial correlation between adjacent pixels in the same band, using compression 

methods developed for color images, we can easily exploit the spatial correlation, but 

for adjacent bands in hyperspectral images, there is still an open question, how to take 

advantage of redundancy between adjacent bands, it will largely determine the number 

of additional gains that can be obtained [72]. 

𝐼𝑐 𝐼𝑏 

𝐼𝑎 X𝑐 

Figure 1.4. The prediction context of 

the 2D-MP predictive structure [65]. 

For adjacent bands which are marked as inter-band, they use a new inter-band linear 

predictor approach as proposed in [65], and a standard median predictor was used for 

pixels in the same band which is marked as intra-band (IB), in both inter-band and 

intra-band prediction methods, prediction depends on a small data subset of the current 

pixel  X𝑐 to compute the prediction  



14 

 

cX , as shown in Figure 1.4, in linear prediction we can use  the three neighboring 

pixels of X𝑐 which referred as 𝐼𝑎, 𝐼𝑏 and 𝐼𝑐 as prediction context [73], this oracular 

composition was derived from the well-established 2-dimensional median predictor, 

that is used in [74]. 

In bands supposed as intra-bands, we used median prediction to predict cX for the 

current pixel as in the next equation, 

( , , )c a b a b cX Median I I I I I= + −   (1.1) 

after obtaining X 𝑐 the prediction value of X𝑐 we can find the Error by, 

c cError X X− =
 

  (1.2) 

 

Figure 1.5. SLSQ block diagram [65]. 

Figure 1.5 shows a block diagram of the SLSQ method, the low complexity and two-

line buffering make SLSQ convenient for the compression of remotely sensed data. 

Academical approaches for compression of hyperspectral imagery were based on 

direct vector quantization [11,75], Differential Pulse Code Modulation (PCM) [76],  

or dimensionality reduction through principal component analysis [77]. Inter-Band 

linear prediction approach was based on Least-Squares Optimization as presented in 

[67], for each pixel, SLSQ determines the coefficients of a linear predictor that is 

optimal concerning (3D) subset of past data. As we see in Figure1.6, the red pixel in 

the K'th band whose value will be predicted by the SLSQ algorithm, blue pixels in 

Figure1.6 is already predicted. 
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Figure 1.6. The prediction context used in SLSQ in the current band left is the 

previous band and right is the current band [65]. 

The N-th-order prediction of the current pixel X𝑐 = X (0,0)  is computed as 

1
. (0, )

N

c jj
X X j

=
=   (1.3) 

Where, N is the number of previous bands used in prediction and X (0, j)  is the pixel 

in position (0,0) in j’th previous band, to minimize the energy of the prediction error 

P the coefficients 0  is used. 

 0 1 2, ,..., N   =   (1.4) 

2

1
( ( ,0) ( ,0))

M

i
P X i X i

=
= −   (1.5) 

Where M is the number of pixels used in prediction in each band. 

Here we see that the data used in the prediction are casual and not future date, and we 

don't need extra information to be sent to the decoder. α0 is calculated by using the 

well-known theory on optimal linear prediction.  

Using matrix notation, we can write P as, 

( ) ( ).
T

P C X C X = − −   (1.6) 

Where,   

(1,1) (1, )

( ,1) ( , )

x x N

C

x M x M N

 
 

=
 
  

                           (1.7) 
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(1,0)

( ,0)

x

X

x M

 
 

=
 
  

  (1.8) 

If we take the first derivative for α  and then set it to zero, the optimal predictor 

coefficients solve the linear system and the new matrix notation is: 

( ) 0.T TC C C X =   (1.9) 

When determining the optimum prediction coefficients for the current 

sample, the prediction error will entropy encoded . 

c cError X X− =
 

  (1.10) 

 Band ordering 

This chapter shows an effective ordering of bands based on Pearson’s correlation, 

which can cause SLSQ algorithm improvements.  

In hyperspectral images, the spectral correlation between some bands is high, but at 

the same time, some few sequential bands are not spectrally related to each other. So, 

reordering these bands depending on the correlation between inter-bands can give 

good results of compression ratios. Pearson's correlation in equation 1.11 is a 

substantial measure of dependency on two random distributions [78]. 

, 1 1
.

xy

x y


 

 
= −     (1.11) 

Where 

xy is the covariance of variables X and Y. 

x and y  are respectively the standard deviations for X and Y. 

If   𝜌 = 0 , then X and Y are not correlated 

If   𝜌 < 0, then X and Y are inversely correlated 
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if  𝜌 > 0, then X and Y are directly correlated  

Now we adjust and boost compression ratios by leveraging band ordering. As 

discussed in [79], and after applying the Pearson's correlation between all the adjacent 

bands, we notice that there is a very low correlation between some sequential bands, 

this means that the interband predictor will fail its prediction because there is not 

enough correlation between the bands and intra-band prediction will be the best choice. 

