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ANTI SWING CONTROL OF A SINGLE, DOUBLE AND TRIPLE LINK
ROTARY INVERTED PENDULUM WITH NONLINEAR FRICTION
MODELS

ABSTRACT

RIPS is one of the fundamental problems in the control theory field. To verify the
modern control theory, RIPS may be considered as a better example in control
engineering. It is the best model for the attitude control such as space booster, rocket,
satellite, aircraft stabilization in the turbulent air-flow, humanoid robots, etc.... The
RIPS is a highly non-linear and open-loop unstable system that makes the control more
challenging. It is an intriguing subject from the control point of view due to its intrinsic
nonlinearity. The RIPS include a nonlinearity due to the frictions in the joints.
Common control approaches require a good knowledge of the frictions in the joints of
the system and accurate friction estimation to obtain the desired performances of
feedback controllers. However, the frictions have high non-linear values, which result
in steady-state errors, limit cycles, and poor performance of the system. It has an
influence on the system's response, and it should be considered seriously. Therefore,
friction estimation has the potential to ameliorate the quality and dynamic behavior of
the system.

One of the aims of this thesis is to estimate the nonlinear frictions in the triple link
rotary inverted pendulum. In this research, novel NFFEMs are developed to estimate
the joint friction coefficients of three link rotary pendulum and compared with
AFEMSs. The different versions of AFEMs and NFFEMs are generated based on each
of the following friction estimation models: NCFM, LFM, and NLFM. The aim of this
friction study is to obtain joint friction models which depend on both velocity and
acceleration in a large range of motion trajectory that involves difficult and sudden
large changes. In the proposed NFFEMSs, joint velocities and accelerations of the
TLRIP are used as the input variables of the NF system trained by using a RBNN.
Several experiments are conducted on the TLRIP system to verify the NFFEMs. In
order to determine the estimation performance of the friction models, total RMSEs
between position simulation results obtained from each joint friction model and
encoders in the experimental setup are computed. Based on the position RMSEs, the
NFFEMs produce better estimation results than the AFEMs. Among the novel
NFFEMs, the NFNLM gives the best results.

Another aim of this thesis is to develop non-linear controllers for the stabilization and
anti-swing control problems. PID, LQR and swing-up based LQR controllers are
developed for the stability control of the SLRIP. Moreover, FLQR and FLQG
controllers are developed for the stability control of DLRIP and TLRIP. The aim of
the stability control is to study the dynamic performance of both FLQR and FLQG
controllers and to compare them with the classical LQR and LQG controllers,
respectively. To determine the control performance of the controllers, Ts, PO, Ess, MP
and the total RMSEs of the joint positions are computed. Furthermore, the dynamic
responses of the controllers were compared based on robustness analysis under internal
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and external disturbances. To show the control performance of the controllers, several
simulations were conducted. Based on the comparative results, the dynamic responses
of both FLQR and FLQG controllers produce better results than the dynamic responses
of the classical LQR and LQG controllers, respectively. Moreover, the robustness
results indicate that the FLQR and FLQG controllers under the internal and external
disturbances were effective. Furthermore, an anti-swing control of the SLRIP, DLRIP
and TLRIP is developed. To determine the control performance of the anti-swing
controllers, different control parameters are computed, such as Ts, MP, Ess, and
RMSEs of the joint positions. Based on the comparative results, the LQR controller
produces better results than the classical PID for the SLRIP. Moreover, a novel RBNF-
LQR controller is developed for an anti-swing control of the DLRIP and TLRIP. The
objective of this research is to study the RBNF-LQR controller and to compare it with
the FLQR and the LQR controllers. In the proposed RBNF-LQR controllers, the
positions and velocities of state variables multiplied by their LQR gains are trained by
using RBNNSs architecture. The outputs of the two RBNNs are used as the input
variables of the fuzzy controller. The novel architecture of the RBNF controller is
developed in order to obtain better control performance than the classical ANFIS. To
show the control performance of the anti-swing controllers, simulation and
experiments results are given and compared. According to the comparative results, the
RBNF-LQR anti-swing controller produces better results than FLQR and LQR.
Furthermore, the performance of the three controllers developed was compared based
on robustness analysis under external disturbance. The results obtained here indicate
that the RBNF-LQR anti-swing controller produces better performance than others in
term of vibration suppression capability.

Keywords: Anti-swing Control, Fuzzy Based LQR and LQG Control, Nonlinear

Friction Joint Estimation Model, Radial Basis Function Neural Network Control,
Single Double Triple Link Rotary Pendulums.
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DOGRUSAL OLMAYAN SURTUNME MODELLERIYLE TEK, CiFT VE UC
BAGLI DONEL TERS SARKACIN SALINIM ONLEYiCi KONTROLU

OZET

Donel ters sarkag sistemi, kontrol teorisi alanindaki temel problemlerden biridir. Donel
ters sarkac sistemleri, kontrol miihendisliginde modern kontrol teorisinin uygulanmasi
icin bir 6rnek deneysel diizenek olarak kullanilmaktadir. Roketlerin, uydularin ve
ucaklarin tiirbiilansli hava akis1 igerisindeki konumlariin kontrolii, insansi robotlarin
benzetimi esnasinda model olarak sarka¢ sistemleri kullanilmaktadir. Doner ters
sarkag sistemi, kontrolii daha zor hale getiren son derece dogrusal olmayan ve agik
dongiilii kararsiz bir sistemdir. Dogrusal olmamasi nedeniyle kontrol agisindan ilgi
¢ekici bir konudur. Doner ters sarkac¢ sistemi, eklemlerdeki siirtiinmelerden
kaynaklanan bir dogrusal olmayan davranislar sergiler. Yaygin kontrol yaklagimlari,
geri besleme denetleyicileri ile sistemin kontroliinde istenen performanslari elde
edilebilmesi i¢in sistemin eklemlerindeki siirtiinmeler hakkinda net bir bilgi ve dogru
slirtinme tahmini modeller gerektirir. Bununla birlikte, stirtiinmelerin yiiksek dogrusal
olmayan ifadeleri igermesi, kararli durum hatalarina, sinir dongiilerine ve sistemin
kotii performanst gostermesine neden olmaktadir. Sistemin tepkisi iizerinde dogrudan
etkisi vardir ve dikkate alinmalidir. Bu nedenle, siirtiinme tahmini, sistemin kontrol
performansini ve dinamik davranisini iyilestirme potansiyeline sahiptir.

Bu tezin amagclarindan biri, li¢ bagli ters donel sarkagtaki dogrusal olmayan
stirtiinmeleri tahmin etmektir. Bu arastirmada, ii¢ bagli déner sarkacin eklem siirtiinme
katsayilarini tahmin etmek ve uyarlamali siirtinme modelleriyle karsilastirmak i¢in
yeni noro-bulanik siirtinme tahmin modelleri gelistirilmistir. Uyarlanabilir siirtiinme
modellerinin ve ndro-bulanik siirtinme tahmin modellerinin farkli versiyonlari,
asagidaki siirtinme tahmin modellerinin her birine dayali olarak olusturulmaktadir:
Konservatif olmayan siirtiinme modeli, dogrusal siirtiinme modeli ve dogrusal
olmayan siirtinme modeli. Bu siirtinme ¢alismasinin amaci, zor ve ani blyiik
degisiklikleri igeren genis bir hareket yoriingesinde hem hiza hem de ivmeye bagh
olan eklem siirtinme modellerini elde etmektir. Onerilen ndro-bulanik siirtiinme
tahmin modellerinde, ii¢ bagli doner ters sarkacin eklem hizlar1 ve ivmeleri, radyal
tabanli bir sinir ag1 kullanilarak egitilen noro-bulanik systemin, girdi degiskenleri
olarak kullanilmistir. Noro-bulanik siirtlinme tahmin modellerini dogrulamak igin ii¢
bagli donel ters sarka¢ sistemi lizerinde bazi deneyler yapilmistir. Siirtlinme
modellerinin tahmin performansinin belirlenmesi i¢in her bir eklem siirtiinme
modelinden elde edilen konum simiilasyon sonuclar1 ile deney diizenegindeki
kodlayicilar arasindaki toplam kok ortalama kare hatalar1 hesaplanmistir. Konum kokii
ortalama kare hatalarina dayali olarak, ndro-bulanik siirtlinme tahmin modelleri, noro-
bulanik siirtiinme tahmin modellerinden daha iyi tahmin sonuglar1 iiretmistir. Yeni
noro-bulanik siirtinme tahmin modelleri arasinda, ndro-bulanik dogrusal olmayan
stirtlinme tahmin modeli en iyi sonuglar1 vermektedir.

Bu tezin bir diger amaci, stabilizasyon ve salinim onleyici kontrol problemleri i¢in
dogrusal olmayan kontrolorler gelistirmektir. Orantili integral tlirev, dogrusal
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kuadratik regiilator ve salinim tabanli dogrusal kuadratik regiilator denetleyicileri, tek
bagli donel ters sarkacin stabilizasyon kontrolii i¢in gelistirilmistir. Ayrica, ¢ift ve li¢
bagli donel ters sarkacin stabilizasyon kontrolii i¢in bulanik tabanli dogrusal kuadratik
regiilator ve bulanik tabanli dogrusal ikinci dereceden gauss kontroldrleri
gelistirilmistir. Stabilite kontroliiniin amaci, hem bulanik tabanli dogrusal kuadratik
regiilator hem de bulanik tabanli dogrusal ikinci dereceden gauss kontroldrlerinin
dinamik performansii incelemek ve bunlar1 sirasiyla klasik dogrusal kuadratik
regiilator ve dogrusal ikinci dereceden gauss kontrolorleriyle karsilastirmaktir.
Kontrolorlerin kontrol performansini belirlemek igin, yerlesme siiresi, pik asimi, sabit
durum hatasi, maksimum piki ve eklem konumlarmin toplam kok ortalama kare
hatalar1 hesaplanir. Ayrica, kontrolorlerin dinamik tepkileri, i¢ ve dis bozucu etkiler
altinda saglamlik (giirbiizliik) analizine dayali olarak karsilastirilmistir. Kontrolorlerin
kontrol performansini gostermek i¢in bazi simiilasyonlar gergeklestirilmistir.
Karsilagtirmali sonuglara dayanarak, hem bulanik tabanli dogrusal kuadratik regiilator
hem de bulanik tabanli dogrusal ikinci dereceden gauss kontrolorlerinin dinamik
yanitlari, sirasiyla klasik dogrusal kuadratik regiilator ve dogrusal ikinci dereceden
gauss kontrolorlerinin dinamik yanitlarindan daha iyi sonuclar tiretmektedir. Dahast,
saglamlik sonuglari, i¢ ve dis bozucu etkiler altindaki bulanik tabanli dogrusal
kuadratik regiilator ve bulanik tabanli dogrusal ikinci dereceden gauss kontroldrlerinin
etkili oldugunu gostermektedir. Ayrica, tek bagl ters donel sarkag, ¢ift bagli ters donel
sarkag, ve li¢c bagli donel ters sarkag i¢in bir salinim 6nleyici kontrolii gelistirilmistir.
Salinim oOnleyici kontrolorlerin  kontrol performansint belirlemek igin, eklem
konumlarinin yerlesme stiresi, sabit durum hatasi, maksimum piki ve eklem
konumlarinin toplam kok ortalama kare hatalar1 gibi farkli kontrol parametreleri
hesaplanmaktadir. Karsilastirmali sonuglara gore, dogrusal kuadratik regiilator
kontrolorii tek bagli ters donel sarkag i¢in klasik orantil integral tiirev kontroldriinden
daha iyi sonuglar vermistir. Dahasi, ¢ift bagli doner ters sarkag ve ii¢c bagli doner ters
sarkacin anti-salinim kontrolii i¢in yeni bir radyal temel néro-bulanik tabanli dogrusal
karesel regiilator denetleyici gelistirilmistir. Bu aragtirmanin amaci, radyal temel néro-
bulanik tabanli dogrusal kuadratik diizenleyici denetleyiciyi incelemek ve onu bulanik
tabanli dogrusal karesel diizenleyici ve dogrusal karesel diizenleyici denetleyicileri ile
karsilastirmaktir. Onerilen radyal temel noro-bulamk tabanli dogrusal kuadratik
diizenleyici denetleyicilerde, dogrusal karesel diizenleyici kazanimlariyla carpilan
durum degigkenlerinin konumlar1 ve hizlari, radyal temel yapay sinir aglari mimarisi
kullanilarak egitilmektedir. Iki radyal temelli sinir agnin ciktilar, bulanik
denetleyicinin giris degiskenleri olarak kullanilmistir. Radyal temel neuro-fuzzy
denetleyicinin yeni mimarisi, klasik uyarlanabilir néro-bulanik ¢ikarim sisteminden
daha 1iyi kontrol performansi elde etmek icin gelistirilmistir. Salinim Onleyici
kontroldrlerin kontrol performansin1 gostermek i¢in simiilasyon ve deney sonuglari
verilmis ve karsilastirilmistir. Karsilastirmali sonuglara gore, radyal temel noro-
bulanik tabanli dogrusal kuadratik diizenleyici salinim 6nleyici denetleyicisi, bulanik
tabanli dogrusal kuadratik diizenleyici ve dogrusal kuadtarik diizenleyiciden daha iyi
sonuglar vermektedir. Ayrica, gelistirilen {i¢ denetleyicinin performansi, harici bozucu
etkiler altindaki saglamlik analizine dayali olarak karsilastirilmistir. Burada elde
edilen sonuclar, radyal temel noro-bulanik tabanli dogrusal karesel regiilator anti-
salimim denetleyicisinin titresim bastirma 6zelligi acisindan digerlerinden daha iyi
performans tirettigini géstermektedir.
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INTRODUCTION

PS is the most well-known equipment in the field of ACE. PS is an open-loop and
unstable system used in different application such as Segway human transporter,
missile launcher or humanoid robot, etc.... Therefore, it has been a benchmark control
problem in the field of ACE which verifies a modern control theory. It is an expensive
system, can be designed and installed in a research laboratory for control education.
RIPS is one of the most interesting and popular mechatronic systems in the ACE field,
and it can exist in many different forms. RIPS is a challenging problem in the area of
control engineering applications in linear and nonlinear control. RIPS can be called
“Furuta Pendulum”. Furuta pendulum is a SLRIP. It consists of a driven arm which
rotates in the horizontal plane and a pendulum attached to the extremity of the base
arm which rotate in the vertical plane. Furuta pendulum was developed by K. Furuta
at Tokyo Institute of Technology and was called the “TITECH pendulum”. Due to the
gravitational forces and the coupling arising from the Coriolis and centripetal forces,

RIPS is underactuated, unstable and extremely nonlinear.

RIPS include nonlinearity due to the frictions in the joints. RIPS is the most convenient
example to understand the influence of the joint frictions on the performance of
feedback controllers, which aim to stabilise the pendulum in the upward unstable
position and the downward stable position. Furthermore, frictions can have high
nonlinear values which result in steady-state errors, limit cycles, and poor performance
of the system. It influences the system’s control response that should be considered
seriously. Therefore, friction estimation has the potential to ameliorate the quality and
dynamic behavior of the system. In this thesis, joint frictions of the TLRIP are
examined based on its experimental and simulation dynamic responses. TLRIP might
be considered as the most appropriate mechanical setup to investigate friction
phenomena and understand the frictions’ influence in the dynamics of any mechanical

system.



In this work, three different friction estimation models such as Non-Conservative,
Linear and Nonlinear friction models are compared to estimate the joint frictions of
the TLRIP developed in our laboratory. NCFM considers only viscous frictions. LFM
is dependent on Coulomb and viscous frictions. The NLFM is the sum of five types of
frictions: the zero drift error of friction, the Coulomb friction, the viscous friction, and
two experimental frictions. Based on comparative experimental friction analysis, the
joint frictions of the TLRIP are estimated more effectively using an NLFM. Moreover,
AFEMs were developed to estimate the frictions in three pendulums’ joints of the
TLRIP and compared with existing friction estimation models NCFM, LFM, and
NLFM. Joint accelerations were classified into three groups such as low, medium and
high. The adaptive friction coefficients were optimised based on this classification of
acceleration. Based on the position RMSEs obtained from each joint friction model,
the AFEMs were better than the existing friction estimation models (NCFM, LFM,
and NLFM). Among the friction estimation models, the best results were produced by
ANLFM. Besides, NFFEMs are developed to estimate the joint friction coefficients in
a TLRIP system and compared with the AFEMs. The different versions of AFEMs and
NFFEMs are generated based on each of the following friction estimation models:
NCFM, LFM, and NLFM. The aim of this study is to obtain joint friction models which
depend on both velocity and acceleration in a large range of motion trajectory that
involves difficult and sudden large changes. In the proposed NFFEMs, joint velocities
and accelerations of the TLRIP are used as the input variables of the NF system trained
by using a Radial RBNN. Several experiments are conducted on TLRIP system to
verify the NFFEMs. In order to determine the estimation performance of the friction
models, RMSEs between position simulation results obtained from each joint friction
model and encoders in the experimental setup are computed. Based on the RMSES’
position, the NFFEMs produce better estimation results than the AFEMs. Among
NFFEMs, the NFNLM gives the best results.

The friction study has three important contributions to the literature. Firstly, all friction
models in the literature depend only on velocity. However, the friction model
developed here depends on both velocity and acceleration. This approach has enabled
us to obtain a two-dimensional friction model. Secondly, the coefficients of all friction

models in the literature were constant when the physical guantities change. On the



other hand, the coefficients of the friction models in this work vary depending on the
state of the velocity and acceleration. Hence, this friction model allows for better
estimation of the effects of friction in different velocity and acceleration conditions.
Thirdly, much of existing researches in the literature have studied only the frictions of
the linear motion which depends on linear velocity and force. This work examines

frictions on the joints which have hard rotational motions.

In this work, the stability control problem is studied for the SLRIP, DLRIP and TLRIP
systems, respectively. For the stability control problem of the SLRIP, a PID, LQR and
swing-up based LQR controllers are developed and compared under external
disturbance. The robustness results indicate that the LQR controller under external
disturbances was effective. Moreover, for stability control of the DLRIP and TLRIP
systems, FLQR and FLQG controllers are developed. The aim is to study dynamic
performance analysis of both FLQR and FLQG controllers and to compare them with
the classical LQR and LQG controllers, respectively. A dynamic mechanical
simulation model of the system was obtained using both the numerically
SimMechanics toolbox in MATLAB and the analytically dynamic nonlinear equations.
To determine the control performance of the controllers, T, PO, Eg, and the RMSEs
of the joint positions are computed. Furthermore, the dynamic responses of the
controllers were compared based on robustness analysis under internal and external
disturbances. To show the control performance of the controllers, several simulations
were conducted. Based on the comparative results, the dynamic responses of both
FLQR and FLQG controllers produce better results than the dynamic responses of the
classical LQR and LQG controllers, respectively. Moreover, the robustness results
indicate that the FLQR and FLQG controllers under the internal and external

disturbances were effective.

In this work, anti-swing control of the SLRIP, DLRIP and TLRIP is developed. To
determine the control performance of the anti-swing controllers, different control
parameters are computed such as Tg, MP, Eg, and the RMSEs of the joint positions.
Based on the robustness comparative results, the LQR controller produces better
results than classical PID under external disturbance for the SLRIP. Moreover, RBNF-
LQR controller is developed for an anti-swing control of the DLRIP and TLRIP. The
objective of this work is to study the RBNF-LQR controller and to compare it with a

3



FLQR and the LQR controllers. In the proposed RBNF-LQR controllers, the positions
and velocities of state variables multiplied by their LQR gains are trained by using
RBNNs architecture. The output of the two RBNNS are used as the input variables of
the fuzzy controller. The novel architecture of RBNF controller is developed in order
to obtain better control performance than the classical ANFIS. According to the
comparative results, the RBNF-LQR anti-swing controller produces better results than
FLQR and LQR. Furthermore, the performance of three controllers developed was
compared based on robustness analysis under external disturbance. Moreover, to show
the control performance of the anti-swing controllers, simulation and experiments
results are given and compared.The results obtained here indicate that the RBNF-LQR
anti-swing controller has better performance than others in term of the vibration

suppression capability. This thesis is organized as follows:

The first chapter deals with the overview of the PS: working principles, types,
classification and application of the IPS are described. A detailed literature survey of
IPS is provided, and the structure of the RIPS is investigated. Definition and

contributions of the thesis are presented.

The second chapter investigates kinematic model, nonlinear dynamic model, Jacobian
and dynamic simulation of the SLRIP, DLRIP and TLRIP systems. The kinematic
model of each system is derived based on the DH convention. Rotation and homogeneous
transformation matrices between coordinates are calculated. The nonlinear dynamic
equations of each system are obtained by the Newton-Euler method and explained in
details. The nonlinear dynamic equations are obtained based on the calculated rotation
and homogeneous transformation matrices. The Jacobian matrix of the system is
calculated and used to estimate the best length of each link. Dynamic comparison
between the obtained results from both nonlinear mathematical and the
Matlab/SimMechanics models is described. Finally, inertia analysis of the vertical

arms of the TLRIP is given.

In the third chapter, novel approaches to estimate the joint friction coefficients of three
link rotary pendulum are explained in detailed. Firstly, three NCFM, LFM, NLFM are
compared to estimate the joint frictions of the TLRIP developed in our laboratory.

Secondly, AFEMs were developed to estimate the frictions in three pendulums’ joints



of the TLRIP and compared with NCFM, LFM, NLFM. Finally, NFFEMs were
developed to estimate the joint friction coefficients in TLRIP and compared with an
AFEMs. NFFEMs are developed in order to obtain joint friction models which, depend
on both velocity and acceleration in a large range of motion trajectory that involves
difficult and sudden large changes. In the proposed NFFEMs, joint velocities and
accelerations of the TLRIP are used as the input variables of the NF system trained by
using an RBNN.

In the fourth chapter, stability and anti-swing control problems of the SLRIP, DLRIP
and TLRIP systems are explained. PID, LQR and swing-up based LQR controllers are
developed for stabilisation control problem of the SLRIP. Furthermore, FLQR and
FLQG controllers are developed for stability control of DLRIP and TLRIP. FLQR and
FLQG controllers are compared with the LQR and LQG controllers, respectively. The
dynamic responses of the controllers were compared based on robustness analysis such
as under noises, internal and external disturbances. For the anti-swing control problem,
PID and LQR controllers are applied to the SLRIP. Furthermore, a novel RBNF-LQR
controller is developed for an anti-swing control of the DLRIP and TLRIP. The RBNF-
LQR controller was compared with the FLQR and the LQR controllers. The novel
architecture RBNF controller is developed in order to obtain better control
performance than ANFIS. The dynamic responses of the anti-swing controllers were

compared based on robustness analysis under external disturbances.

The last chapter focuses on experimental studies. The anti-swing control of a SLRIP
DLRIP and TLRIP with NLFMs are verified in real experimental setups. The results

obtained experimentally are compared with simulation results.



1. INVERTED PENDULUM SYSTEM
1.1. Introduction

The reviews existing in literature are undertaken as a part of the TLRIP project. It is
focused to understand: the background and the principal application of the IPS, the
nonlinear analytic mathematical model, numerical mechanical simulation model,
mechanical design aspects, friction models, control algorithms, and other successful
projects of the similar nature. The IPS is a classic model of the nonlinear control topic.
It is used frequently to study the design, implementation and control development for
nonlinear systems. The IPS appears in the undergraduate control textbooks, for
example, it is used as an example to describe the physical systems mathematically by
Dorf and Bishop [1]. The physical analysis of the IPS has been an important
consideration in the modern control theory studies [2]. The control of the IPS, for
which different configurations exist, is a very complicated task. it has provided the
best demonstration of the capabilities of the scientific and engineering area [3]. The
control of this type of systems is based on to maintain the hinged pendulum in a
predetermined stable position by adding a driving force. In the most ordinary case, the
objective is to keep the pendulum on the upward position [4-5]. The pendulum must
be stable against the gravitational force, which would make it in an upward position to
a more resting-state stable. Different mechanical configurations have been studied in
the field of IPS [6]. Furthermore, many controllers have been used to maintain the
inverted pendulum to a stable position. The control problem of the IPS has been
complicated by adding the pendulums link together. The IPS configuration depends
on the actuation method and the number of DOF. The simple model of the controllable
IPS given in [1], is consist of a pendulum link directly attached to the shaft of the
motor. This model of the IPS is controlled open-loop using a stepper motor, this model
is deemed too simple for further consideration. Figure 1.1. shows the simple model of
the IPS.
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Figure 1.1. A simple model of the IPS

In Figure 1.1, T is the input torque motor, and an optical encoder is used to measure
the angular shaft position of the motor. 6 is the angular position of the pendulum link,
and m is mass attached to the pendulum link. Therefore, to have a simple controllable
IPS, the system must have at least two DOF. For the two DOF system, the pendulum
base is limited to move in one linear or rotary dimension, and the pendulum angle is
varied only in the vertical dimension [7]. A classification of the IPS based on the
number actuators in the system is given in Figure 1.2. In the next section, different

configurations of the IPS will be discussed.
1.2. Single Actuator Linear Serial IPS
1.2.1. Single link linear inverted pendulum

Figure 1.3 shows examples of physical models and a real experimental implementation
of the SLLIP. In the SLLIP, a motor is used to move a cart linearly along a straight
track, to modify the pendulum angle, as shown in Figure 1.3 (c). The pendulum link
of the SLLIP is attached to the cart joint. The rotational axis of the pendulum about
the cart joint is horizontal and perpendicular to the direction of the cart's movement.
The input of the SLLIP is a force applied to the cart, via the motor [8].

7
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The SLLIP has two equilibrium points [9-10], Figure 1.3 (a) shows one of them; the
objective is to maintain the pendulum in the upward vertical position above the cart.
Allowing for small changes in its angle and preventing it from falling. The pendulum
position above the cart is an unstable equilibrium state of the system. Figure 1.3 (b)
shows the other equilibrium state is somewhat similar to the known problem of the
gantry crane system control. The aim is to keep the pendulum link in the downward
vertical position below the cart. The cart moves and prevents the pendulum from

oscillating.

m, g
\J
F
—
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Figure 1.3. SLLIP: (a) physical model of a cart-pole system, (b) physical model of a
crane system and (c) real experimental implementation [11]

A reproduction of the diagram is shown in Figure 1.3 (a) and (b). F is the input force,
X is the linear displacement of the cart, @ is the angular position of the pendulum, m,

is the mass of the cart and m, is the mass of the pendulum link.
1.2.2. Double link linear inverted pendulum

Figure 1.4 shows a physical model and real experimental implementation example of
a DLLIP. The mechanical configuration of the DLLIP have a cart with linear motion,
and two series pendulum links mounted to the cart. The system aims to maintain the
two pendulum links in the upward vertical position [12-14]. DLLIP is an under-
actuated system, and it is highly unstable. The number of DOFs surpasses the actuation
number. The dynamic complexity and the nonlinearity of the system increase; for this

reason, the system controllability will be more complex. In Figure 1.4, F is the input

9



force, X is the cart position, 8, is the angular position of the first pendulum link and
6, is the angular position of the second pendulum link. L,, L, are the lengths of the
first and second links, respectively. Moreover, m,, m; and m,, are the mass of the cart,

first link and second links respectively.

(@ (b)
Figure 1.4. DLRIP: (a) physical model and (b) real experimental implementation [15]

1.2.3. Triple link linear inverted pendulum

A physical model and real experimental example of the TLLIP system are shown in
Figure 1.5. The TLLIP consists of three pendulum links of various lengths mounted
on the cart. The cart is driven on a rail track by a servo motor. Each pendulum link
rotates in the vertical plane about the axis of a position. The system aims to maintain
the three pendulum links in the up-ward vertical position [16-17]. TLLIP is an under-
actuated system and highly unstable. TLLIP is 4 DOFs with complex dynamic
behaviour. The dynamic of the system is highly nonlinear. For this reason, the control
of the three links is very complex [18-19]. In Figure 1.5, F is the input force, X is the
cart position, 6 is the angular position of the first pendulum link, 6, is the angular
position of the second pendulum link and 65 is the angular position of the third

pendulum link. L,, L,, L; are the lengths of the first, second and third links,

10



respectively. Furthermore, m,, m,, m, and ms are the mass of the cart, first, second

and third links, respectively.
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Figure 1.5. TLLIP: (a) physical model and (b) real experimental
implementation [20]

1.2.4. Linear flexible inverted pendulum

Figure 1.6 shows a physical model and real experimental implementation example of
a LFIP. LFIP is composed of a flexible pendulum link which moves horizontally by
the cart in the X —direction, and a load is attached at the end of the pendulum link. The
cart can be driven by a torque servo motor on a rail. The control of the cart motion and
inverted flexible pendulum link is assumed by controlling the motor rotation [21]. The
main feature of this IPS model, which distinguishes it from other IPS, is that to take
into account the large deformations of the pendulum link its length is assumed constant
giving rise to a holonomic constraint. The system aims to maintain the flexible
pendulum link in the up-ward vertical position [22]. In Figure 1.6 (a), T is the input

torque provided by the servo motor, z is the motion axis of the cart, a(8, X,) is the
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deflection of the flexible pendulum link (0) is the deflection angle and X, is the

deflection length and m is the load mass.

a(8,X,.)