 Edge-based prediction 

As we talked about in the previous section, it has been shown with us that SLSQ deals 

with four neighboring pixels template from the current and previous band to find the 

prediction value at each pixel in each band with neglecting of edge features as shown 

in SLSQ Figure 1.5. In this article, they used different templates for each pixel 

according to the angle of that pixel. 

 

Figure 1.7. Block diagram for edge-based prediction [63]. 

Image edge is one of the fundamental features of an image, which includes profuse 

internal information, such as direction, step, shape. So, it is widely used in image 

segmentation and categorization.  

Edge-based prediction is used to get the improved performance of imitated prediction 

schemes [64,80–86], pixel correlation is maximum over an edge than across edges. In 

the edge-based prediction algorithm, it used a three-mode prediction approach 
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established on information from edges. The first approach was a spectral prediction 

for inter bands, they used the same method as in SLSQ with different template shape 

for each edge angle.  

The second approach was the spatial prediction for intra-band, they used a standard 

oracular template of improved median prediction as proposed in [87]. Finally, the third 

approach is based on no-prediction which also was not available in SLSQ, if the band 

was marked as no prediction, it will be entered directly into the entropy encoder.  

The standard median predictor can just detect vertical and horizontal edges, but can’t 

detect another direction for edges, so it does not work completely as we need. As we 

showed in Figure 1.4, IMP can detect other edges and the estimate was: 

( )min , , max( , )

max( , ), min( , )

,

b a c b a

c b a c b a

b a c

I I I I I

X I I I I I

I I I otherwise

 
 

=  
 + − 

  (1.12) 

Where, 𝐼𝑎 and 𝐼𝑏, and 𝐼𝑐 denote three neighboring pixels. 

Spectrally, the spectral correlation could be separated successfully using inter-band 

prediction. 

Edge-based prediction used in inter-band prediction is implemented through four 

modules as shown in Figure 1.7. 

 Edge detection 

Edge forms when high-intensity changes occur across a direction, there, the gradient 

will be large. Typically, the edge can be detected using the Prewitt operator, first-order 

differential operator, Roberts operator, second-order differential operator, and many 

other operators.  

Until Canny proposed the three strictest criteria [88] to detect edges, there was no 

united standard to appreciate these operators, for natural images, we can detect edges 

with Canny Edge Detectors [89] with good performance, but the calculation time is 

high. We depend on the Canny edge detector to assort edges in the previous band. 
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 Local edge analysis 

Depending on edge analysis we can decide if the detected edge in the last step will be 

used or not. If the current pixel connects with an edge, an appropriate template will 

choose depending on the useful edge direction. Therefore, they set four templates with 

four directions as in Figure 1.8. For each template, they choose to associate pixels as 

closely as possible in the corresponding direction. Template size was 12 pixels for 

each direction, if the pixel was detected in a flat region that has no edge, it will use the 

template with zero direction. 

 

Figure 1.8. Direction template for EBP [63]. 

 Optimal context determination 

According to Figure 1.8 in the last step, the appropriate template was chosen according 

to edge direction but not all of the 12 pixels correlated strongly with the current pixel. 

And in this step, they take the closest six pixels to the current pixel by calculating the 

absolute value of error between each pixel with the current pixel as the optimal context. 
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 Least squares coefficient 

Now we know the optimal context will be used during the production process,  so the 

last step is estimating the prediction value using the SLSQ algorithm with M=1 and 

N=6 instead of 4. 

 Predictor selection 

The prediction selector will calculate the entropy for IMP, EBP, and no prediction 

approach, then will compare their entropy and encoded the lowest entropy value using 

the arithmetic code. 
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2. METHODOLOGY 

 Introduction 

 

Figure 2.1. Full search method block diagram 

The full search method is a method of searching the best matched prediction template 

within a large dataset and needs much more time than other algorithms because it



22 

 

 examines all possibilities, while other algorithms search under certain conditions and 

thus less time. The principal objective of this research is to find new templates specific 

to our four distinct angles 0, 45, 90, 135 degrees so that the compression ratio increases 

as much as possible. 

 The binary representation of patterns 

If we are dealing with pixels, there are two possibilities for each pixel which are zero 

or one. If the pixel was used in prediction then this means that it took binary value 

equals one. In the other case, when it was not used it takes the value zero.  

For example, suppose we have a template compressing seventeen pixels, as in Figure 

2.2, and we want to use a pattern that contains the second, third, seventh, tenth, and 

twelfth pixels that have a yellow color. The corresponding binary value for this pattern 

can be obtained by representing the used pixel as the binary number 1 and the unused 

pixel as the binary number 0, and the result will be this binary code 

01100010010100000. We will henceforth call this binary combination a pattern. 

1 2 3 4 5 

6 7 8 9 10 

11 12 13 14 15 

16 17 X𝑐   

Figure 2.2. A template consisting of 17 

pixels 

 Full Search Method 

Figure 2.1. shows the mechanism of the used algorithm. We will now take a quick look 

at the algorithm to understand it in general, and then we will detail its parts in the 

following sections. As we talked about earlier, the main contribution of this algorithm 

is to find new patterns, to be used in the EBP algorithm, so that the compression ratio 

is high compared to EBP results. 
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First, we will define a pattern that fits with the desired angle, through which we can 

get the best combination, the best combination is the combination through which we 

get the lowest error value between the current pixel value and its predicted value. After 

that, we will search for the best combination within the suggested pattern, so that we 

get a high compression ratio. 

 Selecting test templates and pre-defined tables 

If we use the last 17-pixels template as in Figure 2.2 and want to find the best pattern 

from these 17 pixels using the SLSQ algorithm. The number of attempts that will be 

tested is  217 − 1  which equals 131071 different patterns as in Table 2.1. And for each 

attempt will find the prediction value using SLSQ [65] then the error. If we have a 

dataset with dimensions 512 rows × 512 columns × 224 bands, this means that we will 

use Table 2.1  58,720,256  times while finding the best pattern and this will take a long 

process time. 

Table 2.1. The binary representation for the 17-pixel template 

TEMPLATE NO. BINARY VALUE (17 BITS) 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

. 

. 

. 

. . . 

. 

. 

131069 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

131070 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

131071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 

At the beginning of the search, we calculated the compression ratio for the Indian 

dataset at different template size M using the SLSQ algorithm, and the best practical 

result was at template size M = 12 pixels. For the testing template as shown in Table 

2.2, there is no more difference between M=12 or 16 pixels.  
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Table 2.2. Effect of changing M on CR for Indian dataset 

M 4 8 12 16 

CR 2.378 2.385 2.403 2.404 

 

On the other side, all used templates in the EBP article [63] were 12-pixels in the base. 

Starting from this point, we will begin the process of searching for a new template that 

gives us better compression values, so that the number of pixels used in one pattern 

does not exceed 12 pixels.  

     

     

     

     

Template for 0˚ 

     

     

     

     

Template for 45˚ 

     

     

     

     

     

Template for 90˚ 

     

     

     

     

 

Template for 135˚ 

Figure 2.3. 4×5, 5×5 templates used in prediction best template for 

each angle. 

To do this, we will use the (4×5 or 5×5) templates depending on the angle as shown in 

Figure 2.3. Based on this, the new templates contain 17-pixels for a 0-direction angle, 

15-pixels for a 45-direction angle, and 18-pixels for 90-direction and 135 direction 

angles,   for flat pixels, we did not run a pattern test to find a new template. We used 

the same template as in [63], the number of patterns to be examined will not be  217 −
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1 = 131071, 215 − 1 = 32767, or 218 − 1 = 262143.  Instead, we made some 

changes to reduce the number of permutations by using a pre-defined table.  

This table contains patterns that consist of a specified number  (n) of pixels, n =

8,9,10,11 or 12 which equals to 𝐶(17,8) + 𝐶(17,9) + 𝐶(17,10) + 𝐶(17,11) +

𝐶(17,12) = 24310 + 24310 + 19448 + 12376 + 6188 = 86632 combinations for 

0-direction template as shown in Table 2.3 , 𝐶(15,8) + 𝐶(15,9) + 𝐶(15,10) +

𝐶(15,11) + 𝐶(15,12) = 6435 + 5005 + 3003 + 1365 + 455 = 16263 

combinations for 45-direction template as shown in Table 2.4, and 𝐶(18,8) +

𝐶(18,9) + 𝐶(18,10) + 𝐶(18,11) + 𝐶(18,12) = 43758 + 48620 + 43758 +

31824 + 18564 = 186524 combinations for 90-direction and 135-direction 

templates as shown in Table 2.5. 

Table 2.3. The pre-defined table for the 17-pixel template 

TEMPLATE NO. BINARY VALUE (17 BITS) 

1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

2 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 

3 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 

. 

. 

. 

. . . 

. 

. 

86630 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 

86631 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 

86632 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 

 

This means that we have a template consisting of 15,17, or 18 pixels, but the 

examination will only be done for patterns consisting of (n) pixels so the number of 

test operations will be reduced to sixty percent for the 17-pixels template and 50 

percent for 15-pixels template, and 72 percent for the 18-pixels template as shown in 

last permutation equations. This, in turn, reduces the execution time required for the 

algorithm. 
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Table 2.4. The pre-defined table for the 15-pixel template 

Template No. Binary Value (15 Bits) 

1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

2 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 

3 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 

. 