(a) (b)
Figure 1.6. LFIP: (a) physical model and (b) real experimental implementation [22]

1.2.5. Spring-loaded inverted pendulum

The physical model of the SLIP system is shown in Figure 1.7. The SLIP model
consists of a point mass attached to a massless leg with a linear spring. SLIP is usually
used for analysing running and hopping for a wide range of species. It consists of two
phases, the flight and the stance phase. In the flight phase, the point mass follows a
ballistic trajectory until the foot touches the ground with a fixed angle. This is known
as touchdown and signals the start of the stance phase. At this point, the foot position
remains fixed, the spring starts to compress, and the point mass remains moving. When
the spring length is equal to the resting spring length, the spring lifts off and enters the
flight phase again. The angle makes by the spring with the ground is reset to the
original attack angle, that is, the spring is rotated [23-24]. The SLIP was introduced by
Blickhan and used as modeling of legged locomotion [25]. In Figure 1.7, m is the mass
of the load, k is the stiffness of the spring, L, is the length of the spring, and a is the

attack angle (control parameter).
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Figure 1.7. Physical model of the standard SLIP system
1.2.6. Variable length inverted pendulum

The VLIP is an underactuated mechanical system with 2DOF with a single input to
adjust the length of the pendulum link. VLIP can also be viewed as a model of the
child’s swing motion. The VLIP is composed of a torque servo-motor used to move
the pendulum link in the vertical upward position and a sliding mass mounted to the
pendulum link. The aim is to maintain the pendulum link in the upward vertical
position on changing the sliding mass position [26-28]. Figure 1.8 shows a physical
model of the VLIP.

Figure 1.8. Physical model of
the VLIP
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In Figure 1.8, | is the distance from the center of the sliding mass to the origin of
coordinates around which the pendulum link rotates. & is the angle of the pendulum

deviation from the vertical position.
1.3. Single Actuator Linear Parallel IPS
1.3.1. Linear twin inverted pendulum

A physical model and real experimental example of a LTIP are shown in Figure 1.9.
The LTIP consists of a straight line rail, a cart moving on the rail, a longer first
pendulum link attached to the cart in the right side. Furthermore, a shorter second
pendulum link attached to the cart in the left side, and a driving unit. The two pendulum
links can rotate freely around their pivots. The aim is to maintain the two pendulum
links in the up-ward vertical position [29-31]. In Figure 1.9 (a) the force F applied to
cart in objective to balance the two pendulum links on the cart and to maintain 6, and
6, inastable position. 8, 8, are the angle of the first pendulum and second pendulum
links, respectively. X refers to the cart position, m,, m;, m, are the cart mass, the mass
of the first pendulum and second pendulum links, respectively. L,, L, are the distance

between the joint and the centre of mass of the two pendulum links, respectively.

(@) (b)

Figure 1.9. LTIP: (a) physical model and (b) real experimental implementation
[32]
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1.4. Single Actuator Rotary Serial IPS
1.4.1. Single link rotary inverted pendulum

According to the works existing in the literature, there is another single link pendulum
with different mechanical configuration. In this configuration, the motion of the
pendulum link is limited to rotate on the vertical plane. Figure 1.10 shows a physical
model and real experimental implementation examples of a SLRIP. The pendulum
base link is attached to the horizontal arm link via a joint. The rotation axis of the
pendulum link is collinear with the axis of the horizontal arm link. The angle of the
pendulum link is 8,. The horizontal arm link is coupled directly to the motor shaft
giving it rotary motion. The angular position of the rotary link (horizontal arm) is 6;.
The system input is the torque t, applied using the motor. The driving force to control
the pendulum angle 8, come from the rotational arm [33-34]. m; and m, are the mass
of the horizontal arm and the pendulum link, respectively. The first SLRIP system is
called “Furuta Pendulum” [35]. The Furuta pendulum system was developed by
“Katsuhisa Furuta” at Tokyo Institute of Technology”. The Furuta Pendulum is used

to experiment with the nonlinear controllers.

(a) (b)

Figure 1.10. SLRIP: (a) physical model and (b) real experimental
implementation [36]
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Moreover, based on the works existing in the literature, any number of links may be
mounted on the cart or the horizontal rotor arm. Double and three-link systems are
observed and demonstrated. For these type of configuration, each link, including the

rotary horizontal arm link or cart, has only one DOF.
1.4.2. Double link rotary inverted pendulum

A physical model and real experimental implementation example of a DLRIP are
shown in Figure 1.11. DLRIP comprises a horizontal rotary link and two pendulum
links. A direct drive brushless DC torque motor servo system is necessary to provide
torque to the horizontal arm link to control the system. The rotary arm link rotates in
the horizontal plane. The first pendulum link is connected to the extremity of the rotary
link and the second pendulum link is connected to the extremity of first pendulum link.
The two pendulum links move like an inverted pendulum in a plane perpendicular to
the rotary link [37-39]. In Figure 1.11 (a), 7 is the input torque motor, 6, is the angular
position of the horizontal arm, 6, is the angular position of the first pendulum link and
6, is the angular position of the second pendulum link. Ly, L;, L, are the lengths of
the horizontal arm, the first pendulum link and second pendulum link, respectively.
Moreover, my, m; and m, are the mass of the horizontal arm, the first pendulum link

and second pendulum link, respectively.

Figure 1.11. DLRIP: (a) physical model and (b) real
experimental implementation [40]
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1.4.3. Triple link rotary inverted pendulum

The case studied in this thesis is as the one depicted in Figure 1.12. Figure 1.12 shows
examples of a CAD model and real experimental implementation of TLRIP developed
in our Laboratory (ARRL) in the Department of Mechatronics Engineering at Kocaeli
University. Three hinged links connected in series will be mounted over a horizontal
arm which gives the system a rotary motion. The apparatus is commonly named either
TLRIP. The TLRIP is composed of a horizontal arm which is controlled by a torque
servo motor, attached to the three vertical pendulum links. A balance mass can be
mounted on the horizontal arm to maintain the balance inertia of the system. The angle
of the horizontal arm link is 8; and the angles of three vertical pendulum links are 6,,
65 and 8,. L, is the length from the centre of horizontal arm to the first pendulum link.
L,, L3, L, are the lengths of the first, second and third pendulum links respectively.
my, m,, mg and m, are the mass of the horizontal, first, second and third links,
respectively. The three rotary pendulum links have two equilibrium points in the

upward and downward positions.
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Figure 1.12. TLRIP: (a) CAD model and (b) real experimental implementation
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Itis clear from the mechanical construction of the TLRIP that by rotating the horizontal
arm from side to side, the angles of the links will be affected. The controller
implementation is based on manipulating those angles to make them equal to
predetermined angles values. More physical variables parameters should be measured

to obtain appropriate information about the system’s dynamic behaviour.
1.4.4. Pendubot

In contrast to the TLRIP, the mechanical configuration of the IPS can be rotational
with a radial pendulum. This system can be called “Pendubot”. A physical model and
real experimental implementation example of a Pendubot are shown in Figure 1.13.
The angle of the first pendulum link (8,) is controlled by a torque motor directly, and
the angle of the second pendulum (6,) is freely hinged. The second pendulum link
moves freely around the first link, and the control objective is to bring the system to
the stable equilibrium points [41-43]. Pendubot is used for nonlinear control research,
for education in various concepts as nonlinear dynamics, robotics and control system

design.

(@) (b)

Figure 1.13. Pendubot: (a) physical model and (b) real experimental
implementation [44]

In Figure 1.13, 7 is the input torque motor in the first pendulum link. 8, and 6, are the

angular position of the first and second pendulum links, respectively.
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1.4.5. Acrobot

Figure 1.14 shows examples of a physical model and real experimental implementation
of an Acrobot system. It is a planar two-links robotic arm in the vertical plane. Acrobot
has an actuator at the elbow (active joint) but doesn't have actuator at the shoulder
(passive joint), and it is working against gravity. The Acrobot system resembles a
gymnast on a parallel bar, which controls his motion predominantly by an effort at the
waist [45]. The most important control task studied by the Acrobot system is the
swing-up control, in which the system must use the elbow torque to move the system

into a vertical configuration then balance [46].

Input torque

(a) (b)

Figure 1.14. Acrobot: (a) schematic model and (b) real experimental
implementation [47]

T is the input torque motor in the second pendulum joint (active joint). 8, and 8, are

the angular position of the first and second pendulum links, respectively.
1.4.6. Reaction wheel pendulum

RWHP is a variant of IPS, was first introduced by Spong [48]. It has a pendulum link
which can spin freely around the support point at one of its ends. The RWP have a
torque servo motor attached to the extremity of the pivot, acting on a wheel of inertia
with which the oscillations of the wheel are controlled, due to the reaction torque .
The physical model of the RWP system is depicted in Figure 1.15. ¢ is the angle of

the pendulum link in the vertical position. « is the angle between the pendulum and
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the wheel. 6 is the angle between the vertical axis and the wheel axis. The RWP
presents two control problems: the first is to maintain the local stability of the system
around the equilibrium position. The second control problem is to swing up the

pendulum link from the rest position to the upright vertical position. [49]

Vertical guide

- » \ _ & Wheel axis

! / -

R ———

Figure 1.15. Physical model of the RWP
1.5. Single Actuator Rotary Parallel IPS
1.5.1. Rotary twin inverted pendulum

A physical model and example of a real experimental implementation of a RTIP are
shown in Figure 1.16. Similar to SLRIP, the RTIP has three parts: rotary horizontal
arm, first pendulum link (the long one) and second pendulum link (more short than the
first pendulum link). Among them, the rotary horizontal arm is driven by a torque
servo motor. The first and second pendulum links are attached to the horizontal arm.
The two pendulum links do 2 DOF oscillation in the vertical plane, perpendicular to
the horizontal arm, only when they are driven by the horizontal arm. The aim is to
stabilise the two pendulum links in the upward position [50-51]. T is the input torque
of applied by the servo motor to the horizontal arm. 8, stands for rotation angle of the
rotary arm, 6, , 65 represent the angle of the first and second pendulum deviation from

the vertical position, respectively.

20



First pendufum link

Motor

(a) (b)
Figure 1.16. RTIP: (a) physical model and (b) real experimental implementation [52]

1.5.2. Rotary triple link inverted pendulum

The physical model of a RTLIP is depicted in Figure 1.17. The RTLIP has six parts:
three rotary horizontal arms, first pendulum link (the long one), second pendulum link
(average length), and third pendulum link (the short one). The three rotary horizontal
arms are attached to the shaft of the servo motor [51]. The first, second and third
pendulum links are attached in the extremity of the three horizontal arms, respectively.
The three pendulum links do 3 DOF oscillation in the vertical plane, perpendicular to
the horizontal arm, only when they are driven by the horizontal arm [53]. The aim is
to stabilise the three pendulum links in the upward position. T is the input torque
applied by the servo motor to the horizontal arm. 6, is the rotation angle of the rotary
arm. 6,, 6, and 65 are the angles of the first, second and third pendulum links,

respectively.
1.6. Multi-Actuator Planar IPS
1.6.1. Linear-linear planar inverted pendulum

In some mechanical configuration, the pendulum link can be moved about two axes

instead of one axis. The base point of the pendulum link is actuated in 2 DOF, which
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form a horizontal plane. These types of configuration are called the Planar Inverted
Pendulum (PIP). The PIP referred to as a spatial inverted pendulum, and it is a more
complex system compared to the linear and rotary inverted pendulum [54]. A physical
model and example of a real experimental implementation of the LLPIP are shown in
Figure 1.18. The LLPIP comprises two rails with X —axis and Y —axis, the cart is
driven with two servo-motor in each axis, and a pendulum link. The aim of this system

Is to stabilise the pendulum link in the upward vertical position [55].

«— Horizontal arm

<+— Horizontal arm

Top view

Front view

Figure 1.17. A physical model of the RTLIP

(@) (b)

Figure 1.18. LLPIP: (a) physical model and (b) real experimental
implementation [56]
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1.6.2. Rotary-rotary planar inverted pendulum

A physical model and 3D example of a RRPIP are shown in Figure 1.19. The RRPIP
consists of three main part: two horizontal arms and a pendulum link. The first
horizontal arm is connected to the shaft of the servo-motor and allowed to revolute in
the horizontal plane. The two horizontal arms are attached with a revolute joint in the
extremity, and a servo motor is attached to the joint to provide a torque to rotate it in
the horizontal plane. The pendulum link is attached link in joint at the other extremity

of the second horizontal arm. [57]

() (b)
Figure 1.19. RRPIP: (a) physical model and (b) 3D model

6, is the angular position of the first horizontal arm. 6, is the angular position of the
second horizontal arm. 65 is the angular position of the pendulum link measured with
respect to the vertical upright position. t,, T, are the input torques in the joints of the

first and second horizontal arms, respectively.
1.6.3. Rotary-linear planar inverted pendulum

A 3D model example of a RLPIP is shown in Figure 1.20. The RRPIP is composed of
a horizontal arm, and a pendulum link module mounted to the horizontal arm. The
mechanism of RRPIP has two different motion inputs (rotational and linear). The

horizontal arm is connected with the shaft of the servo-motor and allowed to revolute
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in the horizontal plane. Furthermore, the pendulum link moves linearly all along the

horizontal arm.

Figure 1.20. A 3D model example of a RLPIP

1.7. Multi-Actuator 3D IPS
1.7.1. Two-wheeled inverted pendulum mobile robot

TWIPMRs are underactuated mechanical systems. They are used in the autonomous
robotics, intelligent vehicles, etc.... Mobility and dexterity are the two principal
advantages of this type of robots. TWIPMRs are based on the concept of IPS are also
known as self-balancing robots, and they are useful used like service robots, human
transportation and baggage transportation... etc. TWIPMR has the capability to stand
firm with its two wheels (balancing) and make a sharp U-turn (rotation). The research
on the TWIPMR is known as the self-balancing robot [58]. The system is inherently
unstable and without external control would roll around the wheels’ rotation axis and
eventually fall. By driving the motors in the right direction returns the system to a
stable upward position [59]. The two wheels of the robot are only two points of contact
with the ground. TWIPMRs are classified into two class: without input coupling where

the actuator is mounted on the wheel, and with input coupling where the actuator is
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mounted on the pendulum [60-61]. The first class is more complex in order of
mechanical construction, but it is easier in controller design owing to the absence of
input coupling between the wheel and pendulum. The second class is easier in order
of mechanical construction, but it is more challenging in controller design due to the
input coupling between the wheel and the pendulum. A physical model and example
of a real experimental implementation of a TWIPMR are shown in Figure 1.21. It is

required to balance the pendulum at a zero degrees (8 = 0°) .

| ™

N
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(@) (b)

Figure 1.21. TWIPMR: (a) physical model and (b) real experimental implementation
[62]

Furthermore, this type of system can be driven with multi-wheel, called Multi-
Wheeled Inverted Pendulum Mobile Robot (MWIPMR)

1.7.2. Quadrotor driven inverted pendulum

Recently, QDIP has attracted much attention in the field of ACE. QDIP is a nonlinear
underactuated mechanical system. The system is composed of Quadrotor and an
inverted pendulum link mounted on the top of the Quadrotor. The aim is to stabilise
the pendulum link in the upward vertical position in the space. QDIP is an 8-DOFs
system (Quadrotor have 6-DOFs and the inverted pendulum have 2-DOFs). Linear and
nonlinear controllers can be designed to stabilise the whole system. A physical model
and example of a real experimental implementation of a QDIP are shown in Figure
1.22. [63]
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<+— Pendulum

Figure 1.22. QDIP: (a) physical model and (b) real experimental
implementation [64]

1.8. Control Methods Used for the IPS

According to the literature reviews, there are two balance points for the IPS. The first
balance point is when the pendulums are in the downward position and stable. The
second equilibrium point is when the pendulums are in the upward and unstable. Figure

1.23 shows an example of the stable and unstable equilibrium points of a DLLIP.

Stable equilibrium point

o ™ o o T

Unstable equilibrium point

Figure 1.23. Example of the stable and unstable equilibrium points of a DLLIP
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Each equilibrium point creates a different control problem. The swing-up control
problem consists of swinging of the pendulums from the downward position (stable
equilibrium point) to the upward position (unstable equilibrium point) using the input
torque provided by a motor. A Linear or nonlinear controller need to be applied to
maintain the stability control of pendulums in the upward vertical position. The
stability control problem considers the control of the system once it is already in the
upward position (unstable equilibrium point). The pendulum links are held in the
upward position and stationary by the experimenters while the controller is initialised.
Furthermore, the anti-swing control problem exists. Its consists to control the
pendulums from the upward position (determined angle position of the pendulum) to
the downward position using the torque motor in order to minimise the oscillation and
vibration of the pendulum links The anti-swing control method is usefully used for the
crane systems. There are three basic control problems in IPS. Moreover, the applied
control methods can be different for each model of IPS.

1.8.1. Stabilisation control problem

According to the works existing in the literature, it can be seen that the control methods
used for the stabilisation problem are: PID, optimal control, Fuzzy logic and Sliding
mode control methods...etc. These methods are the basic methods used to stabilisation
control problem of the IPS.

In 1995, D.J. Block et al. [65], are mounted two pendulum links in a fixed place, and
only the first pendulum link was driven by a torque motor. It is a concept of a two links
underactuated planar revolute robot (Pendubot). The system is used for research and
instruction in the field of ACE. The stabilisation problem for the Pendubot is solved
by linearising the equations of motion about equilibrium point, and a linear state
feedback controller is developed. Furthermore, the partial feedback linearization

method is applied to swing up the Pendubot.

In 1996, Li-Xin Wang [66], has developed a stable adaptive fuzzy controller for the
tracking application of SLLIP. This technique is used in order to keep the inverted
pendulum in an upward position (The unstable equilibrium point). The adaptive fuzzy
controller is constructed from a set of fuzzy rules. The fuzzy parameters are adjusted

on-line according to some adaptation law for the purpose of controlling the plant to
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track a given trajectory. The adaptive fuzzy controllers are used to control the SLLIP
to track the trajectory. The simulation results indicate that adaptive fuzzy controllers

can perform successful tracking.

In 1996, F. Cheng et al. [67], have developed a high accuracy FLC to stabilise a DLLIP
in the upright position. The composition coefficient is gained by combining the fuzzy
control theory with the optimal control theory. Thus a high-resolution fuzzy controller

is obtained. This controller has verified under a real experimental setup of a DLLIP.

In 1998, K.G. Eltohamy et al. [16], have developed a single-input feedback controller
for a TLLIP by using a nonlinear optimisation technique. This technique is necessary
because the traditional linear design method cannot incorporate the nonlinear
dynamics of the system and its physical limitations. The TLLIP has been successfully
stabilised about the vertical upward position through a good understanding of the
factors influencing to the control effort. According to obtained results, the linear
controller which doesn't look robust enough to achieve stability.

In 2002, J. Aracil, F. Gordillo and J.A. Acosta [68], have developed a technique for
obtaining stable and robust oscillations around the upright position in a SLRIP (Furuta
pendulum). A control law has been introduced that drives the system to a stable limit
cycle. This control law belongs to the family of energy shaping methods. The results

have been verified in both simulation and experiment.

In 2010, Nasir et al. [69], have developed a conventional controller PID controller and
modern controller Sliding Mode Control (SMC) for a SLLIP. Both control methods
are succeeded to control the system for the stabilisation control problem. Moreover,
the two controllers are compared according to the time specification performance. The
performance of controllers is given based on the simulation results. The result indicates

that SMC produced better response compared to the PID control strategy.

In 2010, S. Kizir and Z. Bingdl [70], are focused on both stabilisation and swing-up
problems for a real experimental setup of a SLLIP. Different controllers are tested
using the experimental setup. The FLC is used to swing-up the pendulum. PID
controller is used to stabilising the pendulum in the unstable equilibrium point.

Furthermore, full status feedback and fuzzy logic methods are successfully applied to
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control the pendulum link in the upward position. The robustness of each controller

method is verified in both simulation and experimental environment.

In 2012, J. Zhang and W. Zhang [71], have developed an LQR self-adjusting controller
to stabilise a planar double inverted pendulum system. LQR self-adjusting controller
Is based on an optimise factor. Furthermore, the LQR output is refined through the
optimise factor. By using this method, the control action exerted on the pendulum is
improved. The obtained results indicate that the controller ensured a fast response,

good stability and robustness in the different operating conditions applied to the system.

In 2013, B.Li [72], has worked on the stabilisation control problem of a DLRIP in his
master thesis. An LQR controller is designed for the system, and its stability analysis
is presented in the Lyapunov method. To improve the performance of the LQR
controller, a direct adaptive fuzzy control is developed. According to the simulation
results of the two control algorithms, the Adaptive Fuzzy Logic Controller (AFLC)
can increase the LQR Performance and the robustness of the DLRIP. The simulation
results of the two controllers obtained by their comparative analysis indicate that the
AFLC is able to enhance the LQR by increasing its robustness in the DLRIP.

In 2013, Glick et al. [20], are focused on both stabilisation and swing-up problems
control problems for a real experimental setup of a TLLIP. Nonlinear feedforward
controller and optimal feedback controllers are applied for the swing-up problem. A
time-variant Riccati controller was developed in order to stabilise the system along the
nominal trajectory, and an Extended Kalman Filter (EKF) was used to estimate the no

measurable states.
1.8.2. Swing-up control problem

According to the works existing in the literature, it can be seen that the control methods
used for the swing-up control problem are generally divided into, feedforward and
feedback control, energy shaping, nonlinear model predictive control, and optimum

trajectory approaches...etc.

In 1992, K. Furuta et al. [73], have proposed a new bang-bang type state feedback

control algorithm which can swing up the pendulum to the vertical upward position.
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In the control system, a conventional LQ control method is employed to maintain the
pendulum in the unstable equilibrium point. Experimental results have shown that the
proposed method is robust for parameter uncertainties of the controlled system

computing with feedforward control.

In 1993, M. Yamakita, K. Nonaka and K. Furuta [74], have proposed a method to
transfer a state of a double pendulum from a stable equilibrium point to an unstable
equilibrium point. The proposed method is applied to real experimental
implementation DLRIP. The proposed method is effective for the swing-up control
problem. A learning control method is used to modify feedforward control. The
proposed method is a combination of feedforward and feedback controls. The control
is not robust when feedforward control is used, and the learning process should be

repeated if the system parameters are changed.

In 1995, M. Yamakita, M. lwashiro, Y. Sugahara and K. Furuta [75], have proposed
robust methods to swing up a double pendulum links from one equilibrium to the
others. Two types of control methods are developed for the swing-up control. One is a
control method based on the energy function, and the other is a method based on the
control, which makes a limit cycle in the system stable. The proposed methods are
effective for a real experimental implementation DLRIP.

In 1997, S. Yasunobu and M. Mori [76], have proposed a fuzzy controller based on
formulated human's control strategy. It was applied to a SLLIP. This controller is
applied to an inverted pendulum link which has unknown parameters. The swing-up
control and the stabilisation control are modelled using FLC. The effectiveness of the
fuzzy control method by human control strategy was verified in both simulation and

experimental environments.

In 2000, K.J Astrom and K. Furuta [77-78], have studied the swing-up strategy based
on the energy control method applied to a SLRIP. Simulation results of different

situations are explained.

In 2002, J. Rubi, A. Rubio and A. Avello [79], are studied the swing-up problems for
a DLLIP. A technique to design controlled trajectories for nonlinear underactuated

mechanisms is developed. The reference trajectory is obtained as a result of the
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optimisation of an initial trajectory defined through interpolation by splines. This
reference is tracked using a gain scheduling linear-quadratic optimal controller
specifically designed for the reference trajectory. Simulation and the experimental

results confirm the validity of this approach.

In 2007, Graichen et al. [80], are studied the swing-up and the stability problems for
DLLIP. A nonlinear feedforward is used for the swing-up problem. Further, a linear
feedback controller is used for the stabilisation control problem. The two controllers

are verified in a real implementation of a DLLIP.

In 2014, P. Jaiwat and T. Ohtsuka [81], have studied the swing-up strategies based on
the nonlinear model predictive control for DLLIP. The nonlinear model predictive

controller is verified in both simulation and real experimental environments.

1.8.3. Anti-swing control problem

According to the works existing in the literature, the control methods used for the anti-

swing control problem are generally nonlinear controllers.

In 1998, Ho-Hoon Lee [82], propose a new dynamic model of a 3-D crane system, it
is derived based on a newly defined 2DOF swing angle. For the anti-swing control
problem, a decoupled control scheme based on the dynamic model linearised around
the stable equilibrium point is developed. The theoretical and experimental results
show that the proposed control scheme guarantees both rapid damping of load swing
and accurate control of crane position and rope length with excellent transient
responses for the practical case of simultaneous travelling, traversing, and slow

hoisting motions.

In 2000, B. Vikramaditya and R. Rajamani [83], have proposed a nonlinear trajectory
tracking controller for a crane system. The state equations of the system are highly
nonlinear and closely coupled with more DOFs than the number of independent
actuators available. A modified sliding-surface formulation was developed to design
the controller. Theoretical bounds were established for tracking the performance of the
controller. Stability of the control system has been demonstrated both to random initial
conditions and parameter variations while meeting the desired trajectory tracking

performance specifications.
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In 2006, Cheng-Yuan Chang et al. [84], have proposed an enhanced adaptive sliding
mode fuzzy approach witch applied to control the position and load swing of a 3-D
overhead crane system. This method includes the robustness and model-free properties
of the sliding mode and fuzzy logic controllers, respectively. An adaptable slope of the
sliding surface is given, and the chattering phenomenon of the sliding mode controller
is discussed to enhance the control performance. Moreover, this work provides a
compensating algorithm to the control dead zone of an overhead crane system. The

simulation results demonstrate the effectiveness of this method.

In 2010, MI. Solihin et al. [85], have developed a Fuzzy-tuned PID controller for a
robust anti-swing controller applied to a crane system. The proposed Fuzzy-tuned PID
utilises fuzzy system as PID gain tuners to achieve robust performance to parameters’
variations in the gantry crane. The experimental results show that the proposed anti-
swing controller has a satisfactory performance. Besides, the proposed method is
straightforward in the design.

In 2017, Zhongcai Zhang et al. [86], have proposed flatness-based regulation
controllers for the anti-swing of crane system. The anti-swing and high-speed
positioning problems are considered for constant cable length crane and varying cable
length crane, respectively. Furthermore, nonlinear feedback control and a combined
application of finite-time control and Lyapunov-based control are used to facilitate the
development of the proposed control laws, which, unlike the traditional energy-based

control law, is designed in a much simpler manner.
1.9. Application Fields of the IPS

IPSs have a wide range of applications. The design and development of these systems
are increasing each day. The pendulum systems were started to be used in the 1650s,
witch the first pendulum structure was integrated into the clock structure. Figure 1.24
shows an example of pendulum clocks. The movement mechanism of the system
depends on the oscillation of the pendulum processing, and it is used as a simple time

counting tool.
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Figure 1.24. Example of a pendulum clock

Furthermore, balance problems are similar to a simplified IPS problem. Balancing
systems are used in the robotic field, and they have been developed according to the
IPS. Additionally, the control problem in the industrial robot arms is similar to the
control problem of an IPS, such as the control problem of crane systems which used
to carry loads with minimal oscillation. The oscillation that occurs on the crane
decreases transport efficiency. Therefore, it is important to solve the swing control
problem. The solution to this problem is considered as the solution to the pendulum
problem. Hence, the control principle of the IPS has a wide place in the crane system.

An example of a gantry crane system is shown in Figure 1.25.

Finally, one of the most famous applications of the IPS that is commercially available
is the Segway system, as shown in Figure 1.26. Segway system is a mobile IPS. It has
been paid attention due to mobility whose structure is a combination of an IPS and a
wheeled mobile robot. Segway is a typical mobile pendulum a transportation system
that has been commercialised to carry a human.
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Figure 1.25. Example of a gantry crane system

According to the above applications with many more render the IPS of great
importance for engineers. This is the main reason why IPS is chosen frequently for
testing new developed control methods. Furthermore, the construction of IPS in a
university laboratory is relatively easy. Many universities afford the necessary
equipment for testing the developed control methods in real-time, making it easier for
students to engage in the problem. Overall, it can be seen that IPSs are a problem that

is highly applicable in everyday applications.

o —
¢

Segway Balancing a stick Inverted pendulum

Figure 1.26. Segway system [150]
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1.10. Objectives and Contributions of the Thesis

The main objective of this research is to develop an anti- swing up control of a single,
double and triple link rotary inverted pendulum with nonlinear friction models. TLRIP
system has been developed in the ARRL, in the Mechatronics Engineering Department
part of the Faculty of Engineering at Kocaeli University. In reality, the control of three
pendulum links attached to a rotary horizontal link seems to be impossible. But
nowadays, according to computer control power, can give the ability to balance three
or more pendulum links. The system can be used in classrooms demonstration and
departmental exhibits. Physically, the system must be robust enough to permit people
to attempt balancing the pendulum manually to give them a better idea about the degree
of difficulty applied in the control method phase. The system is a highly nonlinear and
open-loop unstable system that makes control more challenging. It is an intriguing
subject from the control point of view due to its intrinsic nonlinearity. On the other
hand, the system includes a nonlinearity caused by the existing frictions in the joints.
Common control approaches require a good knowledge of the frictions in the system's
joints and accurate friction estimation to obtain desired performances of feedback
controllers. However, the frictions have high nonlinear values resulting in steady-state
errors, limit cycles, and poor performance of the system [93]. It has an influence on
the system's response that must be taken seriously. Moreover, friction estimation
ameliorates the system's quality and dynamic. In this project, NFFEMs are developed
to estimate the joint friction coefficients in our system and compared with AFEMs.
The different versions of AFEMs and NFFEMs are generated based on each of the
following friction estimation models: NCFM, LFM, and NLFM. This study aims to
obtain joint friction models that depend on both velocity and acceleration in a large
range of motion trajectory that involves difficult and sudden large changes.
Additionally, two different control problems are studied for this system, stability and
anti-swing control problems. For the stabilisation control problem of the system,
nonlinear controllers such as FLQR and FLQG are developed. The FLQR and FLQG
controllers were compared to the LQR and LQG based on the response parameters of
controllers and robustness analysis under internal, external and noise disturbances. For
the anti-swing control problem of the system, a nonlinear RBNF-LQR controller is
developed. The RBNF-LQR is compared with FLQR and the LQR controllers.
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Moreover, the anti-swing controllers’ performances were compared based on
robustness analysis under external disturbance. The anti-swing control of system with
NLFMs are verified in real experimental setup. The contributions of this thesis can be

summarized as follows:

- A detailed review of the IPSs based on their actuator configuration and motions
type.

- The complex nonlinear dynamics models of the SLRIP, DLRIP and TLRIP are
derived using the Euler-Lagrange formulation, explained in detail in chapter 2.