. 

. 

. . . 

. 

. 

16260 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 

16262 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 

16263 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 

 

Table 2.5. The pre-defined table for the 18-pixel template 

TEMPLATE NO. BINARY VALUE (18 BITS) 

1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

2 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 

3 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 

. 

. 

. 

. . . 

. 

. 

186522 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 

186523 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 

186524 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 

 

 The best local templates 

After specifying the patterns to be evaluated for each angle (86632 patterns for 0-angle, 

16263 for 45-angle, and 186524 for 90 and 135-angles), the next step is to determine 
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the pattern that gives the best result for each pixel in the image taking into account the 

angle of each pixel. This is done by finding and comparing the error values resulting 

from all patterns, then choosing the least error pattern as the following. 

1. Edge detection: We depend on the Canny edge detector to assort edges in the 

previous band. 

2. Local edge analysis: We talked in a previous section about the pre-defined table 

and what and how it was created. Here, based on the angle that was detected, the 

appropriate table for this angle will be chosen.  

18 16 20 58 60 

30 60 69 72 59 

41 52 70 55 60 

20 25 67   

Figure 2.4. A pattern from Template for 0˚. 

3. Best pattern selector: For example, if the table for angle 0 is specified. This table 

will enter a loop with a length equals to the number of combinations in the table, 

during which some commands are executed on each pattern inside the table. Which 

are: 

Optimal context determination: Now a combination was chosen from the table, but 

not all of the pixels correlated strongly with the current pixel. And in this step, they 

take the closest six pixels to the current pixel by calculating the absolute value of 

error between each pixel with the current pixel as the optimal context. We selected 

the pixels within the template in the current band to be sorted.  

Least square coefficient: Now we know the optimal context will be used during the 

production process,  so the last step is estimating the prediction value using the 

SLSQ algorithm. 
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Error comparator: In this step, the error value of the current pixel is calculated, after 

which the error value resulting from the current combination is compared with the 

error value from the previous combination, and the combination that resulted in the 

lowest error values is stored as the best combination for this pixel. After completing 

these processes, we will have obtained a 3-D matrix with the dimensions of the 

input image containing the best pattern for each pixel. 

Suppose we are trying to predict the value of the 0-direction pixel with value 67, and 

now we examining the value of this pixel through the blue pattern which has binary 

value 01100111100111110 as in Figure 2.4. Some pixels in this test pattern do not 

have a strong correlation with the current pixel, only pixels whose value is close to the 

current pixel has a strong correlation with the current pixel. So, these 11 pixels in the 

selected template would be sorted and 6 closest pixels to the current pixel would be 

selected as the optimal context. We selected the pixels within the template in the 

current band to be sorted.  

18 16 20 58 60 

30 60 69 72 59 

41 52 70 55 60 

20 25 67   

Figure 2.5. Closest 6 pixels to the current pixel. 

The 11 pixels in the template within the current band are subtracted from the current 

pixel and 11 difference values are obtained as the following: 51, 47, 37, 7, 2, 5, 15, 3, 

12, 7, 47. These absolute values will be sorted from small to large and the six yellow 

smallest results will enter to SLSQ predictor as in Figure 2.5, the rest pixels will not 

use in calculations. 

4. Angle analyzer: In this stage, we will examine the matrix resulting from the 

previous process, and sort the patterns in 4 tables as in Figure 2.8, each table is 

related to an angle of 0, 45, 90, or 135. 
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5. Binary counter: In this step, the binary counter will arrange the 17 pixels in the 0 

angle table according to the frequency of usage, in other words, what is the most 

used pixel in the table, these pixels will be arranged in descending order. and the 

result will be a best 8-pixel pattern, 9-pixel pattern, 10-pixel pattern, 11-pixel 

pattern, or 12-pixels pattern as in Figure 2.9. 

 

Figure 2.6. A part of the 3-D image. 

To illustrate simply, suppose we have the part of the 3-dimensional image and the 

pixels in blue color are with a 0-direction angle as in last Figure 2.6. 

 
Figure 2.7. the pattern shapes for 0-direction pixels 25,26,38 from 

Figure 2.6. 

And we finished the procedures in the local edge analysis, suppose that pixel number 

25 was determined to have its best value using the pattern has a binary value 

“01010101101111011” while pixel number 26 was determined using the pattern has a 

binary value “11100101011110100”  and pixel number 38 was determined using the 

pattern has a binary value “10100101111110110” and so on, the pattern shapes for 

these pixels are shown in Figure 2.7. 
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All pixels in the hyperspectral image will be distributed according to their angle into 

four tables as follows: 0-direction, 90-direction, 45-direction, 135-direction  angle. 

Figure 2.7 shows that pixel number 25 was predicted using “01010101101111011”, 

pixel 26 using “11100101011110100” and pixel 38 using “10100101111110110”.  

 

Figure 2.8. Best patterns corresponding to the 0˚ angle. 

     

     

     

     
 

     

     

     

     
 

     

     

     

     
 

     

     

     

     
 

     

     

     

     
 

Figure 2.9. The best 5 patterns for the 0˚ angle. 

So, if we put these binary values  in a table, the result will be as in Figure 2.8 which 

shows us 0-direction angle bits. Now for each table, we have a list of 15-bit, 17-bit, or 

18-bit patterns which gives the best prediction corresponding to its angle, this list came 

from all datasets we have, each line in Figure 2.8 consists of 17 bits and indicates the 

best pattern corresponding to its pixel. In the last line, we count how many times each 

bit was used in best-prediction patterns. Thus, if we arrange these 17 bits in the last 

line by most used in descending order, we will obtain the best five patterns having 

8,9,10,11 or 12 bits as we see in Figure 2.9. These patterns refer to 0-direction angle, 
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first figure shows the pattern formed from the best eight pixels. The second is formed 

from the best nine pixels and the fifth figure shows the pattern formed from the best 

twelve pixels. 

Minimum error selector: For each angle we have the best five patterns, using these 

patterns we will find the prediction error matrices, then we can find the Mean Squared 

Error of the Predicted images separately. 

2

1

1
( )

M

ii

i

MSE X X
M =

= −   (2.1) 

Where M is the number of elements for which the average error is calculated. 

 

Figure 2.10. Avg error vs the number of pixels used in a template 

The practical results show that the error rate is inversely proportional to the number of 

pixels used as shown in Figure 2.10. Here we must mention that the time required to 

complete the process of the prediction, increases dramatically with the increase in the 

number of pixels in the pattern, and since the differences in average error are few and 

almost negligible as we see in Figure 2.10. 
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So, we will adopt the average number of pixels which equal to 10 as the best pattern, 

these obtained templates are as shown in Figure 2.12. 

We noticed that the shape of the template is directly proportional to the angle attached 

to it. This confirms that the shape of the pattern used in the prediction positively affects 

the predicted value. These patterns are our local static templates for each angle that 

will use in prediction for the Cuprite dataset, the same process was done to each dataset 

from Jasper, and Yellowstone datasets.  

Now we have a static template for angles equal to 0,45,90 and 135 degrees. The next 

step is to apply the EBP algorithm by using our static templates and get final results 

which were as in Table 3.4 as proposed local. 

Template for 0˚ Template for 45˚ Template for 90˚ Template for 135˚ 

     

     

     

     
 

     

     

     

     
 

     

     

     

     

     
 

     

     

     

     
 

     

     

     

     
 

     

     

     

     
 

     

     

     

     

     
 

     

     

     

     
 

     

     

     

     
 

     

     

     

     
 

     

     

     

     

     
 

     

     

     

     
 

     

     

     

     
 

     

     

     

     
 

     

     

     

     

     
 

     

     

     

     
 

Figure 2.11. Local templates for Cuprite, Calibrated Yellowstone 0, Calibrated 

Yellowstone 11, Uncalibrated Yellowstone 0, Uncalibrated Yellowstone 11, and 

Jasper images. 
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Figure 2.12.(Continue) Local templates for Cuprite, Calibrated Yellowstone 0, 

Calibrated Yellowstone 11, Uncalibrated Yellowstone 0, Uncalibrated Yellowstone 

11, and Jasper images. 

 The best global templates 

As the second part of this work, we want to find a global template for each angle. This 

will be done using the same method in which we found the local static templates. 

From the last section, we will take tables to contain the best-predicted patterns as in 

Figure 2.8 for each dataset and angle, the result is 24 tables from 6 datasets and 4 tables 

for each one. By merging the tables for each angle with each other, we have 4 new 

tables, each one refers to its angle, now for each table, we have a list of 15-bit, 17-bit, 

or 18-bit patterns which gives the best prediction corresponding to its angle, this list 

came from all datasets we have.  

     

     

     

     

Template for 0˚ 

     

     

     

     

Template for 45˚ 

     

     

     

     

     

Template for 90˚ 

     

     

     

     

Template for 135˚ 

Figure 2.13. Static global templates for the proposed strategy 

As in Figure 2.8, each line consists of 17 bits and indicates the best pattern 

corresponding to its pixel. In the last line, we count how many times each bit was used 

in best-prediction patterns. Thus, if we arrange these 17 bits in the last line by most 
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used in descending order, we could obtain the pattern with the best 10 bits. We got the 

templates as shown in Figure 2.13, and we noticed that the shape of the templates 

differs slightly from the local templates. Then by applying the EBP algorithm using 

our global templates and get the final results which were as in Table 3.4, as proposed 

global. 