- All friction models existing in the literature depend only on velocity. However, the
friction model developed here depends on both velocity and acceleration. This
approach has enabled us to obtain a two-dimensional friction model.

- The coefficients of all friction models in the literature were constant when the
physical quantities change. On the other hand, the coefficients of the friction
models in this thesis vary depending on the state of the velocity and acceleration.
Hence, this friction model allows for better estimation of the effects of friction in
different velocity and acceleration conditions.

- Much of existing papers in the literature have studied only the frictions of the linear
motion which depends on linear velocity and force. This thesis examines frictions
on the joints which have hard rotational motions.

- In this thesis, a nonlinear FLQR and FLQG controllers are developed to stabilise
the pendulum links of the system in the upward vertical position. In order to obtain
the desired angular position of pendulums with a better dynamic response,
compared to the classical LQR and LQG controllers, the fuzzy controllers were
combined with the LQR and LQG in objective to adjust the closed-loop controller
feedback gains, respectively.

- Nonlinear RBNF-LQR controllers are developed for an anti-swing control of the
system. In the proposed RBNF-LQR controllers, the positions and velocities of
state variables multiplied by their LQR gains are trained by using two RBNNs
architecture. The output of the two RBNNs are used as the input variables of the
fuzzy controller. The novel architecture of the RBNF controller is developed in
order to obtain better control performance than the classical ANFIS.
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2. SYSTEM MODELING AND DYNAMIC SIMULATION

In this chapter, kinematic, nonlinear dynamic models and Jacobian matrix of each
model (SLRIP, DLRIP and TLRIP) are explained in details. The kinematic parameters
of each model are described corresponding to its design. The kinematics model was
derived using an adaptation of the DH convention. The nonlinear dynamics model was
derived based on the Euler-Lagrange formulation. Furthermore, rotation and
transformation matrices of the kinematics model are used to determine the dynamic
model. Additionally, the Jacobian matrix of each system is calculated, which used to
estimate the parameters of the system. To verify the mathematical model of each
system, a numeric model is developed using the Matlab/SimMechanics toolbox. A
comparison of the pendulum joint positions obtained from the mathematical and
Matlab/SimMechanics model of each system are explained. Finally, in order to
examine the effects of the inertia of the three pendulum links, the dynamic equations
of the TLRIP were solved and simulated in three different inertia cases.

2.1. Modeling of the SLRIP
2.1.1. Kinematic model of the SLRIP

Solid 3D model and kinematics parameters of the SLRIP are shown in the Figure. 2.1.
The SLRIP comprises a horizontal rotary link and one pendulum link. A direct drive
brushless DC torque motor servo system is mounted to provide torque to the horizontal
arm link to control the system. The rotary arm rotates in the horizontal plane. The
pendulum link is connected to the extremity of the rotary link. The pendulum link
moves as an inverted pendulum in a plane perpendicular to the rotary link. A balance
mass is attached to the other extremity of the horizontal arm to maintain the balance
inertia of the system. The angle of the rotary link (8,) and the angles of the pendulum
links (6,) of the SLRIP are illustrated in Figure 2.1. The SLRIP is assumed to be a
serial kinematic chain. The kinematic model of the system is derived based on the DH
convention [87]. Rotation and homogeneous transformation matrices between

coordinates the SLRIP are calculated. The parameters and variables of the model are
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given in Table 2.1. The physical parameters of the SLRIP are given in Table 2.2. DH
Parameters of the SLRIP are given in Table 2.3.

Figure 2.1. Solid 3D model and kinematic
parameters of the SLRIP

Table 2.1. Parameters and physical variables of the system

Symbol Description Unit
0; The angle of the i-th link. [rad]
T; Torque for the i-th link. [Nm]
I, Inertia tensor of i-th link. [kg - m?]
I, Z-component of the inertia tensor of i-th link. [kg - m?]
m; Mass of i-th link. [ka]
mg Mass of balance mass. [ka]
L; Length of i-th link. [m]
b; Viscous damping coefficient of i-th link. [N-m-s/rad]
g Gravity [N - kg™']
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I=1T denotes a homogeneous transformation matrix from a coordinate attached to an

i-th link to a coordinate attached to i-1-th link, i = 1,2,3,4. '"1T is given in equation

(2.1). [88]

Table 2.2. Physical parameters of the SLRIP

Parameters Values Parameters Values Parameters Values
3.1129 L 0.44 I 0.0025
M [kg] 1 [m] w2 [kg - m?]
0.08 0.526 0.0024
m; L, by,
[ka] [m] [N-m-s/Rad]
3.1469 0.4398 9.81
mp [ka] I,21 5 g -1
9 [kg - m*] [Nkg™]
Table 2.3. DH-Parameters of the SLRIP
Coordinate 01 aj_q d; 0;
1 0 0 0 0,
T T
2 R E O L1 62 - E
3 0 L, 0 0
cos 6; —sin 6; 0 a1
i-1p — sinf;cosa;_; cosb;cosa;_; —sina;_; —sina;_1d; 2.1)
! sin@;sina;_; cos@;sina;_;  €OSA;_q cosa;_;d; '
0 0 0 1

The homogeneous transformation matrix of the SLRIP is derived in equation (2.2)

using the DH-parameters in Table 2.3.

9T = §T3TIT 22)
Where
cosB; —sinB; 0 O sinB, cosB, 0 O
i = 511;1)91 50391 (1) 8 2T = cogez - sion 0, 10 161 (23)
0 0 0 1 0 0 0 1
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1 0 0 L,
2n_ |0 1 0 O
sT= 0 0 10 (24)
0 0 0 1
oT =
sin®, cos®; cos0O,cos®; —sinB; L,cosB;sinB, — L;sin0y
sin@,sin®; cos0O,sinB; cosO; L; cos0; + L, sin 0, sin0, (2.5)
cos 0, —sin 0, 0 L, cos 0, '
0 0 0 1

The position vector is given from the calculated homogeneous transformation matrix

9T, as follows:

L, cos6; + L, sin 6, sin 6, (2.6)

Py L, cos 0, sinB, — L; sin 6,
P,| =
P, L, cos 0,

2.1.2. Dynamic model of the SLRIP

The nonlinear motion equations of this system are derived based on the DH convention.
The nonlinear equations of the RIPS may be given in a matrix form, given in equation
(2.7): [89]

T
D(8)6 + C(8,8) + G(8) = [0] (2.7)
0

Where the vector of joint positions is 0, the vectors of angular velocities is 8, and the
vector of angular accelerations is 8. D() is the mass matrix, C(8,8) is Coriolis and
Centripetal force vector, G(0) is the gravity vector and T, is the torque input in the
horizontal link. The dynamic equations of RIPS are derived using the "Euler-
Lagrangian™ method [90]. The terms of the mass matrix are calculated using equation
(2.8)

n

D(8) = > [(A) miA; + (B)TLB] 28)
i=1

m; is the mass of i-th link; I; € R 3 X 3 is the link inertia tensor with respect to the

frame attached at the link centroid and parallel to the corresponding attached frame.
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A; and B;€ R 3xn are Jacobian matrices. The terms of Coriolis and Centripetal vector

are calculated using the equations as follows:

c(6,6) = > > [c(@)8,8)] (2.9)
k=1]j=1

10

Dy . 1<iik< :
Zaeka],l_l,],k_n (2.10)

. 9]
Cll(j(e) = a—ek Dy; (6) —
The gravity vectors can be calculated using equation (2.11)

G(O) = — ;;[gk m; Al (0) ] (2.11)

The elements of each matrix calculated are calculated as follows. A, and Ay, are
center of gravity vectors of the first and the second link, respectively. They are given
in equations (2.12) and (2.13). The two vectors are given according to the coordinate
system of each link.

L

Ah1=[0 ?1 0 1]T (2.12)
L, T

Ah2=[7 00 1] (2.13)

Ih1 and I, are the inertia tensors of the first and the second link respectively.

00 0 00 0
1m1=[0 0 o],1m2=[o 0 0

0 0 I, 0 0 I,

(2.14)

According to the main coordinate system, the coordinates of the mass center of each

link are given in equations (2.15) and (2.16).

0 L, sin 647
cosby —sin®, 0 0f )] 7T 2
sin 0 cos 0 0 0|1= L, cos®©
hy =T Ay, = 01 01 1 0IZI: % (2.15)
0
0 0 0 1 llJ 0
1
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L, cosB;sinH 1
2 21 2 _L,sin6,
L, sin 0, sin 6, L 0
h, = 9T Ay, = > + L1 cos 9y (2.16)
L, cos 0,
2
1
Where
sinB, cos0; cosB,cosH; —sinB; —L;sin0,
0T = sinB, sinB®; cos 62. sin 6, cos 04 L; cos 6; (2.17)
cos 0, —sin 6, 0 0
0 0 0 1

To obtain the Jacobian matrix of the first link, the derivative of the vector h;is
calculated according to 6, and 0,. &; indicates the joint type variable (¢;=1 for rotary

joint). i present the unit vector of the third column of the coordinate system.

cosB; —sinB; 0[]0 0
z! = %Ri% = [sinel cos 04 0] H = 0] (2.18)
0 0 111 1

Furthermore, the variables z! and €, are used. The first link is a rotational link & = 1

and b; = &z =[0 0 1]T. The Jacobian matrix of the first link is given as

follows:
r d L, sin 6, 0 L;sin 6,7 L, cos 0,
d L;cosB, d L;cos0, L, sin 6, 0
0 0 0
0 0 0 0
0 0 0 0
1 0 1 0-
The Jacobian matrix of the first link can be written in two matrices A;and B;.
3 L, cos 0, 0
2 0 0
A, =| L;sing, ‘ and B;= |0 0 (2.20)
—_—— 0
2 0 1 0
0
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Furthermore, to obtain the Jacobian matrix of the second link, the derivative of the

vector h, is calculated according to 6, and 6,.

cos 0; sin 6,

cos 0, cos 0,

—sin 0, —sin 0,
z? = JRi? = |sinB;sinB, cos6O,sinB; cos 91 ] [ ] [ cos 0 ] (2.21)
cos 0, —sin 0,
The second link is a rotational link, & =1 and b, = &z2=[0 0 1]T. The
Jacobian matrix of the second link is given as follows:
J2 =
0 L,cos@,sin® 0 L;cos6;sinb, . ]
96, 2 21 =~ Lisin6,) 26, 2 ~ Lisin®y)
d L,sin6;sin0, 0 L,sin0;sin0,
20, > + L; cos6y) 30, > + Li cosBq)
d L,cos®, d L cos6; (2.22)
90, 2 90, 2
0 —sin 0,
0 cos 0,
i 0
The Jacobian matrix of the second link can be written in two matrices A, and B,.
L, cos 01 cos 0, ]
L, sin 08, sin 0, 25007 2
— > — L, cos 0, 2
L, cos 0, cosH
A, =| L, cos0;sin0, _ 2 2 ! (2.23)
— L;sin 6, 2
2 —L, sin 0,
0 s =
2
0 —sin0,
B, = [O cos 91] (2.24)
1 0

The mass matrix of first and second links are given in equations (2.25) and (2.26),

respectively.
D(8;) = m,y A1TA1 + BlT 1By = [

D(6;) = m, AzTAz + B, 1,B,

m1L12
4

. 0]
0 0
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L,2 sin20 L, L, m, cos 0
m2<2 - 2+L12> _(1 2 22 2)]

L; L, m, cos 6, L, *m,
B ( 2 ) ;7 1l

(2.27)

The inertial tensor of each link is calculated according to the main coordinate system,

given in the following equations :
Iy = (1)R Im1 (1)RT , I = (z)R Im2 (z)RT
The mass matrix of the SLRIP system is given in equation (2.29)

D(8) = D(8;) + D(62)

2 2 .2
m; L, L,“ sin“0, L; L, m, cos 0,
ik, (250 ) )
_ | 4 2 |
- | L; L, m; cos 0, L, ’m, |
| p 2 g Flm) |

(2.28)

(2.29)

The elements of the velocity coupling matrix of the first link, are calculated as follows:

2 1 2 .

Co1 = 6 D,,(8) — 2 662 D;1(8) = _g(Lz m; Sln(zez))
2 1 .

Co2 = 661 D,,(6) — 2 692 D;,(0) = — Z(L1L2m2 sin(6;))
) 10 1 .

Co = 56_62 D,,(8) = Z(L1L2m2 sin(63))

2 10 .

Cyp = 2 26, ———D,,(8) = (L1L2m2 sin(6;))

The velocity coupling matrix of the first link is given in equation (2.34)

1 1
~3 (Lzzmz sin(Zez)) ~ 1 (L,L,m, sin(6,))
C2 == 1
4 (L;L,m; sin(63)) 0
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In order to find the Coriolis and Centripetal force vector of the SLRIP, each element
of the velocity coupling matrices (C, and C,) need to verify the equality of the

elements of the following matrices.

0 0 .2 ..
1, 1 _ |8 846 (2.35)
7 (Lz m, sm(292)) 3 (L,L,m, sin(6,)) 6,6, 9'22
-—l(L “m, sin(20 )) — l(L L,m, sin(0,)) 2 4o
8 2 2 2 4 1424412 2 _ [ 91 6162] (2 36)
1 B R .2 .
7 (LiLom; sin(6,)) 0 0.0, 6
Coriolis and Centripetal force vector of the SLRIP is given in equation (2.37)
1 C2 v . .
_ E(L1L2m292 sin(0,) ) + 1 (Lz m,0,0, sm(292))
c(e, e) = 1 , (2.37)
—g(LZZ 0; m, sin(292))
The gravity vector of the SLRIP is given in equation (2.38)
0
G=| 1 : 2.38
[—E(ngmz sin(6,)) 39

Based on equation (2.7), the nonlinear equations of the SLRIP system is given in a

matrix form, as follows:

m, L, 2 L,? sinZ%0 L, L, m, cos 6
[—141 +Izz1+m2<—2 2+L12> —( —— 2)}

4 2 91
L, L, m; cos 6, L, 2m2 92
_( 2 ) 4 + Izzz
1 2 1, .,
5 (L1Lzm292 sin(65) ) +7 (L,*m,6,0, sin(28,))
* 1
. 2 .
~3 (Lz2 0; m, 51n(262))
0 T
1 — [\
* _E(ng m, sin(6,) )] [O] (2.39)
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2.1.3. Jacobian matrix of the SLRIP

The linear and angular velocities of the links of the SLRIP are used to determine the
Jacobian matrix. A formula to compute the Jacobian matrix of the SLRIP is given in
equation (2.40). ], and J,, represents the Jacobian matrices obtained from the linear

and angular velocities in the end-link, respectively. [91]

_ [Jv(8)
J(8) = o (e)] (2.40)

The linear velocities matrix of the system is given in equation (2.41).

v = SRV
cos0;sinB, cosB;cosB, sinH,; —L, sin 0,0,
= [sin 0,sinB, cosO,sinB; —cos 61] Lze'2 —L;cos 9261 (2.41)
cos 0, —sin 0, 0 sin 0,L,6,

The linear velocities matrix of the system can be written as follows:

—L; cos®; —sinB, L,sinB; L, cos0B;cosH, g
9%V =|-L,sin®; +sin6, L,cosO; L;cosB,sin 91] [ 1] (2.43)
0 —L, sin 0, 2
The Jacobian matrix taken from the linear velocities is given as follows:
—L;cos0; —sin0, L,sinB; L,cosB,;cosH,
Jyo(8) = [—Ll sin®; +sin @, L,cosB; L cosB,sin 91] (2.44)
0 —L, sin 0,
The angular velocities matrix of the system is given in equation (2.45)
cos0;sinB, cosB;cosB, sinb; 91 cos 0,
gw = gR %W = [sin 0,sin6, cosO,sinB; —cos 91] —61 sin 0,
cos 9, —sin 0, 0 0,
—92 sin 0,
=|6,cos6; (2.45)
0

The angular velocities matrix of the system can be written as follows:
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—.92 sin 8, 0 —sinby]rg4
w= IR3w=|0,cos0, |= [o cos 91“6.1] (2.46)
6, 1 0 2

The Jacobian matrix taken from the angular velocities is given as follows.

0 —sin6,
Jwo(8) = [0 cos 0, ] (2.47)
1 0

The Jacobian matrix taken from the linear and angular velocities is given in equation
(2.46).

(—L; cos8; —sinB, L,sinB; L, cos0B;cosB,]
—L;sin0; +sin0, L,cosB; L;cos0B;sinb;
—L,sin 0
3= 25109, 2.48
Jo(0) 0 —sin 6, (2.48)
0 cos 6,
1 0

Furthermore, using the determinant of the Jacobian matrix, w = |det (j(e) x12(e)T)|,
the optimal length of each link of the SLRIP is estimated using the PSO optimization
algorithm. The optimal lengths are given in Table 2.2.

2.1.4. Dynamic simulation of the SLRIP
According to the equation (2.39), the expression for the angular acceleration vector (8)

can be given in equation (2.49).

The two equations of 6, and 6, are derived and simulated in Matlab/Simulink. The

Matlab code of the mathematical expression of both equations is given in the appendix.

[zl l =Mt —C(6,8) — G(0)] (2.49)

Figure 2.2 shows the non-linear mathematical model of the SLRIP in Matlab/Simulink.
In order to verify the mathematical model, a mechanical dynamic model of the SLRIP

was developed by using the MATLAB/SimMechanics toolbox.
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Figure 2.2. Mathematical model of the SLRIP in Matlab/Simulink

MATLAB/SimMechanics model of the SLRIP is shown in Figure 2.3 (a). Different
views from virtual reality model of the SLRIP in Matlab Simulink is shown in Figure
2.3 (b). Furthermore, for both model, the initial conditions of pendulums' joint
positions are chosen as follows 6; = 0°, and 6, = 20 °. The obtained results from
both MATLAB/SimMechanics and the mathematical models match exactly. Figure
2.4 illustrates a comparison of the two joint positions obtained from simulation
mathematical and the SimMechanics models without frictions. The simulations are
performed by the sampling time 1ms and 10s simulation time. A numerical method

Bogacki-Shampine solver is selected with fixed-step.
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Figure 2.3. (a) MATLAB/SimMechanics model of SLRIP, (b) Different views from
virtual reality model of SLRIP in Matlab Simulink
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Figure 2.4. Comparison of the pendulum joint positions obtained from the analytic
mathematical model and SimMechanics numerical model of the SLRIP

2.2. Modeling of the DLRIP

2.2.1. Kinematic model of the DLRIP

Solid 3D model and kinematics parameters of the DLRIP are shown in the Figure. 2.5.

DLRIP comprises a horizontal rotary link and two pendulum links. A direct drive

brushless DC torque motor servo system is mounted to provide torque to the horizontal

arm to control the system. The rotary arm rotates in the horizontal plane. The first

pendulum link is connected to the extremity of the rotary link and the second pendulum

link is connected to the extremity of first pendulum link. The two pendulum links move
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as an inverted pendulum in a plane perpendicular to the rotary link. A balance mass
can be attached to the other extremity of the horizontal arm to maintain the balance
inertia of the system. The angle of the rotary link (6;) and the angles of the two
pendulum links (6, and 65) of the DLRIP are illustrated in Figure 2.5. The kinematic
model of the system is derived based on the DH convention. Rotation and
homogeneous transformation matrices between coordinates the DLRIP are calculated.
The parameters and variables of the model are given in Table 2.1 (section 2.1.1). The
physical parameters of the DLRIP are given in Table 2.4. DH Parameters of the
DLRIP are given in Table 2.5.

Figure 2.5. Solid 3D model and kinematic
parameters of the DLRIP
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Table 2.4. Physical parameters of the DLRIP

Parameters Values Parameters Values Parameters Values
0 3.1129 L 0.44 I 0.0020
1 [kg] 1 [m] “2 [kg - m?]
0.1908 . 0.278 : 0.0015
m; 2 1
[ka] [m] i [kg - m?]
0.0832 0.430 0.0024
ms L3 b, 12,3
[ka] [m] [N-m-s/Rad]
3.1469 : 0.4398 9.82
m
: [kq] o gem?| O [N kg™]
Table 2.5. DH-Parameters of the DLRIP
Coordinate Qg aj_q d; 0;
1 0 0 0 0,
T T
2 -3 0 L,y 0, — 2
3 0 L, 0 0
4 0 Ls 0 0

The expression of the homogeneous transformation matrix from a coordinate attached
to an i-th link to a coordinate attached to i-1-th link, i = 1,2,3,4. The expression of
=17 s given in equation (2.1). The homogeneous transformation matrix of the DLRIP

is derived in equation (2.50) using the DH-parameters in Table 2.5.

9T = 9T IT 2T 3T (2.50)
Where
[cosB; —sinB; 0 0 sinf, cosB, 0 O
i 1 L
or — [sin B, cosB; 0 O 17 — 0 0 1 251
1 0 0 1 0|2 cosB, —sinB, 0 O ( )
0 0 0 1 0 0 0 1
[cosB; —sinB; 0 L, 1 0 0 Ls
20 _ |SinB3;  cos6; 0 Ofapr_|0O 1 0 O
5T 0 0 1 o 2T 00 1 0 (2.52)
0 0 0 1 0 0 0 1




i =

sinf,5 cos0; cosf,3cosf; —sinB; cosb;(L,sinb, + L;ysinb,3) — L,sinb,
sin@,;sin@; cosB,3sin 6; cosf; L;cosB; +sin6; (Lssinb,; + L,sinb,) (2.53)
cos 6,5 —sin 0,5 0 L; cos 6,5 + L, cos O,
0 0 0 1

Where 923 = (92 + 93)

The position vector is given from the calculated homogeneous transformation matrix

9T as follows:

PX Cos 61( L2 Sln 62 + L3 Sln 623) - Ll Sln 61
Py = L1 Cos 91 + Sin 91 (L3 Sin 623 + Lz Sin 92) (254)
P, Lz cos 0,3 + L, cos 0,

2.2.2. Dynamic model of the DLRIP

The non-linear motion equations of this DLRIP are derived based on the DH
convention and can be given in a matrix form, given in equation (2.7). The dynamic
equations of DLRIP system are derived using the "Euler-Lagrangian™ method. The
terms of each matrix of equation (2.7) are calculated using the equations (2.8-2.11).

The elements of each matrix calculated are calculated as follows:

Ap,, Ay, and Ay, are center of gravity vectors of the first, second and third links

respectively. The three vectors are given according to the coordinate system of each
link.

L, . L, T Ls T
Ah1=[o = 1] .Ah2=[7 0 0 1] andAhf[7 0 0 1] (2.55)

I, I, and I5 are the inertia tensors of the first, second and the third links, respectively.
0 0 O 0 0 O 0 0 O

I, = [0 0 0 ],12 = [0 0 O ] and I; = [0 0 O ] (2.56)
0 0 1221 0 0 Izzz 0 0 IZZs

The coordinate of the mass center of each link according to the main coordinate of the

system, are given in equations (2.57 — 2.59).
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0 L1 sin 047
cos®; —sinB; 0 0 I[L]I T
in O cos 0 0 O = L, cos©
h, = 9T A, = |51 1 |57 = 21955 2.57
1 hy 0 0o 1 0|2 > (2:57)
0 0 0 1 1 0
1
'L, cos0,sinB
2 21 2 _L,sin6,
L, sin 0, sin 6,
h2 — OT Ahzz > + Ll COoS 91 (258)
L, cos 0,
2
1
h3 = gT Ah3
'L, cos 8, cos 0, sin 6 L; cos 8, cos 65 sin® ]
3 1 > 2 3 3 L > 3 2 + L, cosB; sinB, — L; sin0;
L3 cos0,sin B; sinB; L3 cosB;sin B; sinB, ) ]
_ > > + L, sin6; sin®, + L; cos 6, (2.59)
L 0,+0
> cos(22 ) + L, cos 0,
1

To obtain the Jacobian matrix of the first link, the derivative of the vector h; is
calculated according to 84, 6, and 65. &; indicates the joint type variable (§;=1 for

rotary joint). i present the unit vector of the third column of the coordinate system.

cos®; —sinB; 0][0 0
z! = Ri® = [Sin 0, cos, o] H = H (2.60)
0 0 1111 1

Furthermore, the first link is a rotational link & = 1andb; = &z' =[0 0 1]T.

The Jacobian matrix of the first link is given as follows:

0 L; sin 6, 0 L; sin 6, d Ly sin 6, _7
004 ( 2 20, 2 00, 2
d L;cos6, d L;cos6, d L;cos6,
0 0 0
0 0 0
0 0 0
1 0 0
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I
o

_2
_L1 sin 0, 0 0
= S 0 0 (2.61)
0 0 0
0 0 0
1 0 0
The Jacobian matrix of the first link can be written in two matrices A; and B;.
[ L, cos 0 ]
7= =2 %9 00 0
Ay =] L;sin®, land B;=[0 0 0 (2.62)
I 0 0f
-7 0 of 100
L

To obtain the Jacobian matrix of the second link, the derivative of the vector h, is

calculated according to 64, 6, and 6.

cos0;sinB, cosB;cosB, —sinB;110
z2 = JRi3 = [sin 0,sinB, cosB,sin®; cosO; ] [0]
cos 0, —sin 0, 0 1

—sin 0,
22 = | cos®, (2.63)
0

The second link is a rotational link which&, = 1andb, = &z2=[0 0 1]7.The

Jacobian matrix of the second link is given as follows:

J2 =
[ @ L,cos@;sinb, 0 L,cos6,sinb, . 0 L,cosB,sinb, . 1
— — Ly si — (/"2 _L;sinf) ——(—=—2"—2 —L;sind
20, > L, sin0,) 30, > 1 sin0,;) 36, > 1 sin 6,)
0 L,sinB;sinB, 0 L,sin6;sin0, 0 L,cosB,sinb, )
— —=—(————+L 6,)) —(———— —-L ¢]
36, > + L; cos6,) 26, 2 + Ly cos 6;) 26, 2 15in 6;)
d L,cosB, 0 L,cosB, d L,cosO,
FIR 20, 2 90, 2
0 —sin6; 0
0 cos 0, 0
1 0 0
(2.64)
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_ ) L, cos 0, cos 0, 1
L, sin 0 sin 6, 0
- —L;cos 0, 2
2 L, cos 0, cos 0,
L, cos 0, sin 0, . 0
— L, sin 0, 2
], = 2 —L,sin 8, (2.65)
0 —_— 0
0 2
0 —sin 0, 0
1 cos 04 0
0 0-

The Jacobian matrix of the second link may be written in two matrices A, and B,,.

. _ L, cos 6, cos 0,
L, sin 0, sin 6,

— > — L, cos 0, 2

L, cos 8, cos O

A, = | L,cos0;sinB, ) 2 2 L oo (2.66)
— L;sin 6, 2
2 —L, sin 0,
0 —Z&y 0

0 _Sin 91 O
B, = [0 cos 0 0] (2.67)

1 0 0

To obtain the Jacobian matrix of the third link, the derivative of the vector h; is
calculated according to 6,, 6, and 6.

sin(0, + 03) +cosB; cos(0,+ 05)cosB; —sinb; ][0
z3 = JRi3 = | sin(0, +05)sin®;  cos(0, +03)sinB; cosH, [0]
cos(0, + 63) —sin(0, + 063) 0 1
—sin 04
= | cosO; (2.68)
0

The third link is a rotational link which & =1andb; = &z3=[0 0 1]T. The
Jacobian matrix of the third link is given as follows:

r d (L;cos0,cos0,sin0 L cos 0, cos 05 sin©
—( > ! 2 2 > ! > 2 +L,cos6; sinB, — L, sin91>
a0, 2 2
0 (L3 cosB,sin B, sin0® L3 cos 65 sin 0, sin 6
—( & 2 ! 242 2 ! 2 +L,sinB; sin6, + L, cosel)
00, 2 2
I3 = 0 (Ljcos(0, +653)
0
0
1
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0 <L3 cos 0, cos 0, sinB;  L; cos B, cos B3 sin 6,

E > + > + L, cosB; sinB, — L; sin 91)
0 (L;cosB,sin6; sin® L3 cos 05 sin 0; sin 0
—( & 2 ! 3 2 & ! 2+ L, sin8; sinB, + L, cos 91>
a0, 2 2
d (Lzcos(B, + 63)
—sin 0,
cos 0,
0
d (L;cos6,cosB,sinB L; cos 8, cos B sin B ]
—(3 ! = : + : - : Z + L, cos 64 sinez—Llsin(Bl)
a0, 2 2
0 (L;cosB,sinB; sin 6 L; cos 05 sin 0, sin 0
—(3 = . 2 + & & - 2+Lzsin61 sin92+L1c0591>
00, 2 2
—|——+L,cos6,
a0, 2
—sin 64
cos 0
0 i
The Jacobian matrix of the third link can be written in two matrices Azand B;.
L; cosB5sinB;sin2 L;cos®6,sinB; sinb
[ = _ - S P - & —L,sin®; sin®, — L; cosO; ..
i 2 2
A; = |L;cos0, cosB,sin0 L; cos 8, cos 05 sin 6
3 = - P - 3+ r . g - 2+L2cose1 sin®, — L; sin 6, ...
0
cos 0 (L3 cos(e2 + 93) + 2L, cos 92) cos 0, (L3 cos(e2 + 93))'
2 2
sin@; (Ly cos(®, + 03) + 2L, cosB,) sin@; (L;cos(B, + 65)) (2.70)
2 2 '
2 2 .
0 —sinB; —sinH;
B; =10 cos©; cos 0; (2.71)

1 0 0

The mass matrix of first, second and third links are given in equations (2.72-2.74),
respectively.

mlle
D®,) = m;A,"A, + B,TI,B, = | % e 00
1 141 1 1 171 0 O 0
0 0 0

(2.72)

D(6,;) = m, AzTAz + BzT I,B,
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_mz <L22 sin28, +L12> _ (L1 L, m, cos 92>

4 2
= L; L, m, cos 0, L, ?m, (2.73)
(plameny) ()
2 4 0
0 0
D(63) = m3 A3TA3 + B3T I3B3 (2.74‘)

To simplify the equations of DLRIP, Table 2.6 gives the employed parameters used in
this section.

Table 2.6. Simplified parameters description of the DLRIP

Parameters Description Parameters Description
a L32m3 ag L,L;mg
a; Lzzmz dg L;L;m,
as L12“11 a1o L;Lom;
Ay L,%m; i1 LiLzm;
as L;°m, a2 L,gm,
ae L12m3 ai3 L,gm;
az L32m3 d14 Lzgms;
5 I,,3 a, a; Il,,5c0s(20,+205) a,cos(20,)
D 11 = + a6 +—=+—=—- -
2 2 8 2 2
a;cos(20, + 265) agcos(B3) agcos(20, +63) 2.75)
8 2 2 '
a;1cos(B, +63) +2a;5cos0,
D3, = —— (2.76)
2
a;; cos(0, +05)
D313 = — 11 z 3 (277)
2
a
D3,, = a,+ agcosBs + Zl + 1,43 (2.78)
a; agcos0;
D323 = Z + T + IZZ3 (279)
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3 _ A7
D 33 — T"’ IZZ3 (2-80)

D321 = D312 'D331 = D313 (2.81)
The expression of D(63) matrix is given in equation (2.82)

D311 D312 D313
D(8;) = D321 D322 D323 (2.82)

3 3 3
D31 D32 D33

The expression of the mass matrix of the DLRIP system is given as follows :

D(6) = D(6,) + D(6,) + D(65) (2.83)
%  J a, a; Iyzcos(20,+205) aucos(20,) asg
D11—IZZ1+ T+ a6+7+§— 5 — > + —
a, cos(20, + 265) ag cos(0O ag cos(20, + 6 a, sin?0
_ 7 ( 2 3) 8 (3)_ 8 ( 2 3)+ 2 2_|_aS (284)
8 2 2 4
a;, cos(B, +065 )+ 2a;5cos0 aq cos O
D, = — 11 (6, 3) 10 2 N _( 9 2) (2.85)
2 2
a1 cos(B, + 0
D13 - _ 11 (2 2 3 ) (286)
a ay
D22 = a4_ + ag COS 93 + Z + IZZ3 + (T + IZZZ) (287)
a; agcos0;
D23 = — + - - + IZZ3 (289)
4 2
asz
D33 = T + IZZ3 (290)
D21 = D12,D31 = Di3 (2-91)
D11 D12 D13
D(0) = D21 D2z Dy3 (2.92)
D3y D3z Dss
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The elements of the velocity coupling matrix of the first link, are calculated as follows:

) 1 0
Cyp = 2 6_91 Dy;(6) =0 (2.93)
1 0
C112 = E a_el Dlz(e) == 0 (294)
1 0
Clyz = 5 6_61 D13(8) =0 (2.95)
0
C121 = ae Dll(e) 2 ae D21(9) L2 Sin(zez) + L3 Sin(292 + 293)
1
a, sin 20 a, sin(26, + 26
%+ a, sin 20, + 2 Sin 42 ) + agsinsin(20, + 263)  (2.96)
0
Clyy = 6 D;,(8) — 2 661 ——D,(0)
ayq sin(0, + 03) + agsinB, + 2 a;,sin 0O
_ 11 Sin(0; 3) ;1 2 10 SIN U3 (2.97)
0 a1 sin(6, + 63)
1 _ _
C's= 55- Dua®— 3 ael - D2s(8) = ——— (298)
0
Cl3 = 6 D;;(8) — 2 661 —D3,(0)
a;sin(20, + 260 agsin® agsin(26, + 06
= 1,5 sin(26, + 205) + 20202 +203) | 305 0; | 3059 +64) ) o,
4 2 2
d aqq Sin(ez + 93)
1 _ _
Cly = 557 Dia(®) = 3 ael 597 Ds2(0) = . (2.100)
d a;, sin(6, + 63)
1 _ 911 2 3
Clas = 557 D1a(®) = 5 56~ Dasl®) = : (2:101)

The velocity coupling matrix of the first link may be given in equation (2.102).
C111 C112 C113

Cp= [Chy C'y Cly (2.102)
Cl3; Clap Clyg
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The elements of the velocity coupling matrix of the second link, are calculated as
follows:

C211 D21(9) Dll(e)

90, 2 90,

I,,,sin(20,) 1,,3sin(20, + 263) a,sin(20,)

Ay sinz(Zzz) g sin(2682 +2293) _ ag sin(22628+ 03) (2.103)
Ci2 = 5= D2(®) —5 70 Dra(©)

_ T3 sin(6, + 03) — agsin 0, — 2a,,sin 6, (2.104)

4

Ct1a = 55~ Daal®) —% 507 Duz(®) = — Siniez ) (2.105)
C%,, = ;622 D,.(0) = ! (a11 sin(8, + 03) + agsinB, + 2 a;, sinH, ) (2.106)
€2 = % % D,,(6) = 0 (2.107)
C?3 = % % Dy3(8) = 0 (2.108)
Gy = g Dar(9) = 5 70-Dyn(9) = LT (2,109
C?%3, = aieg D,,(0) — 5 agz D;,(0) = —agsin B, (2.110)
C3s = 55 D2s(®) = 5 50-Dss(®) = 22 (2111)

The velocity coupling matrix of the second link can be given in equation (2.112)
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C211 C212 C213
CZ = C221 C222 C223 (2112)
C231 C232 C233

The elements of the velocity coupling matrix of the third link are calculated as follows:

a;s sinB;  a;sin(20, + 265 )

3 —
C1 = 20, D3, (6) — 5 863 D;1(0) = 1 3
I,,3sin(20, + 26 ag sin(20, + 06
__ zz3 ( 22 3)_ 8 (42 3) (2.113)
1 0 a;; sin(6, + 63)
C12 = g~ Ds2(®) =5 g5~ Di2(®) = - ————— (2.114)
d d —aq; sin(0, + 63)
C33 = 20, D33(6) — E 20, D;3(8) = —— 4 S (2.115)
d a1 sin(6, + 63 )
C31 = 20, D3,(6) — 2 96, —D,,(0) = = 42 : (2.116)
3 a 0 ag sin B3
C2 = 66 D3,(6) — 5 20, =5~ D22(6) = — 5 (2.117)
0 0 ag sin®
Cas = 55, D3a(® = 5 55-D2s(0) = = (2.118)
10 a1 sin(6, + 63 )
C%31 = 379, Dn(® = — (2.119)
d —ag sin 05
Clsa= 5 6—93D32(6) =— (2.120)
3 1 0
C33 = 56—63D33(9) =0 (2.121)

The velocity coupling matrix of the third link may be given in equation (2.122)
C311 C312 C313

C3 = C321 C322 C323 (2122)
C331 C332 C333
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In order to find the Coriolis and Centripetal force vector of the DLRIP, each element
of the velocity coupling matrices (C;, C, and C3) need to verify the equality of the

elements of the following matrices.

Clyy Chyy Clyg 9.12 6.6, 6:6;
C'y1 C' Cly3|=16,6, 6, 2 0,05 (2.123)
C131 Cl32 Cl33 6'36'1 9'39'2 6-32

- .2 . e
CZ11 C212 C213 0, 0,60, 6,03
C%1 C% C%|=6,6, 6, 6,0, (2.124)
C%3; C%3; (P33 _9391 6362 9'32 |
Cile, C3,,M02, 5 0, 0.0, 6,03
C21 Cp C23|=|6,0, 6, y 0,05 (2.125)
C33 CP5 CP3 _6361 056, 6.32 |

The elements of the Coriolis and Centripetal force vector are given as follows:

Ci1 = I,y 0,6,5in20, + I,,3 0,0, sin(20, + 203) + I,,3 6,605 sin(26, + 263)

376162 Sin(292 + 293)
4

aze.le.z sin 292
4
376.16.3 Sin(zez + 293) 311622 Sin(ez + 93) 311632 Sin(ez + 93)
* 4 B 2 * 2

+ dy 6162 sin 292 +

. 2
+ dqo 92 sin 92 +

ae'zsine
222 24 0,05sin(0, + 05) + ag 6,0, sin(26, + 265)
11 9293 2 T U3 g U192 2 3

2
ag0,0- sin(20, + 0 aq0,0,sin0
4+ 28%10 (26, 3)_813 3 (2.126)
2 2
.2 .2 .2
= —1,,,0; sin20, 1,,30; sin(26, +203) a,0; sin26,
21 2 2 8
2 2 2
3191 Sln(292+293) 3461 Slnzez 3863 Sln93
8 2 2
.2
ag0, sin(20, + 6 ..
_ 35 sin(26, 3)—a863ezsin93 (2.127)

2

ag 6, sinB; a,6, sin(20, +203) 1,36, sin(26, + 265)
Ca1 = 4 8 N 2
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N a86'22 sin 05 agélz sin(20, + 03)

2.128
> 2 (2.128)

The expression of Coriolis and Centripetal force vector is given in equation (2.129)

C11
c(0,0) = [221] (2.129)
31

The gravity vector the DLRIP is given in equation (2.130)

0

) . . 0
— aq4Sin(0, + 6:) — a;,sinO, — 2a,5sin 6
G — 14 ( 2 3) 12 2 13 2 — |:G21 ] (2130)
2 G
31

- 314Sin(ez + 63)

The DLRIP has some complex non-linear dynamic equations which can be written in

a matrix form given in equation (2.131):

D1 D1z Dis 9_1 Ci1 0 T
Dz1 D2z Daz||6,]+|Cor|+|G21 | = [Ol (2.131)
D3; D3z Dass 0, Csq G3q 0

2.2.3. Jacobian matrix of the DLRIP

The linear and angular velocities of each link of the DLRIP are used to determine the
Jacobian matrix. A formula to compute the Jacobian matrix of the DLRIP is given in
equation (2.40) in section (2.1.3). ], and J,, represents the Jacobian matrices obtained
from the linear and angular velocities in the end-link, respectively. The linear

velocities are given in equation (2.132).

cos 0, sin (6, + 63) cosB;cos(6, +05) —sinb,;
% = 9R3V =|sin(0, +03)sin0; cos(6, +03)sinB; cosO,

cos(6, + 63) —sin(0, + 03) 0
L, sin 8360, — L;sin(0, + 03) 6 v,
X L392 +L36.3 — COS (62 + 63) L]_COS 61 + LZ COS 9362 = 2V2 (2132)
91 (Sin ezLZ + L3 Sin(ez + 63) ) 2V3

The elements of the linear velocities vector (JV) are given as follows:
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9V, = (—LyCy — S1(L3S; — L3S23))8; + (C1(L3Cas + L3Cy))0,
+(L3C23Cy) 63

9V, = (Cy(Ls + LS, + Sz3) — L1S1)8; + (S1(L3Cas + L2Cy))0,
+(L3C2351)65

ng = (—Lsszs—Lzsz) 62 - (L3323) 63

—L;C; —S1(LyS; — L3Sp3)  Ci(L3Cpz + L3Cy)  L3Cp3Cy
9V =|Cy(Ls + L3S, 4+ Sp3) —LyS; S1(L3Cyz +LyCy)  LaCy3Sy
0 —L3S23—L,S; —L3S;3

Where

C, =cosH;,S; =sinB;,C,; =cosO,,S, =sin0O,

523 = Sin(ez + 93) ,C23 — COS(GZ + 93)

0
0
0

(2.133)

(2.134)

(2.135)

(2.136)

(2.137)
(2.138)

The Jacobian matrix taken from the linear velocities is given in equation (2.139).

Y —L;1C; = S51(LyS; — L3Sz3)  Ci(LsCas +L3Cy)  L3Cy3Cy
Juo(8) = [Cy(Ls + LSz + Sz3) — LyS; S1(L3Cas + LoCy)  L3Cy3Sy
0 —L3S23—L2S; —L3Sz3

The angular velocities matrix of the system is given in equation (2.141)

CiS23 CiCos —Si] [ 01Ces
gw = gRiw = [52351 S1Cas  —Ci| [—6:S,3
Cz —Sy3 0 I'fa, +6,
—S1(02 + 63)
Ow = Cl(éz + 93)
h

The Jacobian matrix taken from the angular velocities is given as follows:

0 —sinB; -—sinB,
]Wg(e) = [O cosB; cosB; ]
1 0 0
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The Jacobian matrix taken from the linear and angular velocities is given in equation

(2.143).
[ —L;C; —S1(LaS; — L3Sz3)  Cp(L3Cyz + L3Cy) L3CyzCy
Cy(Lg + LS, +S33) — L3Sy S1(L3Ca3 + LpCy) L3Ca3S,
]g(e) = 0 —L3S;3—L,S;  —L3Szs3 (2.143)
0 =S S
0 C, C,
1 0 0

Furthermore, using the determinant of the Jacobian matrix, w = |det (*(e) xJ¢(e)T)],

the optimal length of each link of the DLRIP is estimated using the PSO optimization
algorithm. The optimal lengths are given in Table 2.4.

2.2.4 Dynamic simulation of the DLRIP

According to the equation (2.131), the expression for the angular acceleration vector
(6) can be given in equation (2.144). The three equations of 8,, 8, and 85 are derived
and simulated in Matlab/Simulink. The Matlab code of the mathematical expression
of the three equations is given in the appendix. Figure 2.6 shows the non-linear

mathematical model in Matlab/Simulink.

é_l Di; Djz Dig3 i T C11 0
0, =|D21 Dz Dys [Ol— Ca1| —|G21 (2.144)
65 D3; D3, D3 0 Csq G3q

In order to verify the mathematical model, a mechanical dynamic model of the DLRIP
using the  MATLAB/SimMechanics
MATLAB/SimMechanics model of the DLRIP is shown in Figure 2.7 (a). Different
views from virtual reality model of the DLRIP in Matlab Simulink is shown in Figure

was  developed by toolbox.

2.7 (b). Furthermore, for both model, the initial conditions of pendulums' joint
positions are chosen as follows 6; =0°, 6, =20°and 6; = 30°. The obtained
results from both MATLAB/SimMechanics and the mathematical models match
exactly. Figure 2.8 illustrates a comparison of the three joint positions obtained from
simulation mathematical and the SimMechanics models without frictions. The
simulations are performed by the sampling time 1ms and 5s simulation time. A

numerical method Bogacki-Shampine solver is selected with fixed-step.
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Figure 2.6. Mathematical model of the DLRIP in Matlab/Simulink

IC IC IC

Erwv }

Link_3

Root

P |

cally

2 pogi-HiHe

PandPog

J3_pos

PG

Dass

(@)

Figure 2.7. (a) MATLAB/SimMechanics model of the DLRIP, (b) Different views
from virtual reality model of the DLRIP in Matlab Simulink
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(b)

Figure 2.7.(Cont.) (a) MATLAB/SimMechanics model of the DLRIP, (b)
Different views from virtual reality model of the DLRIP in Matlab Simulink

15

20

10

02(deqg)

14.8

14.75

01 - SimMechanics model without friction
= = = (1 - Mathematical model without friction

02 - SimMechanics model without friction
= = = ()2 - mathematical model without friction

1.5

03 - SimMechanics model without friction
= = = ()3 - mathematical model without friction

Figure 2.8. Comparison of the pendulum joint positions obtained from the analytic
mathematical model and SimMechanics numerical model of the DLRIP
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2.3. Modeling of the TLRIP
2.3.1. Kinematic model of the TLRIP

Solid 3D model and kinematics parameters of the TLRIP are shown in Figure 2.9.
TLRIP comprises a horizontal rotary link and three pendulum links. A direct drive
brushless DC torque motor servo system is mounted to provide torque to the horizontal
arm to control the system. The rotary arm rotates in the horizontal plane. Three
pendulum links are attached in serial mounted in the extremity of the horizontal arm.
Three pendulum links move as an inverted pendulum in a plane perpendicular to the
rotary link. A balance mass is attached to the other extremity of the horizontal arm to
maintain the balance inertia of the system. The angle of the rotary link (6,) and the
angles of the three pendulum links (6,,65 and 6,) of the TLRIP are illustrated in
Figure 2.9. The kinematic model of the system is derived based on the DH convention.
Rotation and homogeneous transformation matrices between coordinates the TLRIP
are calculated. The parameters and variables of the model are given in Table 2.1 (in
section 2.1.1). The physical parameters of the TLRIP are given in Table 2.7. DH
parameters of the TLRIP are given in Table 2.8.

Figure 2.9. Solid 3D model and
kinematic parameters of the TLRIP
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Table 2.7. Physical parameters of the TLRIP
Parameters Values Parameters Values Parameters Values
3.1129 L 0.4202 I 0.25
ml [kg] 1 [m] 221 [kg - m?]
0.7268 L 0.2675 I 0.04
M2 [ka] 2 [m] [kg - m?]
0.6789 L 0.3650 I 0.05
M3 [ka] 3 [m] 223 [kg - m?]
0.4500 L 0.4240 I 0.05
e [ka] i [m] [kg - m?]
3.1469 b 0.0024 9.81
Mgy [kg] 1234 | [N-m-s/Rad] g [N kg1]
Table 2.8. DH-Parameters of the TLRIP
Coordinate 0_q aj_q d; 0;
1 0 0 0 0,
T VA
2 - E 0 Ll 62 - E
3 0 L, 0 0
4 0 L, 0 0
5 0 L, 0 0

The expression of the homogeneous transformation matrix from a coordinate attached
to an i-th link to a coordinate attached to i-1-th link, i = 1,2,3,4,5. The expression of
=17 s given in equation (2.1). The homogeneous transformation matrix of the TLRIP

is derived in equation (2.145) using the DH-parameters in Table 2.8.

0T = OT AT 2T 3T 4T

Where
cos®; —sinB; 0 O
o — sin6; cosB; 0 O 1T —
! 0 0 1 0|2
0 0 0 1
[cosB; —sinB; 0 L]
2T = sinB; cosB; 0 O 3T =
0 0 1 0
0 0 0 11

sinB, «cosB, 0 O
0 1 Iy
cos®, —sinB, 0 O
0 0 1
cos®, —sinf, 0 Lj
sin, «cosB8, 0 O
0 1 0
0 0 1
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100 L,
s#n»_|0 1 0 O
=0 100 (2.148)
0 0 0 1
(1 1 1 1
551234 +532134 §C1234 +§C2134 -5 K
1 1 1 1
gT = §C2134 - §C1234 581234 - 582134 Cel Py (2149)
C234 _8234 0 y
0 0 0 14
Where
S; =sinB;,C; = cosH,,S, =sinB,,C, = cosB,,S; =sin0O; (2.150)
C3 = COS 93, 894 = sin 94 ) C94 = CO0S 94, ) 3234 = Sin(ez + 93 + 94) (2151)
C234 = COS(BZ + 93 + 64), 51234 = Sin(91 + 92 + 63 + 64) (2152)
C1234 = COS(91 + 62 + 93 + 64) ,C2134 = COS(GZ - 61 + 63 + 64) (2153)
52134 = Sin(ez w 91 + 63 + 64) (2154)

The elements of the position vector are given from the calculated homogeneous

transformation matrix 2T as follows:

P, = C;S;(Ly + LsCs + LyC5Cy — LySSy) + C1Cy(LsSs + LyCsSy + LyC,Ss)
~L,S, (2.155)

Py = 5152 (L2 + L3C3 + L4C3C4 - L4S3S4)
+8,C,(L3Ss + LyCsSy + LyCySs) (2.155)

PZ = L3 C 23 + L2C2 + L4C234 (2156)

The expression of the position vector is given in equation (2.157).
Py
P, = |Py (2.157)
P,

2.3.2. Dynamic model of the TLRIP

The non-linear motion equations of this TLRIP are derived based on the DH

convention and can be given in a matrix form, given in equation (2.7). The dynamic
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equations of TLRIP system are derived using the "Euler-Lagrangian” method. The
terms of each matrix of equation (2.7) are calculated using the equations (2.8-2.11).

The elements of each matrix calculated are calculated as follows:

Ay, , Ap,, Ap, and Ay, are center of gravity vectors of the first, second, third and

fourth links respectively. The four vectors are given according to the coordinate system

of each link.
L L T
Ahlz[o =N 1]T Ahzz[?z 0 0 1] (2.158)
L T L T
Ah3=[73 00 1] Ap,= [7“ 0 0 1] (2.159)

I,, I,, I3 and I, are the inertia tensors of the first, second, third and fourth links,

respectively.
0 0 O 0 0 O 0 0 O 0 0 O

11:[0 0 0]12:[0 0 0]13:[0 0 0]14:[0 0 0](2.160)
0 0 Iy, 0 0 I, 0 0 Iy, 0 0 I,

The coordinates of the mass center of each link are calculated and given as follows:

: L, cosB,sinH 1
3 L sin 647 2 21 2 _ L, sin 04
L 2 0 L, sin 0, sin 0,
hy = 0T A, = [ 21695%1 C‘Z’S L[ hy=9TA, = 2 +Licosbi](2161)
0 L, cos 0,
Lo | i
hy = 9T Ay,

L3 cos 6, cos 6, sin 6 L3 cos 64 cos 05 sin 6 1
> ! > 2 2 > ! > > 2+L2cos(91 sin@, — L; sin 0,
L; cos0,sin B; sinB; L3 cosB;sin B, sinB, ) ]
— > > + L, sin®; sinB, + L; cosB; (2.162)
L; cos(B6, + 6
%23) + L, cos 0,
1

h4_ = 2TAh4
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515, <L2 + L;C3 +

LsC3Cs  LgS3S,
2 2
L,C3C,  LyS3S,
2 2

>+ C,5¢ (L3S3 +

1
2 L4Ca34

L,C3S,  LgS3Cy
2 T3 >_L151
L4C354 L453C4
2 2 ) LiCy

(2.163)

1

To calculate the Jacobian matrix of the first link, the derivative of the vector h; is taken
according to 8, , 8, , 85 and 6,. The first link is a rotational link, so §; =1, z! =
‘Ri*=10 0 1]Tandb; = &z'=[0 0 1]T

link is given as follows:

. The Jacobian matrix of the first

[ d L1 sin 61 d Ll sin 91 d L1 sin 91 L1 sin 91 ]
6, 7 ) a6, 7 ) 065 ) ae =)
d L1 Ccos 61 d Ll Ccos 61 d Ll CcoSs 91 d Ll COS 91
]1_6—61 7 ) 90, 2 )ae( )ae( 7 )
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
L; cos 0, 1
= > 0 0
L sin 64 0 0 0
=] S 0 0 O (2.164)
0 0 0 O
0 0 0O
1 0 0 O

Th Jacobian matrix of the first link can be written in two matrices A;and B;.

[ L1c0591 1

|T— =2 0 00 0000

| Lisingy o 0|and B, = |0 8 00 (2.165)
[ g 0 0 o 1000

To calculate the Jacobian matrix of the second link, the derivative of the vector h, is
taken according to 6, , 6, , 65 and 6,. The second link is a rotational link, so &, = 1,
z2=9Ri*=1[0 0 1]Tandb, = &z>=[0 0 1]T

second link is given as follows:

. The Jacobian matrix of the
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[0 L,G S, iLZClSZ _ i LG S, _ i LG S, _ ]
6_91 2 - L15'1) 692 ( 2 Llsl) 893 ( 2 Llsl) 664 2 Llsl)
3 L,$S, 0 LSS, 0 LSS, 0 1558,
3_91( 2 + L1C1) 892 ( 2 + L1C1) 693 ( 2 + Llcl) 694 ( 2 + L1(:1)
J L,C, i (chz) i (chz) i (chz
a_el( ) 20, 2 90, 2 99, 2
0 —sin6; 0 0
0 cos 0, 0 0
1 0 0 0
_ _ L, cos 0, cos 0,
L, sin 0, sin 0, 0 0 O
— —L; cos 0, 2
2 . L, cos 0, cos 6,
L, cos 8, sin 6, _ 0 0 O
— L, sin 0,4 2
= 2 _LZ sin 92 (2166)
0 — 0 0 O
8 - Sin 61 O 0 O
1 cos 0, 0 0 0O
0 0 0o o

The Jacobian matrix of the second link can be written in two matrices A, and B,.

. ) L, cos 0, cos 0, 1
L, sin 0, sin 6, 0
- > — L, cos 0, 2
L, cos 0, cos O
A, = | L,cosH,sinB, ) 2 2 L 0 (2.167)
— Ly sin 64 2
2 —L, sin 0,
0 —_— 0 0
2 1
[0 —sinB; 0 O
B,=10 cosB; 0 0 (2.168)
1 0 0 0

To calculate the Jacobian matrix of the third link, the derivative of the vector hj is

taken according to 6, , 6, , 65 and 0.

The third link is a rotational link, so &; = 1,z3 = JRi* = [—sin8;

cos 0,

1]7T

and b; = &z3=[0 0 1]T. The Jacobian matrix of the third link is given as

follows:
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J3

r 9 (L3Cy C, S3 LsCy C3 S, ) d (L3 C; C, S3 LsCy C3 S,
ael( 2 2 L2 G152 =leSy 98, 2 2
d /L3CyS; S3 L3Cs Sy S, ) d (L3 C,S1S; L3C3S; S,
0 L3C23 5] L3C23
a_el( ey @( 7+ 1aC)
0 -5
o C,
0
9 /L3C; C; S3 LsCy C3 S, ) 9 (L3 C; C, S3 LiC C3'S,
693( 2 2 L2 G5, iS5y 90, 2 2
6—93( > + > +L,5: S, +L1C1> 6_64( > + >
L3Cy3 ) 0 (L3C23 )
aeg( 7 TLG B\ 2 +LaCy
-S, 0
¢, 0
1 0
—L3 C3 Cl SZ L3C2 Sl S3 Cl(L3C23 + ZLZCZ) C1L3C23
— i LZ S1 SZ _Llcl
2 2 2
L3C1 CZ S3 L3C1 C3 SZ SI(L3C23 + 2LZCZ) S1]-‘3(:23
2 2 2
= _L3SZ3 L3(:23
0 2
0 _Sl _Sl
1 Cl Cl
L 0 0

+L,5: S, +L1C1)

0

0
0
0
0.

(2.169)

The Jacobian matrix of the third link can be written in two matrices A; and Bs.

A3 =
L;C3 C; S L;C, §;S C,(L3Cy3 + 2L,C C,L;C 1
3 %3 b1 92 _ 3%2 Y193 _ Lz Sl Sz —L1C1 1( 3%23 2 2) 1L3l23 0
2 2 2 2
L;C; C, S L;C; C5 S S1(L;Cy3 + 2L,C S;L5C
3%1 2 93 3%1 3 V2 + LZ C1 SZ _ Llsl 1( 323 2 2) 1+3%23 0
2 2 2 2
—L3S L;C
0 ; 23 _ LZSZ _ 3223 0_
(2.170)
0 —S, -S, 0
B, = [0 c, C, 0 (2.171)
1 0 o0 0

To calculate the Jacobian matrix of the fourth link, the derivative of the vector h, is
taken according to 0, , 6, , 65 and 6,. The fourth link is a rotational link, so ¢, = 1,
1NTandb, = &z*=[0 0 1]T

matrix of the fourth link is given as follows:

z* = JRi* = [—sin®; cos6; . The Jacobian
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Ja=1 0o 0 d d
6_61 (h431) 6_92 (h431) 6_93 (h431) 6_94 (h431)
0 s, —S, s,
0 C, Cy C,
1 0 0 0

_]411 ]412 ]413 ]414_
]421 ]422 ]423 ]424

= ]431 ]432 ]433 ]434

o -5 -5 -5
0 C, C; Cy
1 0 0 0-

Where:

h, . hy,, and h,, are the elments of the vector h,.

L, S35, L, C3Cy
Joy =51 8 (F52E - 1, — 15 € - 2222
L,C:S L,C,S
+C2$1(L353_ 4 34_ 4 43)_L1C1
2 2
2L; Cy3 + 2L, Cy + Ly Cyzy
]412 =4 ( 2 )
o = Ly Cy134  L3Cya3  LsCiazs L3 Cas
*13 4 2 4 2
_ L4(Ciz34 + Cay34)
L, C3C4  LgS3S,
]421 = C152 <L2 + L3 C3 + - >
2 2
L,C:S L,C,S
+C2C1(L353+ 423 4"|' 424 3>—L151
]422 =5 ( 2 )
o = L3 Ci23 _ Ly Sz134 L4 Si234 _ L3 Sz13
423 2 4 4 2
_ Ly S1234 — S2134
]424 - 4
]431 =0
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i 9 9 -
6—91(11411) 6—92(11411) 6—93(1’411) 6—94(}1411)

9 9 9
6—91(11421) 6—92(11421) 6—93(1’421) 6—94(}1421)

(2.172)

(2.173)

(2.174)

(2.175)

(2.176)

(2.177)

(2.178)

(2.179)

(2.180)

(2.181)



L4 S234

Jas, = —L3Sz3 — LS, — 5 (2.182)
L4 S234
Jaz; = —L3Sz3 — 5 (2.183)
L,S
Jagy = — = (2.184)
The Jacobian matrix of the fourd link is written in two matrices A, and B,.
]411 ]412 ]413 ]414 0 -S; -5 —-§
Ay = Jay, Jap, Japs Jagy| By = [0 ¢, € G ] (2.185)
1 0 0 0

]431 ]432 ]4'33 ]434

The expressions of the mass matrix of the first, second, third and fourth links are given
in equations (2.186), (2.187), (2.188) and (2.189), respectively. The inertia tensor of

each link is calculated according to the main coordinate system.