We note that the proposed local results are better overall by a slight difference from 

the proposed global. But if we want to use the local templates during compression, this 

means the new cost of this extra operation.  

The cost is to find the appropriate local templates for each image at the sending part 

before transmission and finding a way to store and send these templates to the receiver 

side every time the image changes. But if you have enough computation power and 

limited bandwidth, image-based compression will be a better choice. Besides, the bit 

size for 4-directional templates is so small. So, we can store each template as a 24-bit 

binary sequence (the length of each block is 24). 
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3. RESULTS AND DISCUSSION 

In this chapter, we will discuss and present through equations and graphs what has 

been accomplished in this research. Starting with rewriting the algorithms in old 

articles and ending with the proposed work that we have done. This chapter 

demonstrates the simulation results we conducted for the algorithms previously 

explained in chapter 2,  utilized to achieve a better compression ratio, and outlines the 

simulation results and some analysis for evaluating the efficacy of our proposed 

methodology, which are described in chapter 3. Besides, we presented a fair 

comparison between our proposed methodology and the conventional approaches for 

the SLSQ algorithm.  

The conducted experiments were performed in a MATLAB software environment. 

MATLAB software is widely used for scientific research approaches and utilized in 

this thesis to design, analyze, and evaluate the proposed schemes. Besides, we wrote 

and tested the presented algorithms in MATLAB software. All tests were examined on 

a Laptop with 2.70 GHz (4 CPUs) and 8G RAM. 

Section 3.1 introduces the mathematical application of an SLSQ algorithm [65] and 

commentary on the results. In section 3.2, we presented the results of the EBP 

algorithm and the predictor selection [63]. Finally, in the last section 3.3, we presented 

the results of our proposed full search algorithm compared to the old algorithms. Also, 

the results obtained will be discussed in parallel. 

 SLSQ 

 Mathematics 

Here, we apply the equations for the SLSQ algorithm which was discussed in chapter 

1 as shown in Figure 1.5 [65]. Using one previous band N=1 and four neighboring 

pixels M=4 as shown in Equation(1.1) to Equation(1.6).
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Where ( ,1)x i  and ( ,0)x i  are the pixel number i  in the pattern in the previous band 

and current band respectively. 
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  (3.2) 

( ) 0.T TC C C X =   (3.3) 

 0 1 =   (3.4) 

1(0,0) . (0,1)X X=   (3.5) 

Where (0,0)X  is the pixel in the current band which we want to predict, and (0,1)X  

is the pixel in the previous band at the same location as (0,0)X in the current band. 

(0,0) (0,0) (0,0)Error X X = −
 

  (3.6) 

 Results 

We implemented this algorithm on Matlab and experimented using Cuprite, Jasper 

Ridge, Calibrated Yellowstone 0, Calibrated Yellowstone 11, Uncalibrated 

Yellowstone 0, and Uncalibrated Yellowstone 11 datasets as shown in Table 3.1. 

Next, we calculate the compression ratio for the Indian dataset, this will be done by 

changing the number of pixels in the template between 4 and 16. The best compression 

ratio was at M=12. Although M = 16 has a value greater than M = 12, the difference 

is small and negligible. Besides, increasing the number of pixels leads to a large 

increase in the time required to implement the algorithm. For this reason, M = 12 was 

adopted as the best value. 
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Table 3.1. Low-complexity lossless compression of AVIRIS images when M=4 N=1 

 SLSQ [65] Proposed-SLSQ 

Jasper Ridge 3.15 3.17 

Cuprite 3.15 3.16 

Calibrated Yellowstone 0 3.71 3.81 

Calibrated Yellowstone 11 4.3 4.19 

Uncalibrated Yellowstone 0 2.41 2.37 

Uncalibrated Yellowstone 11 2.67 2.54 

 

The results for proposed SLSQ are better by a slight difference for Jasper Ridge, 

Cuprite, and Calibrated Yellowstone 0. While we did not get the expected results in 

Calibrated Yellowstone 11, Uncalibrated Yellowstone 0, and Uncalibrated 

Yellowstone 11, the reason for that is due to a difference in the source code of the 

SLSQ algorithm also, each scene of these images interacts with a different sensitivity 

than the rest of the images, given that the value of M is small and equals 4, while if we 

change the value of M  then these scenes respond to the compression algorithm will 

be better as we see in Table 3.2 which shown the result for different values of M using 

SLSQ algorithm with template size changes between 4, 8, 12, and 16 pixels.  

Table 3.2. Effect of changing M on CR for Indian dataset 

at N=1 

M 4 8 12 16 

CR 2.378 2.385 2.403 2.404 

 

 Three Modes EBP and Predictor Selection 

 Results 

The prediction selector calculates the entropy for the intra-band approach, inter-band 

approach, and no prediction approach, and it compares their entropies. Then the 

minimum entropy will enter the entropy decoder as the best prediction approach. 