[ = (1)R Im1 (1)RT o = gRImz gRT,I3 = gRIm3 gRT g = 2R Ina gRT (2-186)
2
l[%+ Iz, 0 0 01|
D(6,) = m; A, A, + B,TI;B; = 0 0 0 0 (2.187)
l 0 0 0 OJ
0 0 0 O
D(6,) =m, A,"A, + B," 1B,
[ L,2 sin%0 L, L, m, cos 0 T
m, 2 2+L12 _(1 2 My 2) 0 0
4 2
— L; L, m, cos 0, L, *m,
_( - ) 2 - 0 0 (2.188)
0 0 0 0
0 0 0 O
D(93) == m3 A3TA3 + BgT 1383 (2189)
D(94) == m4_ A4TA4 + B4_T I4B4 (2.190)

To simplify the equations of TLRIP, Table 2.9 gives the employed parameters used in

this section.
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Table 2.9. Simplified parameters description of the TLRIP

Parameters Description Parameters Description
a1 Ly’ m; d16 Ly*my
a, L22m2 aiy L22m4
asz L12m1 dig L32m4
g L22m3 di9 L42m4
as Li’m, az20 L,Lsmy
ae Li°m; a21 L,Lymy
ay L3*my azy LzL,m,
ag L,L3m3 dz23 LiLymy
dg LiLom, dz4 LiLomy
aio LiL,m; azs LiLym,
i LiLzm; 26 Lzgm,
aiz L,gm, dz7 L,gm,
d13 L,gm; dzg Lzgm,
14 Lzgm; d29 Logm,

The elements of D(B3) matrix are given as follows:

(2.191)

(2.192)

I a I,,3 cos(20, + 26 a, cos(26
D311= zz3+a6+_+_7_ 723 ( 2 3)_ 4 ( 2)
2 8
a;cos(20, + 205) agcos(B5;) agcos(20,+03)
8 2 2
3 a;; cos(B, +05) +2a,5cos0,
D% = —
2
D3 = a1, cos(0, +63)
13 = —
2
3 a1
D°®,, = a4+ agcosO; +Z+ I,.3
a; agcosBz
D3,3 = 7 T"‘ I;23
az
D333 = Z'l' IzzS
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D31 = D%;,D%;; = D33 (2.197)
D314 = D%, = D33 =D3%; =D%, =D%; =D%,=0 (2.198)
The matrix D(065) maybe given as follows:

D%;; D%, D33 D3y
D31 D3; D33 D3y

D(0;) = 2.199
(6,) ng31 D33, D33 D334J (2199)
D3,; D3, D3%; D3,
The elements of matrix D(6,) are given as follows :
I,,4 a7  aig a9 l,z4c0s(20, + 205 + 20,)
Dfyy ="+ttt 7
a7 cos(20 a.g cos(206, + 20 a,, cos(O
_ 17 ( 2)_ 18 ( 2 3)+ azo COS(G3)+ 22 ( 4-)
2 2 2
{9 cos(20, + 205 + 26 a,7 cos(b; + 0
_ 19 ( 2 8 3 4-) + 21 (2 3 4-) _ 320 COS(ZGZ + 63)
a,; cos(20, + 65 +6,) a,,cos(20,+2605+0,) (2.200)
2 2 '
—2a,3cos(0,+06,)—2a,,c0s0, — a,zcos(0, + 6, + 6
D*,, = 23 (63 4) 24 : 2 25 (6, 3 4) (2.201)
— 2a,3cos(B, +05) — a,-cos(6, +06,+0
D4, = 23 (6 3) . 25 (6, 3 4) (2.202)
—a,:cos(6,+06:+06
D4, = —2 ( ; 3 +84) (2.203)
D422 = 317 + 2 azo CoS 93 + 321 COS(93 + 94)
a
318 + 322 COS 64, + £ + IZZ4- (2204)

4

a9 ayycos(6;+0,)

n > +1,, (2.205)

D*,3 = a;g+ a,,cos0, + a,,cosO; +

a9 ayycos0, ay;cos(6;+06,)
4 2 2

(2.206)

D424 = IZZ4 +

ax;cosB; agq

2.207
2 > (2.207)

D*33 = l,,4 + a5+
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ay, Cos 0,

> (2.208)

D*34 =I5 + a0+

d19
D*44 = lppa + > (2.209)

D421 = D412 ;D431 = D413,D441 = D414' D442 = D424 ,D443 = D434 (2-210)

The matrix D(0,) maybe given as follows:

I[D411 D*;; D*j3 D%

D4- D4- 4 4

D(8,) = | 421 422 D423 D424 (2.211)
lD 31 D 32 D 33 D 34-J
D441 D44-2 D44-3 D44-4-

The mass matrix of the TLRIP is given as follows :

D(6) = D(81) + D(62) + D(63) + D(8,) (2.212)

The elments of the mass matrix are given as follows

(2
as a, sin“0, I,,3 a, a; I,3co0s(20,+ 205)
Diy = 7+ g, + T+a5+%+ a6+7+§—ZZ >
a, cos(20,) a,cos(20, + 263) N agcos(B;) agcos(20, +63) N aiy
2 8 2 2 2
I,,4 cOs(20, + 205 + 26,) a;9cos(20, + 205 + 26,) a;;cos(20,) I .4
—~ —~ — +
2 8 2 2
a;g a5 aggcos(20, + 203)
+ a4 + > 3 >
a,, cos(0,)
+ a,, cos(63) + — 5~ cos(26, + 63) (2.213)
—agcosB, —2ay;cos(053+6,)—2a,,cos0,— ayscos(6,+ 05+ 60,)
aq1 cos(B, +03) +2a;5cos0
_an (62 +63) 10 2 (2.214)
2
a1 cos(B, + 03)
Diz =~— 2
— 2 a3 cos(B, +03) — ayscos(B, +0;+6
+ 23 ( 2 3) 25 ( 2 3 4-) (2215)

2
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—ayg cos(0, + 65 +60,)

ap a;
D,, = T+ I, + a, + agcosB; +Z+Izzg + a7+ 2a,9c0s03 + agg
dig
+ T + IZZ4+ 321 COS(63 + 64) + a22 COS 64 (2217)
a a,1cos(6; + 0 a
D,3; = a;g + a,;co0s0, + a,gcosO3 + f 21 (2 3 +) + 1,4+ Zl
ag cos 03
B — +1,,3 (2.218)
a a,, cos 0 a,7 cos(b, + 0
Dy, =L, + 19 22 4 21 (03 4) (2.219)
4 2 2
a- a,, C0s0, ajg
D33=Z+Izz3+lzz4 + 318+ 2 + 2
ay, COS 0,
+IZZ4 + 319 + T (2220)
dig
Dag =Lz +—= (2.221)
D31 = D12,D31 = Dy3,D41 = D14, Dyy = D3y, Dys = D3y (2-222)
The matrix D(8)can be given as follows:
D11 D12 D13 D14-
D D

D31 D32 D33 D34
D41 D4-2 D4-3 D4-4

The elements of the velocity coupling matrix of the first link are calculated as follows:

1 0

cty = 3 50, D;(8) =0 (2.224)
1 0

Clyz = 7 30, D12(0) =0 (2.225)
1 0

C113 = E a—el D13(9) =0 (2226)
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0

]
99, 2 691 30, D21(®)

== IZZZ Sin(zez + 293 + 294) + IZZZ Sin 292 + IZZ3 Sin(292 + 263)
a;9sin(20, + 2605 + 260,) a,sin20,
+ +
4 4
a, sin(20, + 205)
4
+ agsin(20, + 203) + 2 a,,sin(20, + 203) + a,; sin(20, + 205 + 26,) (2.228)

1
C21

D;1(6) —

+ a4+aq9sin 20,

+ a;gsin(26, + 203) + ay, sin(20, + 2605 + 260,)

0 1 0
Cly = 30, D1,(0) — 7 90, D,,(0)

a1 sin(0, + 03) + 2a,3sin(6, + 63) + agsinb,

2
2a,0Sin0, + 2a,,sin0, + a,=sin(6, + 05 + 0O
4 520 2 24 22 25 Sin(0, 3 4) (2.229)
d 1 0 aps sin(0, + 63 + 04) + a7 sin(6, + 63)
Clys = 30, D13(0) — 5 6_91D23(6) = 2 42 = AR
+ a,3 sin(B, + 03) (2.230)
6 1 6 ay:s Sin(B, + 03 + 0,4)
1 25 2 3 4
1 a 0
C3y = 6 D,1(8) — 2 691 D31(9) = I;445in(26, + 203 + 20,)
a,0Sin O ag sin(26, + 6 a,q sin(206, + 065+ 6
_ A2 3, 28 (26, 3)+azosin(262+e3)+ 21 5in(28, 3 4)
2 2 2
a19 Sin(zez + 293 + 294) 31 Sin(zez + 293)
+ +
4 4
) ) ag sin 05
+ 1,,5sin(20, + 203) + a;gsin(20, + 205) S — (2.232)
0 ays sin(0, + 65 + 0,)
C';, = — Dy,(0 — D4, (0) =
32 26, 12(0) — 5 691 32(0) = B
a7 sin(6, + 6
i (22 3, 2,5 sin(0, + 05) (2.233)
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9]

D13(0) —

1
C33= 36,
a,- sin(6, + 0
+ 23 (2 3)
2
d

Clyy = 30, D14(0) —

9]

1 —J—
Cy= 30,

D11(0) —

1

7 90, D33(0) =

1

7 90, D34(0) =

1

- 323Sin(62 + 63)

5 6_61D41(9) =

djs Sin(ez + 93 + 64)

dysg Sil’l(ez + 93 + 64)

IZZ4 sin(ZGZ + 263 + 264)

N a,q sin(20, + 05 + 0,) — ay; sin(0; + 0,) + a,, sin(26, + 65 +6,)

N a19in (20, + 205 + 20,)

ay, Sin B,

4
Clyp = 30, D12(0) —
Clys = 6%41313(6)—
Clys = 694 D14(6) —

The velocity coupling matrix of the first link is given in equation (2.240)

[C'11
Cha1
Cls
Clar

C1=

Clyz
C'y
C's;
Claz

1

d
7 90, D4, (0) =

: D44(9) =

2 90,

Clis
Clas
(P
Clys

C114--|
C124-
C'sq
C144-

dss sin(92 + 93 + 94)

_ dss Sin(ez + 93 + 64,)
5 6—61]343(9) =

a,s sin(0, + 65 + 0,)

(2.234)

(2.235)

(2.236)

(2.237)

(2.238)

(2.239)

(2.240)

The elements of the velocity coupling matrix of the second link are calculated as

follows:

CZ
11 = a

D,1(6) -

I,,3sin(20, + 205)

2 aez
a9 sin(26, + 2605 + 26,)

D11(9) =

ZZ4 Sin(292 + 263 + 264)

I,,> sin 20,

2

a, sin 20,

2

a; sin(26, + 263)

a,g sin(20, + 20;)

ag sin(26, + 205)

a;7 Sin 20,

8
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a,; sin(20, + 05 +0,)  a,,sin(20, + 2605 +0,)

— > - 5 (2.241)
0 1 0
C*yp = 30, D3,(0) — 7 90, D1,(0)
_all Sin(ez + 93) - 2323 Sin(ez + 93) - ag Sin 62
B 4
2a40Sin 09, + 2a,,sinH, + a,= sin(6, + 6, + 06
_( 10 2 24 2 25 Sin(8; 3 4) ) (2.242)
4
—ays sin(0, + 03) — ay; sin(, + 63)
C213 a 23(6) 2 662 D13(6) - 4
323 Sln(ez + 63)
— 2.24
- (2243)
. _ 0 _ —ags sin(6; + 03)
C*14 = 557 D2a(8) =5 56- D1a(®) = 7 (2:244)
10 1 1 _ 1 )
Cc%,, = D,,(0) = a11 sin(0, + 03) + = a,3sin(0, + 03) + = a,,sin 0,
2 662 2 2
1 : 1 . 1 .
+§ ag Sin 62 + E a10 Sin 92 + Z 325 Sln(62 + 63 + 64) (224‘5)
. 1 0
Cop2 = 2 ﬁ D;,(0) =0 (2.246)
. 1 0
Cls= 35 30, D,3(8) = 0 (2.247)
5 1 0
c2 ©) — d N ays sin(B, + 65 + 0,) N a;q sin(0, + 063)
SENFTR D21 2 aez 31 4 4
a,3 sin(0, + 63)
> (2.249)
) d
Co3, = 66 D,(0) — 5 26, —D3,(0)
= _321 Sln(eg + 94) —_ ag Sln 93 —_ 2320 Sin 63 (2250)
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0
~a-D33(0)

2
Co33 = 20, D,3(6) — 2 90,
—ayqsin(B3 +04) — agsinB3 — 2a,,sind
_ 3 (03 4) 28 3 20 3 (2.251)
0 4] —ay, sin(05 + 0,)
C?34 = a0, D,3(6) — 5 692 —Dy3(0) = —— > S (2.252)
0 0 a,ssin(0, + 65 + 0,)
2 _ _
C1 = 69 D,1(0) — 7 692 == D4, (0) = 4 (2.253)

9] 9]
C242 = 22 (9) D4_2 (9) alein(63 + 64) — dy3 sin 64_ (2254)

664 2 20,
d 1 0 —ay1sin(03 4+ 04) )
CPy3 = 30, D23(6) — 7 30, Dy3(0) = —2 > 3% — ay,sinb, (2.255)
d 1 0 —ay1sin(63 + 04) — a,sin0
2 _ 90 21 3 4 22 4
C 44 — 664 D24(e) 2 ae D4-4(e) 2 (2256)
The velocity coupling matrix of the second link is given in equation (2.257)
[Czn C?, C?y3 C214]
C2 CZ CZ CZ
CZ — C221 CZZZ C223 C224- (2257)
l 31 32 33 34J
C24-1 C242 C243 C24-4

The elements of the velocity coupling matrix of the third link are calculated as follows:

3.
Ci =547 2 56, Pu(®

ag sinB; I,,3sin(20, +205) a;q sin(20, + 205 + 26,)
- 2 - 8

a, sin(20, + 203) a;g sin(20, + 203) 1,,, sin(20, + 265 + 20,)
B 8 B 2 B 2

ag sin(20, + 03) a,o sin(20, +03) ay; sin(20, + 65 +0,)
B 4 B 2 a 4

a,, sin(20, + 2065 + 0,) ay, sinB; ay; sin(B5; +0,)
B 2 L 4

D31 (6) —

(2.258)
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3 _
Cy2 = 20, D3,(0) — 5 893 D;,(6)
_ays sin(0; + 63 +6,) a,; sin(6, + 03) a,3 sin(0, + 03 )
= 2 2 5 (2.259)
C313 a 33(6) 2 693 D13(e)
_ags sin(6; + 63+ 6,) a;; sin(6, +63) a3 sin(6, + 63 )
= 7 7 . (2.260)
5 _ags sin(6, + 065+ 0, )
= D = 2.261
C1a = 557 Das(®) ~5 55 Dus(®) = - (2:261)
d 1 0 azs sin(B, +03+06,) aq; sin(6, +063)
3 _ 0 _ 1o _ A 2 3 4 11 2 3
C'y = 30, D31(0) 7 30, D,1(6) 7 7
a,3 sin(0, + 03)
> (2.262)
c3,, = 9 p 0 - =% p, o
2= 35 32(0) 7 90, 22(0)
a,; sin(B; + 06 ag sin O
=2 (23 ), % : 2 + a0 sinds, (2.263)
3, = 9 b -~ p o
2= 3, 33(0) 2 90, 23(0)
_ Ay, sin(03+0,)  agsinB; ay sinbs
= 7 . . (2.264)
0 1 0 ayq sin(03 +04)
3 — _—_ _ -9 _ 3T Uy
C'py = 30, D34(0) 7 30, D,4(0) 7 (2.265)
2 10
C3 = 2693 D3,(0)
azs Sln(ez + 63 + 94) a11 Sin(ez + 93) 323 Sin(ez + 63)
= 2.2
4 4 2 (2.266)
3 1 0
C°3, = 2 693 Dsz(e)
_ 821 Slnfg + 94) _ ag Sjl-n 63 _ aZO SZIH 63 (2267)
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1 0
Clss= 3 30, D33(6) = 0 (2.268)
3 1 0
0 0 a,s sin(0, + 65 +6,)
3 —_ —
C 41 — 694 31(9) 2 893 D41(9) 4 (2270)
0 1 0 —a,; sin(65 + 06,)
; _ 0 _ _ :
C°yy = 28, D3,(0) — 3 26, —D,4,(0) = > a,, sin@, (2.271)
3 d d .
Cy3 = 6 D33(0) — P 693 ———D43(0) = —ay; sinB, (2.272)
G, = 2 0) — 9y (0) = —222 sin 6, 2.273
The velocity coupling matrix of the third link is given in equation (2.274)
[CP11 CPp Cg3 14
C3 C321 C322 C323 C324- (2274)

3 3 3 3

C 31 C 32 C 33 C 34
3 3 3 3

C 41 C 42 C 43 C 44

The elements of the velocity coupling matrix of the fourth link are calculated as

follows:

0 1 0
cty = 30, D41(0) — 7 90, D11(0)

ZZ4- Sln(zez + 293 + 294) dqig Sin(zez + 293 + 294)

2 8
app sSinB, apq sin(20, + 03 +04) az; sin(B3 + 0,4)
— +
4 4 4

a,, sin(20, + 265 + 20

_ Az (26, 3 4) (2.275)
4
1 a,s sin(6, + 65 +06,)

C*, = 0) —= — D42(0) = — 2.276

2= 55~ D2(®) =5 3~ D12(®) 7 (2276)
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_ags sin(6, + 05+ 0, )

0
C413 = 35 43(9)

0 _ Ags sin(6, + 65 +6,)
4 _ - _
C'is = 55 Daa(®) =3 35~ Dua(®) = 7 (2278)
0 1 0 ays sin(B, + 063+ 6,)
4 _ 25 2 3 4
C'31 = 30, D41(0) — 7 30, D3,(0) = Z (2.279)
d 1 0 —ayq sin(63+0,) ap, sinH
s+ _ 0 1 a _ T2 3 4) Az 4
C 32 — 663 D42(e) 2 664 D32(9) 4 2 (2280)
d 1 0 ay, sin®
4= - __ 222> 74
C'33 = 30, D43(0) 7 30, D34(0) > (2.281)
6 6 —ayy Sin6
4 _ 22 4
10 in(0, + 05 + 06
C'41 = 39 Du®) = 25 S (B, — + (2.283)
1 0 _a sin(63 +64) ay, sinBO
4 22 3 4) Az 4
Cr= 35 30, D42(6) = ) 2 (2.284)
1 0 ay, sind
C443 = E 6_64])43(9) = —% (2285)
4 1 0
Cau= 5 30, D44(0) = (2.286)
The velocity coupling matrix of the fourth link is given in equation (2.287).
C411 C 12 C413 C414]
4
(2.287)

In ordre to find the Coriolis and Centripetal force vector of the TLRIP, each element
of the velocity coupling matrices (C;,C,, C3and C, ) need to verified the equality of

the elements of the following matrices.
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- .2 .. .. . e
[Clll C112 C113 C114-| 91 6192 9193 6164
.. .2 . .
Clar Cy Clyz Clyf_l6,6, 6, 0205 0,0, (2.288)
Cls1 Clsp C's3 Clas| |66, 656, @, ° 6,0 '
131 132 133 134' 301 U3by 05 3Uy
C 41 C 42 C 43 C 44 _6461 6462 9493 9.4_2 ]
- .2 .. .. . e
[Cu i s ] |0 002 6,0, 0,0,
C221 C222 C 23 C224i — 6162 92 6263 6264 (2289)
|;(:231 C§32 C 33 C234J 6361 6:36:2 6.3 2 6364
C 41 C 42 C 43 C 44 _6461 6462 9.4_9.3 9.4_2 i
- .2 .. .. .o
[C311 C312 C313 C314‘| 91 9162 6163 6164
|C321 C322 C323 C324| — 9192 .62. 9293 9294 (2290)
lc331 Czsz C333 C334J 050, 0636, 05 i 050,

_6461 e.4-9.2 646.3 642 |

[C*11 C*z Chz Cy4 Ch 0.0, 0,0; 0,0,
P 0,0, 8 9?932 9,29‘,* (2.291)
l 31 32 33 34J 056, 030, 0 050,
4 4 A F . o3 ;
0,0, 646, 0,05 942 |

The elements of Coriolis and Centripetal force vector of the TLRIP are given as

follows:

Ci1 = I,z4 0,0, sin(20, + 205 + 20,)+1,,4 6,65 sin(260, + 205 + 26,)
I,z4 0104 5in(20, + 205 + 20,) + 1,5, 6,0, sin 20, + a,5 6,0, sin(0; + 03 +6,)

g a190,6, sin(26, + 265 + 26 3, 6,6, sin 0
+IZZ3 GIGSSin (292+293)+ 1912 ( 24 3 4) G2z 124- 4

a25622 sin(0, + 05 + 0,) a25932 sin(6, + 05 + 0,)
+ +
2 2
a,, 0,0, sin(20, + 05 + 6,)
+
2
321 9.19.3 Sin(ez + 63) _ 321 619.4 Sin(93 + 94) n azz 9.19.2 Sin(293 + 263 + 94)
2 2 2
ay, 0,05sin(205 4+ 20; +60,) ag6,05sinB;  ay; 0,05sin(20, + 05 + 6,)
+ 2 B 2 + 2

+ agh,6, sin(26, + 63)

+ dq1 6263 Sin(ez + 93) + 2 dp3 6.26.3 Sin(ez + 93)
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\ O o P 396.22 sin 92
+a20 9193 Sln(zez + 93) + 3219192 Sln(zez + 63 + 94_) + f + alO

N a,0,6, sin(20, + 265) ay,8,° sin(20, + 205) N

+ 2,560,605 sin(20, + 20;) +

4 2
.. .. ag 0,05 sin(26, + 0
20,0, sin(20, + 05) + 2 ay,6,60,sin(20, + 0;) + ——— 2( 2+03) |
.o S a,, 0,03 sin0,
+a;50,0, sin(20, + 203) + a,5 0,60, sin(65 + 65 +6,) — >

N 325642 sin(0, + 65 + 0,)

2 + 2 azoe.lgz Sin(292 + 63) - azo 6.16.3 Sin 63

a1105 sin(0, + 65)
2
a190,05sin(26, + 205 +20,)  a;90,0,sin(20, + 265 + 26,)
+ +
4 4
a,0,0, sin 20,
4

.2 . 2 . 2
+ a,303 sin(0, +63)0, sinB, +a,;0, sinb,

+a,50,° sin(0, + 65) + +1,,5 6,6, sin(20, + 265)

a,0,0, sin(26, + 265)
4
+ a,5 0,05 sin(205 + 205 + 0,) (2.292)

+a,0,0, sin 20, + a;,0,0, sin 20, +

L4 6, sin(20, + 205 +20,) L, 6, sin20, ay, 6, sin26,

2 2 2

Cyy =

_ aq 612 Sin(zez + 293) _ dig 612 Sin(292 + 293) _ doq 612 Sin(292 + 293)
8 2 2

_ doq 632 Sin( 63 + 94) _ doq 642 Sin( 93 + 94) _ doo 612 Sin(292 + 2 93 + 94)
2 2 2

_321 9.49.3 Sin(93 + 94) - ag 6263 Sin 93 - 2320 6263 Sin 93 - azz 9.29.4 Sin 94_

ayy 942 sin @, _ ag 912 sin(26, + 03)
2 2

.2
ag 03 sinB; .2
—f—azoeg sin6; —

—ayg 912 sin(20, + 03) — a 6,05 sin(B3 + 0,) — a,; 6,0, sin(65 + 0,)

a1, sin(20, +26,+20,) 2,6, sin20, a, 6, sin26,

8 8 2

I3 6 sin(260, + 265)
2

- 322 9.39.4, Sin 64 (2293)

90



as; 912 sin(B; +0,) 1,3 612 sin(26, + 203)  a,, 942 sin 0,
Ca1 = 4 N 2 - 2

a, 6, sin(20, + 205) a6, sin(20, +205)  ay, 6, sin(20, + 05 + 6,)
8 2 2
I,24 912 sin(20, + 205 +20,) a,; 612 sin(B, +0,)  ay 922 sin 05
+ +

2 2 2

ag 612 sin(20, +0,) a,, 912 sin(20, +63)
4 2

aqg 912 sin(20, + 205 +20,)  a,, 612 sin(20, + 205 + 260,)

8 2

- azz 6.26.4 Sin(zez +93)

.2 .2, .2
ag 0; sinB; +a20 0; sin0; +a8 0, sinBO3

4 2 2 - 3226364 sin 64, (2294)

_az 0; sin(8;+0,) ay, 6y sin(20; + 26; + 260,)

C41 + doo 9'39'2 sin 94

4 8
Ay 612 sin(26, + 65+ 0,) Ay 612 sin(20, + 205 + 20,)
4 4
L4 61" sin(26, + 205 + 26,) , 21 8, sin(8; + 0,)
2 2

.2 . 2 . 2
ay, 01 sinB, N aj, 0, sinB, 4 ay; 03 sinB,
4 2 2

(2.295)

The Coriolis and Centripetal force vector of the TLRIP can be given in equation
(2.296)

C11
A C21
C(6,8) = 2.296
CD) Caq ( )
C4-1
The elements of the gravity vector are given as follows:
Gll = 0 (2.297)
dia . : a2 .
Gy = —TSm(Gz + 03) — ayesin(6, + 03) — —sin 0,
ay7sin(6, + 065 +0
—a;3sin B, —a,gsinB, — 27 Sin(®; 3 +) (2.298)

2
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a,;sin(0, + 05 +0,) a;,sin(6, + 63)

G31 = — 2 2 - a28 Sin(ez + 93) (2299)
a,;sin(6, + 65+ 6
Gy = — 27 sin( 22 3 4) (2.300)
The gravity vector of the TLRIP is given in equation (2.301)
0
G = lgﬂ ‘ (2.301)
31
G41

The TLRIP has some complex non-linear dynamic equations which can be written in

a matrix form given in equation (2.302):

D;; Djz Diz Dig I[el] Ci1 0 T,
Dy; Dy D2z Doy |92| Ca1 Gz 0

+ + = 2.302
D3; D3z Dsz Dzyf]|6, Csq G3q 0 ( )
Dy1 D4z Dys Dyy 0, Cas Gyq 0

2.3.3. Jacobian matrix of the TLRIP

The linear and angular velocities of the links of the TLRIP are used to determine the
Jacobian matrix. A formula to compute the Jacobian matrix of the TLRIP is given in
equation (2.40) in section (2.1.3). ], and J,, represents the Jacobian matrices obtained
from the linear and angular velocities in the end-link, respectively. The linear

velocities are given in equation (2.303).

[S123¢ | Sz213¢  Ci234 | Caizg _s,|

5 2 + 2 2 2
sV=sRsV=1Ca134 _Cizzs Sizz4 Sarza . | X
2 2 2 2 1
l C234 —3234
L4(92 + 63 + 94) + L292C34 + L392C4 + L393C4 — L19 Cy3s| = 5V2 (2303)
01 (L3 Sz3 + LSz + LySa34) 5V,

The elements of the linear velocities vector (2V) can be given as follows:

92



0 0 0 0 e1
5V11 5V12 5V13 5V14- g

]
SV =[3Var Vap Va3 Vo4 |e-2 | (2.304)
8V31 8V 2Va3 2Va, [eiJ
§V11 = 5,52(L4S354 — Ly — L3C3 — Ly C3Cy)
_CZSl(L3S3 + L4C3S4 + L4C4S3) - L1C1 (2305)
Vi = C,(L3S23 + LaCy + Ly Co34) (2.306)
L, C L; C L, C L; C
0 _ 42134 3 ~123 4 1234 3 213
sV13 = — > > 5 (2.307)
° Ly C1234 Ly C2134
5 2 2
sVa1 = C Sp(Ly + L3Cs + LyC3Cs — L4S3S4)
+C,Cy(L3S; + L,C3S, + L,CuS3) — Ly Sy (2.309)
gVZZ = Sl(L3C23 + L2C2 + L4C234_) (2310)
L3S L, S L, S L; S
0 _ 39123 M4 22134 421234 39213
V23 = — ot T (2.311)
° Ly S1234 Ly S2134
Vu=—7""""" (2.312)
5
0V, =0 (2.313)
OV32 = L3Sp3 — LS, — LySpzs (2.314)
§V33 = —L,S23 — L4 Sp34 (2.315)
W34 = —Ly Spay (2.316)
Where

Ci23 = cos(0; + 0, + 63),Cyy3 = cos(6, — 0; + 03),Cy, = cos(0; + 6,),
51234 == Sin(el + 62 + 63 + 94) ) C1234 - COS(91 + 92 + 93 + 94),
C; = cosBy, S; =sinB; Sy434, = sin(6, —6; + 065+ 0,),C3 = cos O,
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8234 = sin (62 + 93 + 64), CZ = CoS 92, SZ = sin 92 ,S3 = sin 93

S12=sin(8; — 6;),Cy 5 = cos(8; — 0;),S,3 = sin(6;, + 63)

C2134 = CO0s (92 - 91 + 93 + 64), C234 = COS(GZ + 63 + 94_)

C, =cosB,, S, =sin0, (2.317)

The Jacobian matrix taken from the linear velocities is given in equation (2.318).
ngl gle gv13 (5)V14

Ivf’)(e) = (5)V21 (5)V22 gV23 (5)V24 (2.318)
8Va1 3Vaz 2Vaz 8Vay

The angular velocities matrix of the TLRIP is given in equation (2.319)

—S:(6,+65+86,)
dw= R2w= | Cy (6, +65+8,) (2.319)
0

The Jacobian matrix taken from the angular velocities is given as follows:
0 —sinB®; -—sinB; —sin0;

Jwo®) =10  cos®; cos8; cos6, (2.320)
1 0 0 0

The Jacobian matrix taken from the linear and angular velocities is given in equation
(2.321).

J3(0) = |3Vay Vs Va3 gVay (2.321)

Furthermore, using the determinant of the Jacobian matrix, w = |det ((e) x 1°(e)7)],
the optimal length of each link of the TLRIP is estimated using the PSO optimization
algorithm. The optimal lengths are given in Table 2.7.
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2.3.4. Dynamic simulation of the TLRIP

According to the equation (2.302), the expression for the angular acceleration vector
(8) can be given in equation (2.322). The three equations of 8,, 6, , 6;and 8, are
derived and simulated in Matlab/Simulink. The Matlab code of the mathematical
expression of the three equations is given in the appendix. Figure 2.10 show the non-
linear mathematical model in Matlab/Simulink.

I[91]| Di1 Di; Diz Dis - Ty Ci1 0

0 D D D D 0 C G

[P2 = |P21 P2z P2z U N B N A 2322
[65] [DP31 D3z D33 Dz 0 Csq Gsy ( )
lé4J D41 Dyz Duz Dyy 0 Caq Gyq

In order to verify the mathematical model, a mechanical dynamic model of the TLRIP
was  developed by using the MATLAB/SimMechanics  toolbox.
MATLAB/SimMechanics model of the TLRIP is shown in Figure 2.11 (a). Different
views from virtual reality model of the TLRIP in Matlab Simulink is shown in Figure
2.11 (b). Furthermore, for both model, the initial conditions of pendulums' joint
positions are chosen as follows 6, =0°,6, =20°6; =30°and 6, =40°. The
obtained results from both MATLAB/SimMechanics and the mathematical models
match exactly. Figure 2.12 illustrates a comparison of the three joint positions obtained
from simulation mathematical and the SimMechanics models without frictions. The
simulations are performed by the sampling time 1ms and 5s simulation time. A

numerical method Bogacki-Shampine solver is selected with fixed-step.
2.4. Inertia Analysis of the Three Link Rotary Pendulum

In order to examine the effects of the inertia of the vertical arms in the TLRIP, the
dynamic equations of the TLRIP were solved in different inertia cases. In the first case,
the inertia tensor of the links is neglected in the dynamic model. In the second case,
only the component 1I,, of the inertia tensor is considered for each link. In the last
case, full inertia tensor Il is taken into consideration in the dynamic model. Figure
2.13 shows the joints’ positions of the TLRIP obtained by the three different dynamic
simulation models for the initial condition of, 8, =0°, 6, = 20°, 65 = 30° and

0, = 40° The simulation results of the dynamic equations with only the component
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I, of the inertia tensor and the full inertia tensor I are almost the same in low

velocities of the arms.

ik il dQ2 [dQ2)
In1 2
Q1 [Q1] el— W [
—

dQ2
Intepeetad 1
© 2Tt |

Q2

e &] (I

Corn jg———

i

Lin_31
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]

et & Base

z
| PendFos

s

(@)

Figure 2.11. (a) MATLAB/SimMechanics model of the TLRIP, (b) Different views
from virtual reality model of the TLRIP in Matlab Simulink
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(b)

Figure 2.11.(Cont.) (a) MATLAB/SimMechanics model of the TLRIP, (b)
Different views from virtual reality model of the TLRIP in Matlab Simulink
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40 T T = == == @1 - Mathematical model without friction
2 )
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02 - SimMechanics model without friction
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Figure 2.12. Comparison of the pendulum joint positions obtained from the
analytic mathematical model and SimMechanics numerical model of the TLRIP
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On the other hand, the dynamic model where the inertia is neglected is not acceptable.
In order to have a more simplified dynamic model in the equilibrium control of the
TLRIP, only the component I,, of the inertia tensor can be employed. On the other
hand, the accurate dynamic model in swing-up control of the TLRIP is very important
to compute the total energy of the pendulum. Therefore, the full inertia tensor I should
be taken into consideration in the dynamic model of the pendulum with a complex

structure. [92]

80 u . .

O, withoutl
N e, < 1 | m_ = O;withlzz

70r sl NN O;with Fulll ||

33t~

*****

40
20
S 0
()
=
N
<> -20
-40
_60 1 1 1 1
0 1 2 3 4 5
Time (s)

Figure 2.13. Comparison of the joint positions of the TLRIP under different usages
of the inertia
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Figure 2.13.(Cont.) Comparison of the joint positions of the TLRIP under
different usages of the inertia

Figure 2.14 illustrates a comparison of the three joint positions obtained from
simulation (mathematical model and the SimMechanics model without frictions) and
experimental results. As can be seen from the figure, position errors of the joints in
TLRIP occurred highly since joint friction dynamics are ignored. Therefore, the
friction models should be determined explicitly to obtain the most accurate dynamic
model of the pendulums. The friction estimation models in the literature will be

described in the next chapter.
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Figure 2.14. Comparison of the joint positions obtained from the mathematical model
without frictions, SimMechanics model without frictions and the real experimental
setup
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3. JOINTS FRICTION ESTIMATION OF THE TLRIP
3.1. Introduction

Frictions are very important in ACE, such as in pneumatic-hydraulic systems, anti-
lock brakes for cars and robotic systems. Frictions are highly nonlinear, and they can
result in steady-state errors, limit cycles, and poor performance in different systems
[93]. It is, therefore, important for control engineers to understand friction phenomena
and to estimate the ideal frictions for each system. Today, using the computational
power available, it is possible to deal effectively with frictions. Frictions estimation
has the potential to ameliorate the quality, economy, and safety of any system.
Moreover, due to the gravitational forces and the coupling arising from the Coriolis
and centripetal forces, the RIPS is underactuated, unstable and extremely nonlinear.
The RIPS include a nonlinearity due to the frictions in the joints. RIPS is the most
convenient example to understand the influence of the joint frictions on the design and
performance of feedback controllers that aim to stabilize the pendulum in the upright
position. The frictions have an influence on the system's response that should be
considered seriously [94]. Therefore, friction estimation has the potential to ameliorate
the quality and dynamic behavior of the system [95]. In this chapter, friction estimation
models are developed to estimate the frictions in the joints of TLRIP. The parameters
of frictions models are described with details. The following approach was used to

estimate the joint friction of pendulum:

- Comparison of Friction Estimation Models (FEMs) for TLRIP based on three
friction models existing in the literature: NCFM, LFM, and NLFM.

- AFEMs were developed to estimate the friction coefficients for TLRIP system. In
this approach, the joint accelerations of the TLRIP were classified into three groups:
low, medium and high. The adaptive friction coefficients were optimized
according to this acceleration classification.

- NFFEMs were developed using the NF system. The joint velocities and

accelerations of the TLRIP as the input variables were applied to NF.
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3.2. Friction Estimation Models (FEMs)

The joint frictions are dependent on many physical parameters, such as position, velocity
and acceleration of the joints [96]. The changes in the positions, velocities and the
accelerations of the pendulums can change the friction’s characteristics in a complex
manner [97]. The dynamic behavior of the joints’ frictions is simulated with the different
models in the existing literature. Most of these models are defined by friction
coefficients. Therefore, it is necessary to develop an accurate friction model to estimate
the friction’s coefficients in the joints in accordance with the dynamic behavior of
positions, velocities and accelerations. NCFM, LFM, and NLFM estimation models
were given in this chapter [98], [99], [100-104]. To estimate the constant friction
coefficients in the pendulum’s joints of the TLRIP, different friction estimation models
(NCFM, LFM, and NLFM) were examined. These friction models consist of different
important components. Each component takes care of certain aspects of the friction
force in the joints [105-106]. Mostly used friction model in the literature is the
generalized static friction model which depends only on the velocity (v). It describes
only the steady-state behavior of the friction force Fy inthe sliding regime, and it is given

the equation below [107]:

V18
)) (31)

Vs

F¢ = o,v + sign(v) (FC + (Fs — F.) exp <—

The first term represents the viscous friction force, and the second term equals the
Stribeck effect. F , F., Vi, & and o, are the static force, the Coulomb force, the
Stribeck force, the shape factor and the viscous friction coefficient, respectively. this
model has the discontinuity at velocity reversal which causes errors or even instability

during friction compensation.
3.2.1. Non-conservative friction model

NCFM is a classical friction model. It has been used in the first works related to the
control of pendulums to estimate the friction in the joints, which based only on one
type of friction coefficient [99]. The non-conservative torques due to natural damping
of the pendulums called viscous friction torque, and it is introduced through Rayleigh’s

dissipation function B(6;) [98]. The non-conservative friction torque is given in
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equation (3.1).

_dp(e) _ d (1_.2

Fo=—gor = a0 (3o° )=cpel (3.2)

where q is the viscous friction coefficient and 6, is the angular velocity of the i-th
pendulum.
3.2.2. Linear friction model

LFM is a combination of the Viscous friction presented in the non-conservative model
and another type of friction called Coulomb friction [101], the LFM, which is
presented by equation (3.3).

F,=F, + F. (3.3)

Where F. is the Coulomb frictions and F, is the viscous friction torque which is

proportional to the angular velocity 8, and given by equation (3.4). [102]

FV = Bi Gi (34)

where B; are the constant viscous coefficients. The Coulomb friction is proportional to

the normal load force N¢ which is derived as follows:
N¢ = mw?1 + mg cos(0) (3.5)

[ is the distance from the pendulum rotation center to the mass center. The pendulum
parameters are given in Figure 3.1. The Coulomb frictions F. is given by equation
(3.6).

F = C; sgn( 8;). (ml §;° + mg cos(6))) (3.6)
where C; are the dynamic friction coefficients and sgn(.)is the signum function.

3.2.3. Non-linear friction model

The new researches in the field of friction estimation have found that the frictions in
the joints can be affected by several factors such as temperature, force/torque, position,

velocity and acceleration. Since friction has a complex nonlinear nature [103], the
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LFM becomes an oversimplified model in friction structure. The TLRIP system can
move in trajectories which have high and suddenly changing, position speed,
acceleration and jerk. The LFM cannot cover these characteristics, especially at sudden
motion reversal [104]. Therefore, the NLFM reflects a better description of the joint
friction characteristics. This model can be described in the following nonlinear
equation (3.7). [108]

Joint

Pendulum

|

|

|

|
L
|

|

|

mg 4

mw?l

Figure. 3.1. Pendulum parameters
T = fo+ fe sgn( éi) + f éi + faatan(fb éi) (3.7)

where f,the zero-drift error of friction torque, f. is the Coulomb friction coefficient, f,
is the viscous friction coefficient. f,atan(f, 6;) present the experimental friction in
zero velocity behavior, which f, and f,, are the experimental friction coefficients. 6;
is the angular velocity, sgn(.)is the signum function and atan is the arctangent
function. In fact, it appears that this nonlinear friction model is derived from the
generalized friction model (equation (3.1)). The only difference between the two
equations (3.1 and 3.7), the third term in equation (3.7) is modelled with the first and
fourth term in equation (3.7). The reason for using the arctangent function in equation
(3.7) is to overcome the discontinuity at zero velocity equation (3.1).

3.3. Comparison of the Friction Estimation Models of the TLRIP

In this section, a comparison of the three different models applied to estimate the joint

friction of The TLRIP: Non-Conservative, Linear and Non-linear friction estimation
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models. A dynamic mechanical simulation without the integration of joints friction of
links is explained in chapter 2. The friction estimation models explained in section
(3.2) will be compared in this section. The nonlinear dynamic equations of the TLRIP

which contain the friction vector can be written in a matrix form, as follows:
D(0)6+C(6,0)0+1,(0,0) +G(B) =14 (3.8)

where 6,8 and 6 are the vectors of joint angles, the angular velocities, and the angular
accelerations, respectively. D(0) is the mass matrix, C(6,6) is the Coriolis and
centrifugal force vector, 15 (e, é) is the friction torque vector, G(0) is the gravity

vector and T, is the input torque vector in the first joint. The friction vector can be

expressed in equation (3.9).

(V1]
T (6,8) = l (3.9)

T ,Tr..,Tr. and T, are the components of the friction vector in each joint of the
f11’ Fa1’ 31 fa1

TLRIP.

In the dynamic model, some parameters like body masses, inertia, and lengths of the
pendulums can be directly measured. However, the friction coefficients should be
determined experimentally to have the most accurate dynamic model of the TLRIP.
The MATLAB/SimMechanics model of the TLRIP which contain the friction in joints
is shown in Figure 3.2. In our SimMechanics model, the fixed part and the horizontal
arm of the TLRIP are connected with one revolution joint which has one rotational
degree of freedom. Moreover, three pendulums 1, 2 and 3 are connected by revolution
joints 1, 2 and 3, respectively, which also have one rotational degree of freedom. For
system simulation, friction model blocks were added to each pendulum joint; they
contain joint sensors and joint actuators, see Figure 3.3. Furthermore, the initial
conditions can be given directly by specifying the initial position and orientation of
rigid bodies. The orientation position of the horizontal arm is represented by the
angle 6,, and the positions of the three pendulums by the angles 6,, 65 and 6,

respectively.
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3.3.1. Data collection for the FEMs

The horizontal arm of the TLRIP is driven by a direct drive brushless DC torque motor
(Type: TMH-130-050-NC). In this type of motor, since there is no use of transmission
or gearbox, the frictions in the horizontal arm can be considered negligible. During the
collection of the experimental data, the arm joint 6, is fixed at zero position. The
pendulums’ angles ( 6,, 65 and 6,) are measured with three encoders having a
resolution of 2048 pulses per revolution. The signals obtained from the encoder passes
through the slip ring mounted in the joints. A dSPACE-DS1103 controller board treats
the received signals from the encoders. The friction in the joints of the TLRIP depends
on their velocities and the accelerations. In this case, the friction coefficients should
be determined experimentally. The initial positions of the pendulums will be taken in
cases with the value of 6, at 45 degrees along with 65 and 6, atan angle of O degrees.
The sampling interval is 1 ms. The experimental simulation time of 6, ,65; and 6,
is taken at t=80 seconds. The block diagram of the experimental hardware

configuration structure is shown in Figure 3.4.

Joints
S5 -~ ~ =
Friction [ ™\ Positions

P ——_ Simulation Signal conditioning|e
model of TLRIP card

[ J/ . J/ Oi
\ 4 \ 4

& e N\
[ Friction Estimation . dSPACE

Models Controller

Figure. 3.4. Block diagram of the experimental hardware configuration structure for
FEMs

3.3.2. Estimation results of the FEMs

The estimated results of the friction coefficients for the NCFM are given in Table 3.1.
The Gradient Descent (GD) method is selected for the current optimization case. This
method is based on a sequential quadratic programming (SQP) algorithm to estimate

the viscous friction coefficients Cj, (), which minimizes the value of the function e =

16:(t) — 8;(©)||. 8;(©) is the position value of the angles obtained experimentally and
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0,(t) is the position value of the angles obtained from the SimMechanics model of The
TLRIP. The experiments are carried out during the 80s, however, for the graphs’
clarity, only the [0, 10s] intervals are shown. Figure 3.5 shows an angular position
comparison between experimental and NLFM simulation results. Furthermore, to
estimate the friction coefficients of the LFM and NLFM, the Pattern Search (PS)
method is selected for optimization. The PS algorithm starts by calculating a sequence
of points that may or may not reach the optimal value. The PS proceeds by creating a
group of points around the given initial point, called mesh. If a point in the mesh is
found to improve the estimation of the experiment’s output at that current point, the
algorithm sets the new point as the current point at the next iteration [109]. The friction
coefficients obtained by the LFM and NLFM are given in Tables 3.2 and 3.3,
respectively. Figure 3.6 shows an angular position comparison between experimental
and LFM simulation results. Figure 3.7 shows an angular position comparison between

experimental and NLFM simulation results.

Table 3.1. Friction coefficients obtained by the NCFM

o o Joints
Friction coefficients i i i
Joint (2) Joint (3) Joint (4)
Cp [Nm.s/rad] 5.6178e-04 2.9319%-10 9.0673e-04
————— &2 Experimental
92 with NCFM
S 78 27N 7 T P
= 7N NN N
Dc: Z \‘~ Z ‘s._ Z N Z ‘s_,
4 53 8 10

————— 83 Experimental

50 &3 with NCFM
5 L7
B o] W\/J\//\N
[
o
-50 = : : :
s = 4 6 =] 10
t[s]
_____ 84 Experimental
50 4 with NCFM
_ -
=3 E
B 0 |
> ~ -~ 2
o
4
. -
-50 - :
s = 4 6 =] 10

i[s]

Figure 3.5. Angular position comparison between experimental and
NCFM simulation results

108



Table 3.2. Friction coefficients obtained by the LFM

Joints
Friction coefficients i _ i
Joint (2) Joint (3) Joint (4)
B; [Nm.s/rad] 6.1865e-04 3.1009e-07 2.2292e-04
Ci [Nm] 2.7550e-05 4.9864e-09 0.0168
----- 02 Experimental
50 ' ‘ 02 with LFE
cC
o
> 0
o
o
_50 'l L
0 4 6 10
t[s]
50 . g S 63 Experimental

Position
o
%

#3 with LFE

10

Position
o

#4 Experimental
04 with LFE

t[s]

10

Figure 3.6. Angular position comparison between experimental and LFM

simulation results

Table 3.3. Friction coefficients obtained by the NLFM

o o Joints
Friction coefficients _ _ i
Joint (2) Joint (3) Joint (4)
fo [INm] 0.0038 1.5280e-06 0.001
fo [Nm] 9.5940e-04 8.8846e-04 0.0165
f, [Nm.s/rad] 0.0011 0.0315 0.0577
f, [Nm] 0.0869 0.1876 7.2715e-04
fp, [Nm] 0.0159 0.1876 0.0456
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Figure 3.7. Angular position comparison between experimental and NLFM
simulation results

To evaluate the performance of the LFM, NLFM and NCFM, the position RMSESs
between these simulation and experimental results were calculated based on equation
(3.10). The RMSEs are given in Table 3.4.

N

1 ~
NZ(ei —8)? (3.10)

i=1

RMSE =

Where 6; are modelled signals, 6; are measured signals, and N is the

number of sampling.

Table 3.4. Position RMSEs obtained by the NCFM, LFM and NLFM

RMSE
Joints
NCFM LFM NLFM
Joint (2) 0.0052 0.0049 0.0025
Joint (3) 0.0071 0.0065 0.0047
Joint (4) 0.0085 0.0079 0.0035

110



In order to understand the dynamic friction behaviors in the TLRIP, the friction forces
and velocities in each joint are given in Figure 3.8. The nonlinear relationship between
the calculated friction forces and the joint velocities may be observed in this figure. This

relationship should be explained with more complex models for an accurate friction

estimation.
2 |[=—F1FM
’i‘ o
Zz 2 |- —FNCM
o >
"é = | =——F NLFM
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?' ooooo V LF‘\(
>
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Z 8 |- =F.NCM
b 2
g >~ e F NLFM
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g £ | ——F NLFM
& - g
s |eceee V_LFM
-2 Joint 4 -340

Figure 3.8. Friction forces and the velocity in each joint of the TLRIP

In this study, the performances of three different friction estimation models (NCFM,
LFM and NLFM) are compared in terms of RMSEs of joints of the TLRIP. Based on
the performance comparison, the NLFM produces the least RMSE in the results for all
joints of the TLRIP. The RMSE of LFM becomes less than that of the NCFM. In next

section, a better friction estimation model needs to be enhanced in the control of the
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complex robotic systems such as an adaptive friction estimation model, which is
developed using the joint velocities and accelerations of the TLRIP.

3.4. Adaptive Friction Coefficients for the TLRIP

In this section, AFEMs are developed to estimate the friction coefficients in three
pendulums’ joints of a TLRIP. The position signals of the joints obtained
experimentally from a dSPACE controller board were classified based on their: low,
medium and high accelerations. The adaptive friction coefficients’ estimation method
was studied in four initial angle positions of the second joint (8,) as follows: 45, 90,
135 and 180 degrees along with third joint (85) and fourth joint (6,) at an angular
position of 0 degrees. The adaptive friction coefficients were studied and compared
with the existing friction estimation models: NCFM, LFM and NLFM. A Mechanical
simulation carried out with estimated friction coefficients is compared with respect to
the real experimental position signals [96].

3.4.1. Data collection for the AFEMs

The horizontal arm of the TLRIP is driven by a direct drive brushless DC torque motor
(Type: TMH-130-050-NC). In this type of motor, since there is no use of transmission
or gearbox, the frictions in the horizontal arm can be considered negligible. During the
collection of the experimental data, the arm joint 6, is fixed at zero position. The
pendulums’ angles ( 6,, 65 and 6,) are measured with three encoders having a
resolution of 2048 pulses per revolution. The signals obtained from the encoder passes
through the slip ring mounted in the joints. A dSPACE -DS1103 controller board treats
the received signals from the encoders. The friction in the joints depends on the
positions and the accelerations of the pendulums. In this case, an adaptive friction
coefficients estimation should be determined experimentally. The initial positions of
the system will be taken in four cases with the value of 6, as follows: 45, 90, 135 and
180 degrees along with 65 and 6, at an angle of O degrees. For each case, joints
acceleration was classified into three groups such as low, medium and high. The
adaptive friction coefficients were optimized based on this acceleration classification.

The experimental hardware configuration is shown in Figure 3.9.
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Figure 3.9. Block diagram of the experimental hardware configuration structure of the
AFEMs.

3.4.2. Estimation results of the AFEMs

For each optimization simulation, the Pattern Search (PS) method was used to optimize
the adaptive frictions coefficients. The PS method allows the optimization of a number
of parameters at the same time. The adaptive friction coefficients were optimized and
compared with the existing friction estimation models such as NCFM, LFM and
NLFM based on the RMSEs.

- Initial positions for: 8, =45°,0;=0",0, =0
Table 3.5 gives the classification of joints accelerations and their values into three

groups: High [0-4s], Medium [4-30s] and low [30-70s]. Table 3.6 gives adaptive
friction coefficients using the NCFM, LFM, and NLFM.

The RMSEs between the modelled signals and the measured signals were calculated
using the adaptive friction coefficients. It was compared by the RMSEs obtained with

existing friction estimation models given in Table 3.7.
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Table 3.5. Classification of joints accelerations for the initial positions 8, = 45°,6; = 0" and 8, = 0’

_ [0-4] [4-30] [30-80]
Time [s] . i
Max values Min values Max values Max values Max values Min values
Joint (2) 44.2539 31.4648 25.0488 24.9609 10.5029 10.3271
Positions [Deg] Joint (3) 24.0820 20.9180 16.9629 14.1943 5.6250 5.5371
Joint (4) 48.2080 35.7715 20.6982 17.0508 4.1309 3.7793
Joint (2) 1.0236 - 103 0.8620 - 103 458.2001 438.3131 223.9769 219.7110
Accelerations [Deg/s"2] | Joint (3) 2.0793 - 103 2.0663 - 103 525.8127 492.9399 199.7988 194.0725
Joint (4) 3.0302- 103 2.1231- 103 1.0578 - 103 0.9651 - 103 146.9310 134.2073
Table 3.6. Adaptive friction coefficients for the initial positions 8; = 45°,8, = 0" and 83 = 0°
Time [s] [0-4] [4-30] [30-80]
Joints ) @) (4) ) ®) (4) ) ®) (4)
Cp 1.9256 - 4.7143 - 1.3760 - 6.8645 -
NCFM 3.1791-107* 6.9828 - 1075 0.0001 0.0019 0.0021
[Nm.s/rad] 1071 1075 107 107
B; 5.8693 - 1.8693 - 5.7791 -
9.5160- 1075 5.05311075 37055-10"* | 6.8060-10"7 | 0.0010 | 5.7407-107*
[Nm.s/rad] 1075 1078 107*
LFM
6.1448 -
C; [Nm] 0.0258 1.3539 107° 0.0074 10-6 0.0094 0.00120 1.2805-107° 0.0060 0.0091
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Table 3.6.(Cont.) Adaptive friction coefficients for the initial positions 8; = 45°,8, = 0" and 83 = 0°

5.8992 -
NLFM f, [Nm] 0.0023 0.0037 Lo 0.0044 0.0024 3.3741-107* 0.0062 0.0033 1.9146- 10~*
£, [Nm] 0.0082 0.0118 0.0097 0.0054 0.0085 0.0232 2.4567 1074 0.0070 0.0176
5.6466 -
fy 0.1188 0.0012 0.0159 0.0362 0.0133 0.0141 0.0384 0.0287
[Nm.s/rad] 1074
5.1595 -
£, [Nm] 0.2314 0.3456 Lo 0.0585 0.0341 0.0042 0.0460 0.1139 0.0045
1.4124 -
f, [Nm] 0.0039 0.0047 105 0.1396 0.0526 3.1141-10°° 0.4062 0.2119 9.5165-107°

Table 3.7. RMSEs obtained using existing friction estimation models, and the RMSESs obtained with adaptive friction coefficients for initial

position 6, = 45,0, =0 and 6, = 0°

_ RMSEs obtained with existing FEMs RMSEs obtained with AFEMs
oints NCFM LFM NLFM ANCFM ALFM ANLFM
Joint (2) 0.0052 0.0049 0.0025 0.0045 0.0041 0.0020
Joint (3) 0.0071 0.0065 0.0047 0.0068 0.0055 0.0037
Joint (4) 0.0085 0.0079 0.0035 0.0083 0.0076 0.0032




- Initial positions for: 8, =90°,6;,=0",0, =0°

Table 3.8 gives presents the classification of joints accelerations and their values into
three groups: High [0-10s], Medium [10-30s] and low [30-90s]. Table 3.9 gives
adaptive friction coefficients using the NCFM, LFM, and NLFM. The RMSEs
between the modeled signals and the measured signals were calculated using the
adaptive friction coefficients. It was compared by the RMSEs obtained with existing
friction estimation models see Table 3.10.

- Initial positions for: 8, = 135°,8; =0",0, =0’

Table 3.11 presents the classification of joints accelerations and their values into
different groups as follows: High [0-12s], medium [12-20s] and low [20-30s] for joint
of the first pendulum; high [0-6s], medium [6- 16s] and low [16-40s] for joint of the
second pendulum 2; low [0-1.3s], high [1.3- 4.5s], medium [4.5-13s] and low [13-30s]
for joint of the third pendulum 3. Tables 3.12, 3.13, and 3.14 present the adaptive
friction coefficients using the NCFM, LFM, and NLFM, respectively. The RMSEs
between the modeled signals and the measured signals were calculated using the
adaptive friction coefficients. It was compared by the RMSEs obtained with existing
friction estimation models see Table 3.15.