Figure 3.1 to Figure 3.6 shows the graphs for these approaches for all images that we 
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used, and Table 3.3 shows the result of compression ratios obtained for the same 

datasets compared with the EBP article [63]. 

 

Figure 3.1. Entropy plot for different prediction schemes for Cuprite. 

 

Figure 3.2. Entropy plot for different prediction schemes for Calibrated 

AVIRIS SC11. 
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Figure 3.3. Entropy plot for different prediction schemes for Calibrated AVIRIS 

SC0. 

 

Figure 3.4. Entropy plot for different prediction schemes for Un-Calibrated AVIRIS 

SC11. 
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Figure 3.5. Entropy plot for different prediction schemes for Un-Calibrated 

AVIRIS SC0. 

 

Figure 3.6.Entropy plot for different prediction schemes for Jasper Ridge. 
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Table 3.3. Compression ratios obtained for three-mode EBP 

when M=6, N=1. 

 EBP[63] Proposed-EBP 

Jasper Ridge 3.25 3.39 

Cuprite 3.29 3.27 

Calibrated 

Yellowstone 0 

3.77 3.86 

Calibrated 

Yellowstone 11 

4.15 4.28 

Uncalibrated 

Yellowstone 0 

2.45 2.43 

Uncalibrated 

Yellowstone 11 

2.74 2.62 

 

 Discussion 

After obtaining spatial prediction, spectral prediction, and no prediction for each band 

in all datasets, we evaluated entropy. As shown in the last section, generally, we notice 

that the spectral prediction was preferable in most bands, except for some of the bands, 

where the lowest predictive was on spatial prediction as in the bands from 1-8 and 107-

114  and some were better with no prediction as in the bands from 153-153.  

This applies to the rest of the datasets with slight differences in the band numbers. As 

we can see in the table, the compression ratio results we obtained were good compared 

to Jasper Ridge, Calibrated Yellowstone 0, Calibrated Yellowstone 11, and roughly 

equal to Cuprite, Uncalibrated Yellowstone 0, Uncalibrated Yellowstone 11. 

 Full Search 

In the last chapter, we discussed the full search algorithm theoretically which is the 

main part of the research. And in this section, we will show and discuss the obtained 

results of the full search algorithm. 
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 Results 

We applied the full search algorithm on Cuprite, Jasper Ridge, Calibrated Yellowstone 

0, Calibrated Yellowstone 11, Uncalibrated Yellowstone 0, and Uncalibrated 

Yellowstone 11 images and the results were as shown in Table 3.4. 

Table 3.4. CR results for the proposed full search strategy 
 

SLSQ[65] EBP[63] Proposed-

global 

Proposed -

local 

Jasper Ridge 3.15 3.25 3.24 3.28 

Cuprite 3.15 3.29 3.30 3.32 

Calibrated 

Yellowstone 0 

3.71 3.77 3.79 3.83 

Calibrated 

Yellowstone 11 

4.06 4.15 4.24 4.27 

Uncalibrated 

Yellowstone 0 

2.41 2.45 2.85 2.89 

Uncalibrated 

Yellowstone 11 

2.57 2.62 3.09 3.15 

Avg 3.18 3.26 3.41 3.45 

 Discussion 

The results for local templates are better overall by a slight difference from the global 

templates. This is due to the suitability between the image and its pattern, while the 

global patterns are inferred from the average of all the local patterns from all images. 

But if we want to use the local templates during compression, this means the new cost 

of this extra operation. The cost is to find the appropriate local templates for each 

image at the sending part before transmission and finding a way to store and send these 

templates to the receiver side every time the image changes. But if we have enough 

computation power and limited bandwidth, image-based compression will be a better 

choice. Besides, the bit size for 4-directional templates is so small. so, we can store 

each template as a 24-bit binary sequence. As we can see from the results Table 3.4, 

the un-calibrated images gave much better compression efficiency compared to their 

calibrated counterparts, because the calibration process depends on rectifying and 
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adjusting precisely according to a predetermined standard, and therefore the calibrated 

images have been manipulated even to a small extent in their pixels, on the contrary. 

The non-calibrated images are preserved as they were done without rectifying, 

meaning that the relationship between pixels remains constant, and this increases the 

accuracy of determining the angle of each pixel and increases the chance of obtaining 

better results in prediction pixels. 

As for the computational cost of a full search algorithm, the largest part of the cost is 

processing the pre-defined table, as it is repeated 16.2 thousand times for 45-direction 

pixel, 86.6 thousand times for 0-direction pixel, and 186.5 thousand times for 90-135-

direction pixels, using Equation(1.9) to generate the optimal coefficients, which need 

the computation of the predicted pixel. By using the normal equation method, the 

linear system can be solved with 

2.
3

N
M N
 

+ 
   floating-point operations per pixel. 