- Initial positions for: 8, = 180°,8; =0°,08, =0’

Table 3.16 presents the classification of joints accelerations and their values into
different groups as follows: High [0-7s], medium [7-14s] and low [14-40s] for joint of
the first pendulum; high [0-6s], medium [6- 16s] and low [16-40s] for joint of the
second pendulum 2; low [0-1.3s], high [1.3-4.5s], medium [4.5-13s] and low [13-30s]
for joint of the Third pendulum 3. Tables 3.17, 3.18, and 3.19 present the adaptive
friction coefficients using the NCFM, LFM, and NLFM, respectively. The RMSEs
between the modeled signals and the measured signals were calculated using the
adaptive friction coefficients. It was compared by the RMSESs obtained with existing

friction estimation models see Table 3.20.
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Table 3.8. Classification of joints accelerations for the initial positions 8, = 90°,8; = 0" and 8, = 0

) [0-10] [10-30] [30-90]
Time [s] _ i
Max values Min values Max values Max values Max values Min values
Positi Joint (2) 90.0 70.0488 29.3994 20.8740 12.1729 12.0850
ositions
[Deg] Joint (3) 82.4414 75.2783 19.6436 14.0186 6.9873 6.8115
€g
Joint (4) 851.0889 124.4971 750.2344 689.0186 725.3613 714.3311
Joint (2) 4.7139-103 3.8975 - 103 720.6739 679.7878 255.7555 245.4379
Accelerations i
[Deg/s"2] Joint (3) 9.30571- 103 6.9768 - 103 0.9210- 103 1.0719- 103 263.0684 258.5020
eg/s
Joint (4) 1.1358 - 10* 0.9275 - 10* 1.5944 - 103 2.1159- 103 194.7493 179.8465

Table 3.9. Adaptive friction coefficients for the initial positions 8, = 90°,8; = 0" and 8, = 0’

Time [s] [0-10] [10-30] [30-90]
Joints (2 3 4) (2) 3 4) (2 3 4
Cp 4.7380- | 7.4014- | 1.7182- 40350 - 3.5793-
NCFM 5.7604-10~* | 0.0088 0.0011 8.117-107*
[Nm.s/rad] 1074 1075 1075 1075 1076
B; 2.0847 - 3.7497 - 1.2252 -
0.0016 0.0011 | 3.1140-107* 0.1114 6.9792 e-04 | 1.1903- 10~*
LFM | [Nm.s/rad] 107* 10~* 10~*
C; [Nm] 0.0238 0.0843 | 0.0798 0.0028 0.0299 0.7761 0.0024 0.0029 0.0066
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Table 3.9.(Cont.) Adaptive friction coefficients for the initial positions 8, = 90°,0; = 0 and 8, = 0°

5.8992 - 3.3741-
fo [INm] 0.0023 0.0037 10—t 0.0044 0.0024 10—t 0.0062 0.0033 1.9146- 10*
2.4567 -
fe [Nm] 0.0082 0.0118 0.0097 0.0054 0.0085 0.0232 Lo-t 0.0070 0.0176
7, 5.6466 -
NLFM 0.1188 0.0012 0.0159 0.0362 0.0133 0.0141 0.0384 0.0287
[Nm.s/rad] 10~*
5.1595
fo [Nm] 0.2314 0.3456 Lo~ 0.0585 0.0341 0.0042 0.0460 0.1139 0.0045
1.4124 - 3.1141 -
fp [Nm] 0.0039 0.0047 . 0.1396 0.0526 . 0.4062 0.2119 9.5165-107°
10™ 10~

Table 3.10. RMSEs obtained using existing friction estimation models, and the RMSEs obtained with adaptive friction coefficients for initial
position 6, =90°,0; =0 and 6, = 0°

) RMSEs obtained with existing FEMs RMSEs obtained with AFEMs
Joints NCFM LFM NLFM ANCFM ALFM ANLFM
Joint (2) 0.0274 0.0245 0.0227 0.0232 0.0216 0.0188
Joint (3) 0.0242 0.0211 0.0201 0.0225 0.0209 0.0186
Joint (4) 0.2087 0.1474 0.1275 0.1978 0.1425 0.1093
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Table 3.11. Classification of joints accelerations for the initial positions 8, = 135°,8; = 0" and 8, = 0°

Joint 2
Time [s] Positions value [Deg] Accelerations value [Deg/s’\Z]-
Max values Min values Max values Min values
[0-12] 134.2969 91.9775 6.911- 103 4.2371-103
[12 -20] 14.3701 8.7451 1.115- 103 0.9755- 103
[20 -30] 3.7793 3.6914 59.0392 56.8847
Joint 3
[0-6] 159.5215 128.6279 1.242 - 10* 1.1017 - 10*
[6-16] 77.1680 53.7891 6.160 - 103 4.9842 - 103
[16-30] 2.3730 2.1094 63.8500 52.9298
Joint 4
[0-1.9] 489.6387 120.1465 1.709 - 10* 1.5173 - 10*
[1.9-4.3] 877.2803 489.6387 1.468 - 10* 0.8899 - 10*
[4.3-9] 1.2357 0.8773 8.633 - 103 6.2568 - 103
[9-25] 1.13-103 1.01-103 3.488-103 3.3282-103
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Table 3.12. Adaptive friction coefficients obtained by NCFM for the initial positions 6, = 135°,8; = 0" and 8, = 0’

Time of Joint 2 [s] [0-12] [12-20] [20-30]
Cp [Nm.s/rad] 2.794-107% 4.075-107% 9.145-107*
Time of Joint 3 [s] [0-6] [6-16] [16-30]
Cp [Nm.s/rad] 9.6129-107° 1.2685- 10~* 0.0012
Time of Joint 4 [s] [0-1.9] [1.9-4.3] [4.3-9] [9-25]
Cp [Nm.s/rad] 5.7581-107° 5.9433-107° 1.2119-107* 0.0032
Table 3.13. Adaptive friction coefficients obtained by LFM for the initial positions 8, = 135°,8; = 0" and 6, = 0°
Time of Joint 2 [s] [0-12] [12-20] [20-30]
B; [Nm.s/rad] 8.2357-10°° 0.0011 9.0762 - 10~*
C; [Nm] 3.0576 10~° 0.0232 2.9533-1077
Time of Joint 3 [s] [0-6] [6-16] [16-30]
B; [Nm.s/rad] 2.1210-1075 6.8167 - 107* 0.0147
C, [Nm] 9.6368 - 1075 0.0389 0.0037
Time of Joint 4 [] [0-1.9] [1.9-4.3] [4.3-9] [9-25]
B; [Nm.s/rad] 5.9536-107° 1.2175-107° 1.1514-10~* 1.587-107°
C; [Nm] 0.0042 1.3634- 10~* 0.0045 0.0047
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Table 3.14. Adaptive friction coefficients obtained by NLFM for the initial positions 8, = 135°,0; =0 and 6, = 0°

Time of Joint 2 [s] [0-12] [12-20] [20-30]
£, [Nm] 0.0017 0.0734 1.787-107*
f, [Nm] 0.0506 0.1146 1.1557-10~*
f, [Nm.s/rad] 0.1147 0.3952 1.9678-10~*
f, [Nm] 0.2035 0.0012 0.6379
f, [Nm] 0.0448 0.0478 2.2041-107*
Time of Joint 3 [s] [0-6] [6-16] [16-30]
f, [Nm] 0.0645 0.0275 0.0030
fo [Nm] 3.5524-107* 0.0026 0.0157
f, [Nm.s/rad] 0.0001 0.0066 7.4236-107*
f, [Nm] 1.3782-107* 1.3036-107* 1.0042-107*
fy, [Nm] 1.8377-107* 1.5460 - 1075 1.0042 - 10™*
Time of Joint 4 [s] [0-1.9] [1.9-4.3] [4.3-9] [9-25]
f, [Nm] 0.00205 9.0605-10* 8.3410- 107 0.0042
f. [Nm] 473841076 9.2100-107° 1.1303-1075 0.0382
f, [Nm.s/rad] 0.0162 0.0047 0.0040 0.0246
f, [Nm] 0.1575 0.1187 0.2343 0.0012
f, [Nm] 3.7107-10~* 5.5206 - 1076 1.5688 - 107° 0.0535




44"

Table 3.15. RMSEs obtained using existing friction estimation models, and the RMSEs obtained with adaptive friction coefficients for initial

position 6, = 135°,8; =0"and 68, = 0°

RMSEs obtained with existing FEMs

RMSEs obtained with AFEMs

Joints NCFM LFM NLFM ANCFM ALFM ANLFM
Joint (2) 0.1686 0.1149 0.1116 0.1645 0.1105 0.1096
Joint (3) 0.2102 0.2004 0.1892 0.2008 0.1894 0.1852
Joint (4) 0.6217 0.5606 0.4079 0.5007 0.4852 0.4032

Table 3.16. Classification of joints accelerations for the initial positions 8, = 180°,8; = 0" and 8, = 0°
Joint 2
Positions value [Deg] Accelerations value [Deg/s"2]
Time [s] - ;
Max Min Max Min

[0-7] 134.2969 91.9775 6.911- 103 4.2371-103

[7 -14] 14.3701 8.7451 1.115-103 0.9755- 103
[14 -40] 3.7793 3.6914 59.0392 56.8847

Joint 3

[0-6] 159.5215 128.6279 1.242 - 10* 1.1017 - 10*

[6-16] 77.1680 53.7891 6.160 - 103 49842 -103
[16 -40] 2.3730 2.1094 63.8500 52.9298

Joint 4
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Table 3.16.(Cont.) Classification of joints accelerations for the initial positions 8, = 180°,8; =0 and 6, = 0°

[0-1.3] 489.6387 120.1465 1.709 - 10* 1.5173 - 10*
[1.3-4.5] 877.2803 489.6387 1.468 - 10* 0.8899 - 10*
[4.5-13] 1.2357 0.8773 8.633- 103 6.2568 - 103
[13-30] 1.13-103 1.01- 103 3.488 - 103 3.3282-103
Table 3.17. Adaptive friction coefficients obtained by NCFM for the initial positions 6, = 180°,6; = 0"and 8, = 0’
Time of Joint 2 [s] [0-7] [7-14] [14-40]
Cp [Nm.s/rad] 0.0040 0.0033 0.0335
Time of Joint 3 [s] [0- 6] [6 -16] [16 - 40]
Cp [Nm.s/rad] 2.44107* 0.0015 0.001514
Time of Joint 4 [s] [0-1.3] [1.3-4.5] [4.5-13] [13 - 40]
Cp, [Nm.s/rad] 0.00100 7471075 1.107* 7.310°°
Table 3.18. Adaptive friction coefficients obtained by LFM for the initial positions 8, = 180°,8; = 0" and 6, = 0°
Time of Joint 2 [s] [0-7] [7-14] [14-40]
B; [Nm.s/rad] 0.0015 0.0037 0.0314
C; [Nm] 0.0209 0.0429 0.0174
Time of Joint 3 [s] [0 to 6] [6 to 16] [16 - 40]
B; [Nm.s/rad] 0.0030 0.0018 0.001497
C; [Nm] 24107* 0.00277 1.000 10™*
Time of Joint 4 [s] [0-1.3] [1.3-4.5] [4.5-13] [13 - 30]
B; [Nm.s/rad] 5.49107° 7.4107° 8.6 107> 8.71075
C; [Nm] 0.0050 6.310°* 15107 15107
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Table 3.19. Adaptive friction coefficients obtained by NLFM for the initial positions 8, = 180°,8; = 0" and 8, = 0’
Time of Joint 2 [s] [0-7] [7-14] [14 - 40]
fy [Nm] 9.03107° 0.0040 1.11107*
f. [Nm] 2.3530 1074 0.2421 0.01534
f, [Nm.s/rad] 3.9119110°° 3.60107° 3.51961- 1075
f, [Nm] 2.8946 107° 1431072 9.1137-107°
fi, [Nm] 6.4761 107> 8.85107° 2.9317-1077
Time of Joint 3 [s] [0- 6] [6- 16] [16 - 40]
f, [Nm] 6.5109 107> 1.61107* 0.00843
f. [Nm] 9.7363 107> 8.14107° 0.01538
f, [Nm.s/rad] 1.1790 107> 1.54107° 0.00585
f, [Nm] 2.3295107* 2.72107* 2231075
fi, [Nm] 7.7406 107> 3.58107° 1.49107*
Time of Joint 4 [s] [0-1.3] [1.3-4.5] [4.5-13] [13-30]
f, [Nm] 0.0454 0.0468 0.0085 1.3362:107°
f. [Nm] 0.2768 0.2541 4.32107° 9.79107°
f, [Nm.s/rad] 8.08 1074 0.0028 4.6348-107° 2.18107*
f, [Nm] 0.7500 0.36377 1.2-107° 1.09107*
f, [Nm] 3551074 7.95107* 0.0077 1.85-107*




Table 3.20. RMSEs obtained using existing friction estimation models, and the
RMSEs obtained with adaptive friction coefficients for initial position 6, =
180°,8;=0"and 0, = 0’

] RMSEs obtained with existing FEMs | RMSEs obtained with AFEMs
Joints NCFM LFM NLFM ANCFM | ALFM | ANLFM
Joint (2) 0.1467 0.1231 0.1003 0.1397 | 0.1127 | 0.0983
Joint (3) 1.8120 1.8056 0.1341 1.8105 | 1.8032 | 0.1115
Joint (4) 0.7212 0.6945 0.6390 0.6995 | 0.6743 | 0.6248

According to the calculated RMSEs, the Adaptive Non-Conservative Friction
Estimation Model (ANCFM), the Adaptive Linear Friction Estimation Model (ALFM)
and the Adaptive Non-Linear Friction Estimation Model (ANLFM) returned more
accurately than the existing friction models (NCFM, LFM, and NLFM). Comparison
in term of improvement of RMSE percentage between existing friction models and
AFEMs are given in Tables 3.21, 3.22 and 3.23.

Table 3.21. Comparison in term of improvement of RMSE percentage between NCFM
and ANCFM

NCFM-ANCFM | Improvement of RMSE percentages between NCFM
and ANCFM
Cases Joint 2 Joint 3 Joint 4
0, =45,0;,=0,0,=0 13.45% 42 % 2.3%
6, =90",06;,=0,0,=0 15.3 % 7.02% 5.22%
0, =135,0;=0,0,=0 2.43% 4.47% 19.46%
6, =180",0;,=0,0,=0 4.9% 0.08% 3%

Table 3.22. Comparison in term of improvement of RMSE Percentage between LFM
and ALFM

LFM-ALFM Improvement of RMSE percentages between LFM
and ALFM
Cases Joint 2 Joint 3 Joint 4
0, =45,0;=0",0,=0 16.32% 15.38 % 3.79 %
6, =90,0;=0,0,=0 11.83 % 0.9 % 3.39%
6, =135,0;=0",0,=0 3.8% 5.48 % 13.44%
9, =180",0,=0,0,=0 8.44% 0.13% 2.9%
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Table 3.23. Comparison in term of improvement of RMSE Percentage between NLFM
and ANLFM.

NLFM-ANLFM | Improvement of RMSE percentages between NCFM
and ANLFM
Cases Joint 2 Joint 3 Joint 4
0, =45,0;=0",0,=0 20% 21.27 % 8.57 %
8, =90,0;=0",0,=0 17.18 % 7.46 % 14.27%
0, =135,0;=0",08,=0 21% 2.11% 1.14%
8, =180",0;=0",08, =0’ 1.9% 16.85% 2.22%

Figure 3.10 illustrates the experiment’s position signals obtained from the dSPACE
controller for the cases : 6, = 180°,8; = 0°,08, = 0", the signals with the adaptive
non-linear friction coefficients estimation model and the signals with the existing non-

linear friction coefficients estimation model.
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Figure 3.10. Experimental position signals, the NLFM simulation and the
ANLFM simulation for initial position 8, = 180°,0; = 0", 8, = 0°
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In this section, novel AFEMs have been developed based on the classification of joints
accelerations of the TLRIP into three groups such as low, medium and high. The
adaptive friction coefficients estimation was compared with the existing friction
estimation models (NCFM, LFM, and NLFM) based on the RMSEs of joints of the
TLRIP. According to the comparison performance, the ANLFM has given the best
results for all joints of the TLRIP. A better AFEM needs to be applied to the inverse
dynamic model to control the system. In the next section, an NFFEMs based on
velocities, accelerations will be developed and applied to the system in order to

observe more accurate results.
3.5. Neuro-Fuzzy Friction Models for the TLRIP

In the last section, the AFEMs were developed to estimate the friction coefficients for
TLRIP system. In the AFEM approach, the joint accelerations of the TLRIP were
classified into three groups: low, medium and high. The adaptive friction coefficients
were optimized according to this acceleration classification. In this study, the NFFEMs
were developed using the NF system. The joint velocities and accelerations of the
TLRIP as the input variables were applied to NF. Membership functions of input and
output variables and fuzzy rules in the fuzzy estimation system were trained using an
RBANN. The variable friction coefficients of NFFEMs were estimated and verified
through several simulation and experimental results. These proposed friction
estimation models are compared with AFEMs. This work has three important
contributions to the literature. Firstly, all friction models in the literature depend only
on velocity. However, the friction model developed here depends on both velocity and
acceleration. This approach has enabled us to obtain a two-dimensional friction model.
Secondly, the coefficients of all friction models in the literature were constant when
the physical quantities change. On the other hand, the coefficients of the friction
models in this work vary depending on the state of the velocity and acceleration. Hence,
this friction model allows for better estimation of the effects of friction in different
velocity and acceleration conditions. Thirdly, much of existing papers in the literature
have studied only the frictions of the linear motion which depends on linear velocity
and force. This section examines frictions on the joints which have hard rotational

motions.
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3.5.1. Implementation of the neuro-fuzzy friction estimation model

A fuzzy logic inference system is developed to estimate the friction coefficients in the
pendulum joints of the TLRIP. For each joint, an FLC (Fuzzy Logic Controller)
implemented to estimate the friction coefficients. Figure 3.11 depicts the
implementation of the FLC in the joints of the TLRIP. Two inputs of FLC are the joints
velocities and accelerations. The typical steps in developing the FLC system involve
fuzzification, rule formation and defuzzification is explained briefly in this section.
The input variables such as velocities and accelerations are suitably partitioned and
converted into linguistic variables, as following (NL-negative medium, Z-zero, PM-
positive medium, PH- positive high, VS-very slow, S-slow, F-fast, VF-very fast, M-
medium). The output variables (friction coefficients of the models) are partitioned and
represented as fuzzy sets with linguistic terms as following (M-medium, L-large, VL-
very large, H-high and VVH-very high). The maximal absolute experimental velocities
and acceleration of the pendulums' joints are 1000 deg/s and 8000 deg/s2, respectively.
The membership functions and ranges of the input variables are obtained based on the
experimental velocities and accelerations classification. Also, the membership
functions and ranges of the output variables is obtained relatively from friction
coefficients of the AFEM of the case (0, = 180°, 8; = 07,8, = 0°) are given in
Tables 3.17, 3.18, and 3.19 in section (3.4.2). The fuzzy rules are the most important
part of the entire method, which affect the output results crucially. They are set based
on the experimental velocities and acceleration classification knowledge and results
obtained theoretically by the AFEM for each class. An example of the range selections
for the input and output variables in LFM are shown in Table 3.24. Gaussian
membership functions were used for graphical inference of the input and the output
variables. As an example of many membership functions of the joints in the friction
models used here, the membership functions of the first joint in LFM are illustrated in
Figure 3.12. A fuzzy rule is a standard form of expressing knowledge based on the
logic of IF and Then functions. A set of rules have been constructed based on the input
variables (velocities and accelerations) and output variables (friction coefficients) for
the three joints of TLRIP. The fuzzy rules used here are given in Table 3.25. The FLC
rules for each of pendulum joint were obtained based on the experimental results from

velocities and accelerations in AFEM. The defuzzification is the conversion of a fuzzy
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quantity to a crisp value. The centroid method was applied for defuzzification. Figure
3.13 shows the FLC surface relationship between velocities, accelerations and friction

coefficients of the three joints in LFM.

valocity (I)_" Signa N
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Figure 3.11. Simulink implementation of FLC in each joint of the TLRIP

Table 3.24. FLC Rules For Pendulums’ Joints

Velocities
Accelerations Ve > R i VF
F.Cof Bl |Cl|Bl1|Cl1|B1|Cl| Bl |C1 Bl C1
NH VH| H |VH|VH| H |[VH| M H L M
NM VH| H H|VH| H H M M VL L
ZE VH|VH | H M H L M VL L
PM VH|VH | H H M H L VL VL
PH H HI M| M L H | VL | L VL VL
I".."S a8 l\-! F Vi

\"l-.._

1 2240 300 400 S} EC¥0 [ ) B00 F ]
(@)

Figure 3.12. FLC membership functions of the first joint in LFM. (a) Velocity
membership functions. (b) Acceleration membership functions. (c) Friction
coefficient (B) membership functions. (d) Friction coefficient (C) membership
functions.
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Figure 3.12.(Cont.) FLC membership functions of the first joint in LFM. ()
Velocity membership functions. (b) Acceleration membership functions. (c)
Friction coefficient (B) membership functions. (d) Friction coefficient (C)
membership functions.

The friction coefficients obtained by the fuzzy logic inference system was trained by
using a RBNN. The sampling rate is chosen as 1khz (sampling time) for the 40s
(experiment test time) the velocities and accelerations inputs data are 40000 simples,
respectively. The RBFNN method produces better training for a big number of data.

130



RBFNN have the advantages of an easy design (just three-layer architecture), good
generalization, and high tolerance of input noises and the ability of online learning.
RBFNNs are simpler than other networks existing in the literature [110-111]. This
network uses the Bayesian Regularization (BR) algorithm [112] to treat the joint
velocities and accelerations as inputs and the resultant frictions coefficients of fuzzy
logic as targets. The BR algorithm performance is dependent by the minimal Means
Squared Error (MSE). The RBNN model expressed by two neurons in the input layer,
ten neurons in the hidden layer, and two neurons in the output layer. The RBANN
model is developed in each pendulum’s joint of the TLRIP. Figure 3.14 illustrates the
block diagram of the NFFEM architecture for the TLRIP. The filter seen in Figures
3.14 and 3.15 is an IR (Infinite Impulse Response) filter. 8;, 6; and 6; are the joints’
angles positions, the angular velocities and the angular accelerations of the i-th

pendulums.
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Figure 3.13. FLC surface in LFM for i-th joints (a) Joint 2 (b) Joint 3 (c) Joint 4
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Figure 3.14. Block diagram of the NFFEM architecture for the TLRIP
3.5.2. Data collection for the NFFEMs

The horizontal arm of the TLRIP is driven by a direct drive brushless DC torque motor
(Type: TMH-130-050-NC). In this type of motor, since there is no use of transmission
or gearbox, the frictions in the horizontal arm can be considered negligible. During the
collection of the experimental data, the arm joint 6, is fixed at zero position. The
pendulums’ angles (6,, 65 and 6,) are measured with three encoders having a

resolution of 2048 pulses per revolution.
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Table 3.25. Selection of range for the input and output variables

Input variables Output variables
Joints | Velocity Ranges Acceleration Ranges BandC B-Ranges C- Ranges
VS [095] NH [-6000 -2300] VH [0 2,53.107%] [02,601.107%]
S [85 280] NM [-5000 -200] H [1,263.107* 4,778.1074] [1,073.107% 5,121.107%]
Joint 2 M [200 600] ZE [-1000 1000] M [4,086.107* 5,916.107%] [4,087.107* 6,139.107]
F [450 920] PM [-200 6500] L [5,396.10~* 8,837.107%] [5,449.10~* 9,378.107%]
VF [690 1000] PH [3800 8000] VL [7,457.107* 10.107*] [7,624.107*10.107]
VS [0 110] NH [-14000 -8177] VH [1.107¢ 3.236.107°] [1.10762.516. 107]
S [69 400] NM [-10880-2483] H [1.757.10765.254.107°] [1.59.107% 4.043.107¢]
Joint 3 M [280 800] ZE [-3546 375.9] [4.624.1075 6.288.10°] [3.416.1076 4.66.107]
F [590 1200] PM [-611.2 10610] L [5.814.1076 9.344.107¢] [4.23.107¢ 6.61.107¢]
VF [900 1300] PH [7793 22330] VL [7.688.107°¢ 1.002.10~>] [5.56.107¢ 7.107° ]
VS [0 355] NH [-2.3.10% -1.457.10%] | VH [0 3.232.1079] [0 2.769.107]
S [138 669] NM [-1.84.10% -6242] H [2.057.1076 5.252.107%] [1.688.107° 4.55.1076]
Joint 4 M [510 1337] ZE [-7860 -2180] [4.624.1076 6.287.107°] [3.782.1076 5.233.107]
F [1075 2043] PM [-3610 1.264.10%] L [5.815.107¢ 8.942.107] [4.781.1076 7.561.10°]
VF | [1608 3026] PH [8566 1.909. 10%] VL [7.687.107¢ 1.002.1075 ] [6.32.10768.107]




The signals obtained from the encoder passes through the slip ring mounted in the
joints. A dSPACE-DS1103 controller board treats the received signals from the
encoders. The friction in the joints of the TLRIP depends on their velocities and the
accelerations. In this case, NFFEM should be determined experimentally. The initial
positions of the pendulums will be taken in cases with the value of 6, at 180 degrees
along with 65 and 6, at an angle of O degrees. The experimental hardware
configuration is shown in Figure 3.15. In this work, the frequency counting [113]
technique was used to obtain velocity and acceleration from an incremental encoder.
This technique is useful for medium and high speeds but degrades in performance at
low speed since the relative error increases at low speed. For this reason, a second-

order IR filter was used to smooth the signal.
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Figure 3.15. Block diagram of the experimental hardware configuration structure for
the NFFEMs

r
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3.5.3. Estimation results of the NFFEMs

The simulation results obtained from the AFEMs and NFFEMs based on NCFM, LFM
and NLFM were compared with the experimental results. For each joint, position
RMSEs between these simulation and experimental results were calculated. Figure
3.16, 3.17 and 3.18 illustrate the friction coefficients obtained by the: Neuro-Fuzzy
Non-Conservative Friction Model (NFNCFM), Neuro-Fuzzy Linear Friction Model
(NFLFM) and Neuro-Fuzzy Non-Linear Friction Model (NFNLFM) for the joints of
the TLRIP, respectively. Figure 3.19 illustrates the angular position comparison

between experimental and NFNLFM simulation results. As can be seen from the
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figure, a high estimation performance is produced with the use of NFNLFM for each

joint.
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Figure 3.17. Friction coefficients in NFLFM for pendulums’ joints
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The joint position RMSEs between the simulation and experimental results of the
AFEM and NFFEM were calculated. For comparison purpose, these position RMSEs
are given in Table 3.26. According to the calculated position RMSEs, the NFNLFM
produces more accurate results than the ANCFM, ALFM, ANLFM, NFNCFM, and
NFLFM. In order to see the NFNLFM performance compared with other friction
models, percentages of position RMSEs were computed for each joint, and they are
given in Table 3.27. Considering the RMSEs of position in all joints, NFNLFM
between 11.56 of percentage and 94.55 of percentage yields better results.

Table 3.26. Position RMSES in AFEMS and NFFEMS

Joints
Joint 2 Joint 3 Joint 4
Friction Models
Adaptive friction ANCFM 0.1397 1.8105 0.6995
coefficients ALFM 0.1127 1.8032 0.6743
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Table 3.26.(Cont.) Position RMSES in AFEMS and NFFEMS

ANLFM 0.0983 0.1115 0.6248
NFNCFM 0.1259 0.8105 0.5480
Neuro-Fuzzy
o NFLFM 0.0987 0.1794 0.4372
coefficients
NFNLFM 0.0829 0.0986 0.3304

Table 3.27. Comparison in TERMS of RMSE Percentage between NFNLFM and
other friction models

o RMSE Percentages between NFNLFM and other friction models
Friction Models _ i i
Joint 2 Joint 3 Joint 4

ANCFM 40.65 % 94.55% 52.76%

ALFM 26.44% 94.53% 51.00%
ANLFM 15.66% 11.56% 47.11%
NFNCFM 34,15% 87,83% 39,70%

NFLFM 16,00% 45,03% 24,42%
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Figure 3.19. Angular position comparison between experimental and
NFNLFM simulation results
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In this study, novel NFFEMs are developed based on NCFM, LFM and NLFM to
estimate the joint friction coefficients in the TLRIP system. The simulation results
obtained from NFFEMSs were compared with AFEMs. For wide ranges of velocity and
acceleration of joints, the variable friction coefficients were estimated with the NFFEMs
and AFEMs. All of the friction models were verified and compared using the calculated
position RMSEs. According to the performance comparison, the NFNLFM in NFFEMs
produced the best results for all joints of the TLRIP. In other future works, the
fuzzification ranges and rules of the NF system can be tuned with evolutionary
algorithms to enhance the estimation performance of the NFFEMs. Furthermore, more
inputs such as jerks and snaps of the joints can be applied to the NF system, and the

TLRIP system will be controlled using the proposed friction models.
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4. SYSTEM CONTROL AND SIMULATION RESULTS
4.1. Introduction

IPS are widely used in Non-Linear Control Theory (NLCT) education. Many control
problems in the field of NLCT have been studied with the IPS which was installed in
a research laboratory. A vast range of contributions in the literature exists for the
stabilization of different types of IPS. Besides the stabilization problem aspect, the
anti-swing problem, especially of the classical SLRIP has gained increasing attention
in the recent studies. Therefore, the DLRIP and TLRIP are more complex than SLRIP
in terms of dynamic control problem. DLRIP and TLRIP systems have a three and four
DOFs, respectively. The RIP systems have two stable points, such as downward (stable
equilibrium point) and upward positions (unstable equilibrium point). According to
the complicated nonlinearity and the high coupling effect between the pendulum links,
the control problem of the DLRIP and TLRIP is still considered as a challenging
research topic. Underactuation structure of the systems (driven by a single actuator)
makes the control actions more difficult and hence it needs a more complicated
controller design. Furthermore, the classical controllers may not control this type of
systems effectively. A robust nonlinear controller should be applied to control the
system. The development of effective controllers for the highly nonlinear and complex
coupled dynamic behaviour systems is needed. One solution widely used in literature
to alleviate this control problem is to linearize the complex nonlinear system and
applied classical linear control methods to stabilize the system. Moreover, the control
performance of the real system can be degraded depending on the differences between
the linearized and the real nonlinear systems [114]. Recently, the fuzzy controllers
seem to be a good alternative to simplify the control of a nonlinear complex system
such as IPS for desired control performance. By using the fuzzy control, the nonlinear
systems are approximated by the combination of several linear subsystems in the
corresponding fuzzy state-space regions. For this reason, the linear subsystems are
fuzzily combined. The fuzzy control of the IPS is shown that robust under internal and

external disturbances [115-116]. In the first works existing in the literature [117-118],
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the fuzzy controller was used for swing up and stabilization control of a SLRIP. The
rules for the swing-up of the pendulum were chosen to each swing results in order to
have greater energy build up. The stabilization of the pendulum was achieved by
switching at an LQR control law to the fuzzy inference to make the stability in the
unstable equilibrium point. The objective of the new studies in the literature [119-120]
is to determine a non-linear control strategy to obtain better performance applied to
SLLIP. An LQR based fuzzy controller was designed, and its performance was
compared with LQR controller. The results in this new control technique show that
LQR based fuzzy controller produced better response as compared to LQR control
strategy. In this section, a non-linear FLQR and FLQG controllers are developed to
stabilize the pendulum links of the DLRIP and TLRIP systems in the upward vertical
position. In order to obtain the desired angular position of pendulums with a better
dynamic response, compared to the classical LQR and LQG controllers, the fuzzy
controllers were combined with the LQR and LQG in objective to adjust the closed-
loop controller feedback gains. respectively. This paper examines the control
performance of the controllers in terms of T, PO, Egs and the RMSE position errors
of the joints (position error between the equilibrium point and the dynamic responses
obtained from each joint). Moreover, several simulations were conducted to study the
effectiveness of the FLQR and FLQG controllers under the internal and external
disturbances. ANNs have been presented good solutions for the anti-swing control
problem of IPS [121]. Recently, both approaches, Fuzzy and ANN are combined with
the NF model. NF control has become a popular research topic for the IPS control
problem. Takagi-Sugeno Fuzzy model called the ANFIS is used for the nonlinear anti-
swing control of IPS [122-124]. In recent works, the use of LQR based NF model has
been suggested to improve the performance of the controller [125]. In this section, a
novel RBNF-LQR controller is developed for an anti-swing control of a DLRIP and
TLRIP systems. The objective of this work is to study the RBNF-LQR controller and
to compare it with FLQR and the classical LQR controllers. In the proposed RBNF-
LQR controllers, the positions and velocities of state variables multiplied by their LQR
gains trained by using two RBNNSs architecture. The output of the two RBNNs are
used as the input variables of the fuzzy controller. The novel architecture of the RBNF
controller is developed in order to obtain better control performance than the classical

ANFIS. To determine the control performance of the anti-swing controllers, different
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control parameters are computed such as Egs, T;, MP, RMSEs. Moreover, the
performance of controllers was compared based on robustness analysis under external
disturbance. Figure 4.1 shows the applied controllers to the SLRIP, DLRIP and TLRIP

systems.
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Figure 4.1. Control methods applied for the SLRIP, DLRIP and TLRIP
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4.2. Design of Controllers for the RIPS

In this section, the controller methods applied to control our RIPS are explained with

details.
4.2.1. PID controller

To stabilize the inverted pendulum of the SLRIP in the upright position and to control
the horizontal link at the desired position using the PID control approach, two PID
controllers: Angle PID controller and horizontal link PID controller have been
designed for the two control loops of the system. The equations of the PID control are

given as follows: [126]

d eez (t)
up = Kpp 692 (t) + Kip 692 (t) dt + de dt (41)
d eg, ()
uy = Kpl egl(t) aly Kil EGI(t) dt + Kdl dt (42)

where eg, (t)and eg, (t)are the angle error of the pendulum link and the angle error of

K.

the horizontal link, respectively. K ips

pp » Kgqp are the PID controller parameters of
the proportional, integral and derivative terms of the pendulum link respectively.
Moreover, Ky, Kjj, Kg; are the PID controller parameters of the proportional, integral
and derivative terms of the horizontal link respectively. Since the dynamics of the
angle of pendulum link and horizontal link dynamics are coupled to each other, the
change in any controller parameters affects both the pendulum angle and horizontal
arm position, which makes the tuning tedious. The tuning of controller parameters is
done by using trial and error methods and observing the responses of the Simulink
model to be optimal. The tuning of controller parameters is done by minimizing the

error methods using an optimization algorithm such as PSO.
4.2.2. Linear quadratic regulator

The State Feedback Control (SFC) technique is based on the placement of the system
poles. A gain matrix (K) and the state variables are used for the pole placement of the

system. In SFC the poles of the closed-loop system may be placed at any chosen
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position. Nevertheless, for the methods of output feedback control, the poles of
systems may be given to a definite point [127]. In this technique, the state variables
are implemented by a state feedback controller. The state variables of the system are
feedback. All feedbacks multiplied by a state feedback gain matrix are compared to
the reference input. The important point in the SFC design is to calculate a gain matrix
(K). In this purpose, the LQR controller is one of the most used methods. In the LQR
controller, the optimal feedback parameters of K matrix are taken by the cost function
(J), which optimize states, x(t) and the control signal u(t) of the system. u(t) and J are

given in equations (4.3) and (4.4), respectively. [128]

u(t) = —Kx(t) (4.3)
] = %foo(xTQX + uT Ru) dt (4.4)
0

J depends on the matrix Q and R. Q and R are defined as a positive semi-defined
matrix. Furthermore, the K gain matrix is determined based on Q and R. The control

signal is shown below. [129]

u(t) = —=R'BTP(t)x (t) = —Kx (t) (4.5)
where P is obtained by the differential equation of Riccati:

PA+AT—PBR'P+Q =0 (4.6)
K matrix is determined with P. It is the solution of the Riccati equation given in (4.7).
K=R1BTP=[k; K, Ks....Ky] (4.7)

n is the number of state variables. LQR controller performance is dependent on the
choice of weight matrices. In the literature, there exist many different approaches for
the choice of Q and R, for example, the Bryson’s Rule. A simple choice approach can
be Q=I and R=p I. Also, several optimization algorithms can be used to obtain the
optimal value of Q and R. [130]

4.2.3. Fuzzy linear quadratic regulator

This controller is a combination of the optimal control approach (LQR) and fuzzy
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control method [131]. The FLQR controller transform the variables into error (e) and
derivation of the error (&), which simplified the fuzzy controller. e and é are the
summings of positions and velocities of state variables multiplied by their LQR gains,
respectively. An example of the block diagram of FLQR controller applied to DLRIP

is shown in Figure 4.2. e and é can be calculated as follows:

e Ke 61+K9 62+ Ke 63+K9 ei
H:KXTz e 2 3 P (4.8)
e Ke’lel + Ke’zez + Ke’3e3 + Ke‘lel
K= o o2 ’ K. K. K. (4‘-9)
0 0o O.. Ke'l g, g, - g,
Where i is the number of state variables and xT is the state vector.
e = K91 61 + Kez 62 + K93 63 + - Kei Gi (410)
é = Kg 0; +Kg 6, + Kg 03 + - Kg 6, (4.11)

6,

0
2 »| Ko,
0
3 > }(02
e
FLC DLRP
¢

Figure 4.2. Example of the block diagram of FLQR controller applied to DLRIP

Mamdani type fuzzy model was developed in objective to adjust the closed-loop
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controller feedback gains of our system. The input variables (e and €) and the output
variable (Control signal-U) are converted into linguistic variables, as follows: (NB-
negative big, NM-negative medium, NM-negative small, Z-zero, PS-positive small,
PM-positive medium, PB- positive big) [132]. The range of the input variables are [-
15 15 (degree)], [-6 6 (degree/s)] for e and é, respectively. Also, the range of the output
variable is [-10 10 (v)]. Triangular membership functions are used for the graphical
inference of the input and the output variables [133-134]. Table 4.1 present the fuzzy
rules applied to the controller of the system. Tables 4.2 show the range of the input
and output variables. Figure 4.3 shows the relationship between inputs and output of
the FLC (FLC surface). The membership of the input and output variables are

presented in Figure 4.4.