Table 3.5 illustrate  number of iterations per pixel for SLSQ, EBP, and proposed 

method while finding the compression ratios. We conclude from this table that we 

abled to obtain better results with fewer iterations using the same algorithm as in EBP 

algorithm, the reason for the less time is due to the size of the pattern that consists of 

2 pixels fewer than EBP.  

Table 3.5. Number of iterations per pixel for SLSQ, EBP, and 

proposed method 

SLSQ[65] M=4 EBP[63] M=12 Proposed M=10 

4.33 12.33 10.33 

 

Table 3.6 shows the number of iterations used to find best template in each image. It 

must be noted here that the number of pixels in the template M varies between 8-12 

pixels during the process of predicting the best templates, while the number of pixels 

in the template M during the process of finding compression ratio as constant and 

equals to ten, and the number of the previous band N is always fixed and equals 1. 

Figure 3.7 shows the trend of the computational complexity of our predictive model, 

in terms of the number of operations (Y-axis) that are required for the solving of the 

linear system for a pixel, by using configurations with different parameters (X-axis). 
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Figure 3.7. The number of operations required to solve the linear 

system Equation(1.9) 

Table 3.6.  Number of iterations used to find best template in all 

images 
 

d i*j s number of 

iterations 

Jasper Ridge 224 512*512 186524 10.95
12*10  

Cuprite 224 512*512 186524 10.95
12*10  

Calibrated 

Yellowstone 0 

224 512*677 186524 14.48
12*10  

Calibrated 

Yellowstone 11 

224 512*677 186524 14.48
12*10  

Uncalibrated 

Yellowstone 0 

224 512*680 186524 14.54
12*10  

Uncalibrated 

Yellowstone 11 

224 512*680 186524 14.54
12*10  

 

On the other hand, it must be noted that the max number of iterations that are applied 

to predict the complete image is calculated through the equation ( ). . .O b i j s , where b 

is the number of bands, i and j are image dimensions and s is the number of 
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combinations in the predefined table. If we apply the last equation on our datasets the 

result will be as shown in Table 3.6. 

In this table, we found the max number of iterations when all pixels are 90 or 135 

degrees. But, logically, the pixels are distributed between all the angles, and this means 

that the combinations as inside Table 3.6 are much less than what is mentioned as in 

Table 2.3 - Table 2.5, and therefore the number of operations will be less.
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4. CONCLUSIONS AND FUTURE WORK 

Compression of hyperspectral images is a very important process to achieve the 

transfer of images from space to earth stations without losing important data. 

Hyperspectral imaging can be viewed as three-dimensional data or data cubes. 

Hyperspectral imaging is a potent technique used to obtain precise and accurate 

information on surface and material contents. Superscalar sensors possess both spatial 

and spectral resolution. This massive volume of data slows down transmission and 

processing rates. 

Unfortunately, most of the algorithms that are developed suffer from some problems 

such as low image compression ratio, the relatively long time that the algorithm takes 

to work, or the difficulty of applying it in practice. So, our main contribution was in 

finding a way to obtain a new template pattern specific to every angle by which we 

can increase the compression ratio as much as possible.  

The full search is a method of searching within a large database so that it examines all 

available options without exception to obtain the best result. A full search needs much 

more time than other algorithms because it examines all possibilities while other 

algorithms search under certain conditions and thus less time. This work divided into 

two parts first is finding the local static templates for angles equal to 0, 45, 90, and 135 

degrees, for the Cuprite, Jasper, and Yellowstone images. The second is finding the 

global Templates used for all datasets, for two parts, template size was 15-bit, 17-bit, 

or 18-bit depending on the angle, and then finding the compression ratios for datasets 

using these templates. 

From the obtained results, we notice that the shape of each template is directly 

proportional to the angle attached to it, and the shape of the global templates differs 

slightly from the local templates. The results for local templates are better overall by 

a slight difference from the global templates, this is due to the suitability between the 

image and its pattern. While the global patterns are inferred from the average of all the 

local patterns from all images. 
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But if we want to use the local templates during compression, this means the new cost 

of this extra operation. The cost is to find the appropriate local templates for each 

image at the sending part before transmission and finding a way to store and send these 

templates to the receiver side every time the image changes. But if you have enough 

computation power and limited bandwidth, image-based compression will be a better 

choice. Besides, the bit size for 4-directional templates is so small. so, we can store 

each template as a 24-bit binary sequence. 

Moreover, in future works we will try to control the time spent through this algorithm 

and make it as small as possible, we will use a new algorithm named Particle Swarm 

Optimization PSO with different template window size to achieve a better time, and 

we will work to get better performance and better accuracy for the proposed method 

using band ordering. 
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