Table 4.1. Fuzzy rules

¢ NB NM NS ZE PS PM PB
e

NB NB NB NB NM NM NS ZE
NM NB NB NM NM NS ZE PS
NS NB NM NM NS ZE PS PM
ZE NM NM NS ZE PS PM PM
PS NM NS ZE PS PM PM PB
PM NS ZE PS PM PM PB PB
PB ZE PS PM PB PB PB PB

Table 4.2. Range of the input and output variables

Ranges Input variables Output variables
Symbols Ranges of input (e) Ranges of input (€) Ranges of output (U)

NB [-15 -12 -7.5] [-6 -5 -3.5] [-10 -8 -5]

NM [-9 -6 -2] [-4-3-15] [-6 -4 -1.8]

NS [-3-1.50] [-2-10] [-2-10]

ZE [-0.750 0.75] [-0.500.5] [-101]

PS [0-1.53] [012] [012]

PM [269] [1.53 4] [1.84 6]

PB [7.512 15] [355 6] [5 8 10]
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Figure 4.3. FLC surface
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Figure 4.4. The membership functions of (a) the input e, (b) the input é and (c)

the output U
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Figure 4.4.(Cont.) The membership functions of (a) the input e, (b) the input é
and (c) the output U

4.2.4. Linear quadratic gaussian

In a linear dynamic system, Kalman Filter (KF) estimates the system states from the
information of input and output. Figure 4.5 (a) shows the block diagram of the KF.
Noised signals (W4, W,) are combined with the linear dynamic system to get more
increased system construction necessary to the KF algorithm [135]. According to the

add noised signal, the state-space model of RIPS can be the system given as follows:

{X=Ax+Bu+Wd (4.12)

y = Cx +Du+ W,
The dynamic equation of KF is added to the state space and it is given by the equation:

{S? = A% + Bu + Ki(y — §) (4.13)
9 = C8

The KF gain K is calculated as follows:
K¢ = PCTR™? (4.14)

P and R are an algebraic constant calculated with the Riccati equation and the output
covariance matrix, respectively. X and § are the estimated state variables and outputs,

respectively. The error can be given in equation (4.15).

e=%—Xx (4.15)
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By using equations (4.12) and (4.15) equation (4.16) is obtained.
é=(A—- KfQ)e (4.16)

An optimal K¢ the gain matrix must be determined to the KF design. The structure of
LQG is taken by the added KF to the LQR, as can be seen in Figure 4.5 (b). The KF is
obligatory if the state variables of the LQR needed to be estimated. LQG is an optimal
controller method for some systems which have uncertainty. the KF is used to estimate
the state variables according to the system input and the measured output variables.
The state variables will be multiplied by the K matrix to generate the control signal
(u), given in equation (4.17). [136-137]

u=—Kg& (4.17)

If the control signal is applied to the state-space model and the noise signals added to

the system, the closed-loop model is given as follows:
% = Ax — BKx + BK(x — %) + Wy (4.18)

The KF state-space model is
¢=(A— K;Qe+ Wy — KW, (4.19)

The new space model can be defined in equation (4.20)

=" - ol k)] (20

System with noised signals

Kalman

Filter

(a)
Figure 4.5. (a) Block diagram of the KF, (b) Block diagram of the LQG
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(b)
Figure 4.5.(Cont.) (a) Block diagram of the KF, (b) Block diagram of the

LQG
4.2.5. Fuzzy linear quadratic gaussian controller

This FLQG controller structure is based on the combination of the LQG controller
given in section (4.2.4) and FLQR controller given in section (4.2.3). However, for
certain cases, the state variables are not measured for real experimental systems. But
it is possible to estimate the non-measurable state by using the measurement data if
the system is observable. Furthermore, the estimation of state variables can be

preferred because of the noisy measurement data.

The structure of FLQG is obtained by adding the KF to the FLQR, as can be seen in
Figure 4.6. However, the KF is obligatory if some state variables needed for the FLQR
are estimated. KF estimates the state variables according to the RIPS input and the
measured output variables. The estimated state variables are the input of the FLQR
controller. The Block diagram of FLQG controller is shown in Figure 4.6. [138-139]
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W

FLQG

Figure 4.6. Block diagram of FLQG controller for the RIPS
4.2.6. ANFIS based LQR controller

In this section, the design aspect of ANFIS based LQR (ANFIS-LQR) controller is
explained in details. The procedure of ANFIS is considered into three steps, given in
Figure 4.7.

Data collection

Selection of ANFIS
Parameters

\4

ANFIS Training

Figure 4.7. Procedure to design
ANFIS-LQR controller

In the step of data collection, the data must be in the form of multiple-inputs and single-
output column vector [140]. For the data collection, the inputs and output data of the
non-linear FLQR controller are used. The FLQR controller transforms the variables

into error (e) and derivation of the error (&), e and é are the summing of positions and
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velocities of state variables multiplied by their LQR gains, respectively. U is the output
control signal of the FLQR controller. The input data vectors are obtained from e and
é. The output data vector is obtained from U. An example of a block diagram of
ANFIS-LQR controller applied to DLRIP is shown in Figure 4.8. In the second step,
ANFIS parameters such as the number and type of membership functions, error
tolerance, epochs number and learning method must be chosen. In the last step, a fuzzy
inference system is trained by the ANFIS [141]. ANFIS training is easily obtained in
MATLAB using the pre-defined function “anfisedit”. The obtained fuzzy inference
system can be exported in a .fis file is created, which acts as a non-linear controller for

the system.

Figure 4.8. Example of a block diagram of the ANFIS-LQR controller in a DLRIP

4.2.7. Radial-basis neuro-fuzzy based LQR controller

In this section, RBNF-LQR controller is explained in details. The RBNF-LQR is
developed in order to obtain better control performance than the classical ANFIS-LQR
controller. Two RBNNSs are used to train the positions and velocities of state variables
multiplied by their LQR gains, respectively. The inputs and output (u) data obtained
from the non-linear FLQR controller are used for the training of both RBNNs. RBNN
is a universal approximator based on the simple and fixed three-layer architecture.
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RBNNs are easier to be developed and trained compared to other ANNs. RBNNSs have
a very strong tolerance to the noised inputs, which improve the stability control of the
systems. RBNN can be used as a method of nonlinear controller design [142-143]. An
example of the block diagram of RBNF-LQR controller applied to DLRIP is shown in
Figure 4.9.
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Figure 4.9. Example of a block diagram of the RBNF-LQR controller in a DLRIP

The two output of both RBNNSs (e, €) are used as the input of a Mamdani type fuzzy

model explained in 4.2.3.

4.3. Stabilisation Control of the SLRIP

4.3.1. Model linearization of the SLRIP

The nonlinear state-space form of RIPS is as follows:

x = f(x,u) (4.21)

X is the state vector of SLRIP, xT = [8, 0, 6, 6,]. wisthe control inputu =

T (7 is the applied input vector), it is a scalar because there is only one actuator that
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provides torque input to the system. The expression for the angular acceleration, 8 =

[6, ;6,]T, was obtained by solving for 6 in equation (4.22).
6=M"1[t-C(6,0) - G(O)] (4.22)

Equation (4.21) is of the form x = f(x,u). The term xis a 2 X 1 matrix, which
contains nonlinear elements. In this forms the first two elements of x are just the last
two elements of x. To linearize the last two elements about an operating point vector

(OP), Taylor's expansion is used: [144]

5(t) = (af(x' “)) 5x(0) + <af(x’ u)> Su(t) (4.23)
x=0P,u=0 x=0P,u=0

0x Jdu

X is the state vector, x(t) is a small deviation of the states from the operating point.
The coefficients of 8x(t) and du(t), termed A and B, respectively, are evaluated at the
operating point. Thus, the linear state-space model of the system is given in the
equation system becomes:

{X=Ax+Bu

y = Cx + Du (4.24)

A, B, C and D are matrices for the state-space representation. The aim is to design a
robust controller for stabilizing the pendulum links in the upright position with
minimum deflection. The stable equilibrium point corresponds to a state in each
pendulum is downward position (; = 0° and 6, = 180"). The unstable equilibrium
corresponds to the state in each pendulum points vertically upwards which is against
gravity (6; =8, = 0°). Substituting system parameters and constants for respective

terms, A, B, C and D state-space matrices of the SLRIP become:

[0 0

A=|0 0 (4.25)
0 2.6358 —0. 4215 —0 0064 10095 '
| 0 35.4759 —0.6253 0.0865 1.7227
1 0 0 O

_{0 1 0 0O|ln_

c={9 & 9 Y=o (4.26)

0 0 0 1
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Bryson's method is used to determine the initial weighting matrices (Q and R).
According to the Bryson's Rule, Q and R are diagonal matrices. The diagonal elements
are expressed as the reciprocals of the squares of the maximum acceptable values of
the state variable (x) and the input control variable (u). The diagonal elements Q;; of
matrix Q, can be given as:

1

Qi maximum acceptable value of x;2 ( )

Where i = 1,2,..n. The diagonal elements R;; of matrix R, also can be given as:

1

Ry = maximum acceptable value of u;?2 (4.29)
The initial choice of Q and R matrix are:
1 0 0 O
Q= 8 (1) O Ol andR =001 (4.30)
0 0 0 1

The characteristic roots of the open-loop system are of the SLRIP are located at 5.9914,
-6.0246 and -0.3749. therefore, the open-loop system is unstable, since 1 pole of the
SLRIP system lies in the right half of s plane. the LQR gain vector of the SLRIP is
obtained as follows:

K= [-13.5047 221.4027 —261.7301 160.1331] (4.31)

In the next parts, PID, LQR, and swing-up based LQR controllers are developed and
simulated in the MATLAB/Simulink environment for the stabilization of the SLRIP.
The simulation is performed by the sampling time 1ms and 5s simulation time. A
numerical method Bogacki-Shampine solver is selected with fixed-step. According to
simulation results, a comparative study of all controllers is given. The controllers are
tested for robustness under external disturbances. The simulation results can provide a
good background and feasibility for a real experimental implementation to the

stabilization control problem of the SLRIP.
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4.3.2. PID controller of the SLRIP

The turned PID parameters are optimized using PSO algorithm in order to obtain more
robust PID gains. The optimized PID controller parameters are given in Table 4.3. To
test the performance of the PID controller, an external disturbance is given to the
system at t=3s. The SimMechanics model of the SLRIP using PID controller is shown
in Figure 4.10. Figure 4.11 shows the responses of the pendulum angle (8,), the angle
of horizontal link (6,) and the control signal (U) of SLRIP with PID controller under

external disturbance.

Table 4.3. Optimal PID controller parameters of the SLRIP

Parameters of PID controller of the Kpp Kip Kap
pendulum link 4.0698 0.605 0.176

Parameters of PID controller of the Kpi K Kal
horizontal link -1.25 0.02 3.6

PID Conlroler —-E ¥ nd ozl outt St [—

PID Controllart st | L—itome  Cama—

Figure 4.10. SimMechanics model of the SLRIP with PID controller
4.3.3. LOR controller of the SLRIP

The simulation of the LQR controller is performed with a calculated gain matrix (K)
given in equation (4.31) and an initial condition vector which is xT =

[0 10 0 0 ]°. The output variables of LQR controllers are stabilized at the reference
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points. To test the performance of the LQR controller, an external disturbance is given
to the system at t=3s. The SimMechanics model for control of SLRIP using LQR
controller method with disturbance input is shown in Figure 4.12. Figure 4.13 show
the responses of the pendulum angle (6,), the angle of the horizontal link (6;) and
control force (U) of the SLRIP with LQR controller under external disturbance.

10

T T
02 - with PID Controller

o
T

62 (deg)

t(s)

§1(deg)

L
o 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t(s)
10 T T T
l U- Control signal
il |
= o —

5 .

10 L L L L L L L L L
[0} 0.5 1 1.5 2 2.5 3 3.6 4 4.5 5

t(s)

Figure 4.11. Responses of pendulum angle (6,), the angle of the
horizontal link (6,) and control force (U) of the SLRIP with PID
controller under external disturbance

) T 1 Thita 2
v Dt * Ind Cenat —
*
- Tealid &l Thata & dol
Dislurbance
e Canintd — —Caid iy
LAR_Cantroller
In1 b

In2 p—

Outl

In3

Ind

Figure 4.12. SimMechanics model of the SLRIP with LQR controller
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Figure 4.13. Responses of pendulum angle (8,), the angle of the horizontal
link (61) and control force (U) of the SLRIP with LQR controller under
external disturbance

4.3.4. Performance evaluation of PID and LQR controllers

According to the obtained results, the PID is robust, and it has successfully maintained
the control of the SLRIP. The LQR controller is developed to give us better T, PO,
Es and the RMSEs than the classical PID controllers. The two controllers are under
external disturbance. Table 4.4 shows the comparison of PID and LQR controllers in
terms of Tg, PO, E and the RMSEs under external disturbance. Furthermore, the
performance of the two controllers' effort is determined by the RMSEs between the
control signal and zero voltage. The calculated RMSEs are given in Table 4.5.
According to the obtained signals results, the system controlled with LQR needs more

effort to control the system.
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Table 4.4. Quantitative comparison of the performance of the PID and LQR
controllers under external disturbance
Controllers under Joints
. Parameters i i i
external disturbance First Link (6,) Second Link (8,)
Ts (S) 1.3009 0.7289
PO % 151 47
PID
E (°) 0.2 0.035
RMSE (°) 0.0229 0.0159
Ts (5) 1.2007 0.5295
PO % 0.8 23
LOR
Es (°) 0.0365 0.03
RMSE (°) 0.0057 0.0210

Table 4.5. RMSEs of the control signals of the PID and LQR controllers

Controllers under external disturbances RMSE (°)
LQR 0.0447
PID 0.0255

According to the calculated T, PO, E¢ and position RMSEs, the LQR controller

produces more accurate results than the PID controller. In order to see the performance

of the LQR compared with PID; The improvement percentages of T, PO, Eg and

position RMSEs were computed, and they are given in Table 4.6 Considering the T,

PO, E¢ and position RMSEs in all joints, the percentage obtained by the LQR

controller yields better results.

Table 4.6. Comparison of the performance parameters in terms of percentage between

LQR and PID under external disturbance

Controllers under Joints
i Parameters i i i
external disturbance First Link (6,) Second Link (6,)
T, 7.702 % 27.39 %
LQR versus PID PO 47.01% 51.06 %
Egs 81.75% 14.28 %
RMSE 75,28 % 24.28 %
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According to the calculated improvement percentages in Table 4.6, the LQR returned
more accurately than the PID controller under external disturbance for all joints. The
Ts improvement percentages are 7.702% for the first link and 27.39% for the second
link. The PO improvement percentages are 47.01% for the first link and 51.06% for
the second link. The E¢s improvement percentages are 81.75% for the first link and
14.28% for the second link. The RMSESs improvement percentages are 75,28% for the
first link and 24.28% for the second link. Moreover, according to the incremental
calculated percentages of RMSEs of the control signals in Table 4.5, the LQR returned
more effort than PID with 42.95 % under external disturbance.

4.3.5. Swing-up control based on LQR

One of the most effective approaches existing in the literature is to swing-up the
pendulum to make it controlled at the stability point. This method is based on energy
considerations. The goal is to bring the total mechanical energy of the pendulum to
zero, which corresponds to the upright position. The basic energy-based control law is

given in equation (4.32).
Ugw = um|623 |sng (cos 0,6, ) (4.32)

Where 6, , 6, are angle and velocity of the pendulum link, respectively. u,, is the
swing coefficients. The following swing-up/stabilizing control strategy is proposed for
the torque model. For the control objective, the freely hanging pendulum had to be
brought into the upright equilibrium, and the arm needed to be stabilized at the origin
(0, must be stable at 180° ). The initial conditions of 6, ,0, are zero degrees. Once
the pendulum link was approaching the upright position, the control is switched to
balancing the LQR controller. The SimMechanics model to control the SLRIP using
the swing-up controller-based LQR is shown in Figure 4.14. Figure 4.15 show the
responses of the pendulum angle 6., horizontal link 6, and the torque input signal of
SLRIP with swing-up controller-based LQR. An external disturbance is given to the
system at 7s to see the performance controller. As can be seen from Figure 4.15, the

swing up controller-based LQR is robust and can control the system.
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4.4. Anti-swing Control of the SLRIP

PID and LQR controllers are developed for the anti-swing control of the SLRIP. Two
controllers are modelled and simulated in the MATLAB/SimMechanics Simulink
environment. The initial conditions of the links are taken with 8, =0 °and 6, = 60°.
The optimized PID controller parameters for the anti-swing controller are given in
Table 4.7.

Table 4.7. Optimal PID controller parameters for the anti-swing controller of the
SLRIP

Parameters of PID controller of the Kpp Kip Kap
pendulum link 201 0.369 0.05

Parameters of PID controller of the Kpi Ki Ka
horizontal link —0.75 0.0047 1.007

The anti-swing LQR controller is performed with K=[-0.2586 46.3074 1.136
-1.9724]. All output variables of the SLRIP system must be stabilized at the reference
zero position by the both PID and LQR anti-swing controllers. As can be seen from
Figure 4.16, the link arm and the pendulum link were stabilized at the reference
position with minimum vibrations.

4.4.1. Performance evaluation of the anti-swing PID and LQR controllers

Moreover, Figure 4.16 presents a comparison between the angle signals (6, and 6,)
with PID and LQR anti-swing controllers of the SLRIP. According to the obtained
results, the PID has successfully maintained the control of the SLRIP with minimum

vibrations.

The LQR controller is developed to give better T, MP, E and the RMSEs than the
PID controller. Table 4.8 shown the comparison of PID and LQR controllers in terms
of T, MP, E., and RMSEs. According to the calculated Ty, MP, Eg and position
RMSEs, the LQR produces more perfect results than the PID. To understand the LQR
performance compared with PID; The improvement percentages of all parameters

were calculated for each case and given in Table 4.9.
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Figure 4.16. Angle signals (6, and 6,) with PID and LQR anti-swing controllers

for the SLRIP

Table 4.8. Quantitative comparison of the performance of PID and LQR anti-swing

controllers
Joints
Anti-swing controllers Parameters i i i
First Link (8,) Second Link (6,)
T (5) 9.1903 5.6238
MP (°) 195 20
PID
Ess (°) 0.0978 0.01
RMSE (°) 0.9756 0.1067
T (S) 8.7535 3.5475
MP (°) 128 5
LQR
E¢ () 0.0865 0.0029
RMSE (°) 0.6651 0.1002
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Table 4.9. Quantitative comparison of the performance parameters in terms of
percentage between PID-LQR anti-swing controllers

Joints
Anti-swing controllers Parameters
First Link (6,) Second Link (6,)
T 4.75 % 36.91%
MP 34,35 % 75 %
LOR versus PID

Eg 12.36 % 71%

RMSE 31.82 % 6.091 %

According to the calculated improvement percentages in Table 4.9, the LQR returned

more accurately than PID for all joints.

The T, improvement percentages are 4.75% for the first link and 36.91 % for the
second link. The MP improvement percentages are 34.36 % for the first link and 75 %
for the second link. The Eg improvement percentages are 12.36 % for the first link,
and 71% for the second link. The RMSEs improvement percentages are 31.82% for
the first link and 6.091% for the second link.

The developed anti-swing controllers are tested for robustness under external
disturbances. The pendulum angles (6,) and the link angle (8,) are stabilized at zero
positions. Figure 4.17 shows the angle signals (6, and 6,) with PID and LQR anti-

swing controllers for the SLRIP under external disturbance in zero position at T=1s.

Both anti-swing controllers are robust, and it has successfully maintained the control
of the SLRIP under external disturbance. Table 4.10 shows the comparison of PID and

LQR controllers in terms of Ts, MP, Ess and the RMSEs under external disturbance.

According to the calculated parameters, the LQR vyields perfect results than the PID
under external disturbance. To see the performance of the PID compared with LQR;
The improvement percentages of all parameters were calculated and given in Table
4.11.
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Figure 4.17. Comparison between the angle signals (6; and 6,) under
external disturbance with PID and LQR anti-swing controllers to the

SLRIP

Table 4.10. Quantitative comparison of the performance of the PID and LQR anti-
swing controllers under external disturbance

Anti-swing controllers Joints
) Parameters
under external disturbance First Link (6,) Second Link (6,)
T (S) 05 0.81
MP (° 22 1
PID )
Ess (°) 0.043 0.0065
RMSE (°) 0.0535 0.0039
T (S) 0.3 0.59
MP (°) 10 0.6
LQR
Ess (°) 0.022 0.0041
RMSE (°) 0.0267 0.0019
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Table 4.11. Quantitative comparison of the performance parameters in terms of
percentage between PID-LQR anti-swing controllers

Anti-swing controllers Joints
. Parameters
under external disturbance First Link (6,) Second Link (8,)
Ts 40% 27.16%
MP 54.54 % 40%
LOR versus PID

Egs 48.83% 36.92%

RMSE 50.09% 51.28%

According to the calculated improvement percentages in Table 4.11, the LQR returned
more accurately than PID for all joints. The T, improvement percentages are 40% for
the first link and 27.16% for the second link. The PO improvement percentages are
29.8% for the first link and 7.66% for the second link. The Ey, improvement
percentages are 48.83 % for the first link, and 36.92% for the second link. The RMSEs
improvement percentages are 50.09% for the first link and 51.28% for the second link.

4.5. Stabilisation Control of the DLRIP
4.5.1. Model linearization of the DLRIP

The linear state-space model of the system is given in equation (4.24). X is the state
vector of the DLRIP,xT = [8; 6, 63 6, 6, 65]. uisthe control input u=
T, (T4 IS torque input of the first link). A, B, C and D are matrices for the state-space
representation. The aim is to design a robust controller for stabilizing the pendulum
links in the upright position with minimum deflection. The stable equilibrium point
corresponds to a state in each pendulum is downward position (6; = 0° and 6,=65 =
180°). The unstable equilibrium corresponds to the state in each pendulum points
vertically upwards which is against gravity (6, = 6, =85 = 0°). Substituting system
parameters and constants for respective terms, A, B, C and D state-space matrices of
the DLRIP become:
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0 0 0 1 0 0
_ 0 0 0 0 0 1
A=l0 25966 —00729 —00279 —0.0093 0.0136 (4.33)
0 433634 —189777 —00476 —02172 13321
0 —63.3307 3189279 00695 13321 —20.0673
0 1 L 00 00 0
0 | foro000
_| o loo10 o0 0, )
b= 1.0095|C‘|0 00 10 OiD_[O 000 0 0T (434
17227 | 0 0 0 0 1 0|
25160 000 00 1

The initial choice of the Q and R matrices are given in equation (4.35):

10000 0

|o10000|

oo 1000 _
Q=9 0 100 Mandr=o001 (4.35)
l000010J

00000 1

The characteristic roots of the open-loop system of the DLRIP are located at -30.6879,
-6.3174, 10.5355, 6.1825, -0.0250. The open-loop system is unstable since two poles
of the DLRIP system lie in the right half of s plan.

The LQR gain vector of the DLRIP is obtained as follows:
K = [0.12 —3.24 —37.68 0.4314 —12.545 —10.99] (4.36)
4.5.2. Robustness analyze of the DLRIP

In the next part, LQR, FLQR, LQG and FLQG are modelled and simulated in the
MATLAB/Simulink environment for the stabilization control problem of the DLRIP.
The simulation is performed by 1ms sampling time and 25s simulation time. A
numerical method Bogacki-Shampine solver is selected with fixed-step. According to
simulation results, a comparative study of all controllers is given. The controllers are
tested for robustness under internal, external disturbances and noise. The simulation
results can provide a good background and feasibility for a real experimental
implementation to the stabilization control problem of the DLRIP. The SimMechanics

model of the DLRIP with the controller is shown in Figure 4.18.
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Figure 4.18. SimMechanics model of the DLRIP with the controller
a) External disturbance

The simulation of LQR and FLQR controllers is performed with the calculated gain
matrix K given in equation (4.36) and an initial condition vector which is xT =
[00—0.05000]. As can be seen from Figure 4.19, the output variables of two
controllers are stabilized at the reference points, the two pendulum angles (6, and 65)
are stabilized. Similarly, the horizontal arm stabilized at a reference trajectory +100°
each 6.24s. Figure 4.19 shows the angle signals (64, 6, and 65) with LQR and FLQR

controllers for the DLRIP system.

According to the obtained results using the LQR controller, the LQR is robust, and it
has successfully maintained the control of the DLRIP. An FLQR controller is
developed to give us better Tg, PO, Eg and the RMSEs than the classical LQR
controllers. The two controllers are robust under external disturbance. Table 4.12
shows the comparison of LQR and FLQR controllers in terms of Tg, PO, Eg and the

RMSESs under external disturbance.
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Figure 4.19. The angle signals (6,, 6,and 65) with LQR and FLQR controllers

Table 4.12. Quantitative comparison of the performance of LQR and FLQR controllers
under external disturbance

Controllers Joints
under external Parameters
) First Link (6;) | Second Link (6,) | Third link (65)
disturbance
Ts () 3.154 s 3.9s 1.555s
PO % 1.51% 47 % 52.4%
LQR
Es (°) 0.1 0.005 0.00005
RMSE (°) 0.2077 6.2047e-04 1.1698e-05
Ts () 2.3755s 3.43s 1.37s
PO % 0.8% 23 % 37.5%
FLOR
Es () 0.01 0.001 0.00002
RMSE (°) 0.1938 1.5512e-04 2.9244e-06
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b) Internal disturbance

The robustness of two controllers LQR and FLQR is tested under external disturbance.
To test the controllers' response under internal disturbance, the mass of the third link
is varied from [10-20%] to the initial mass of the third link in time of 10s. Also, the
two controllers are robust under the internal disturbance. The variation of mass of the
third link is given in Table 4.13. Figure 4.20. shows an example of the response of
LQR and FLQR controllers under internal disturbance. Table 4.14 shows the
comparison of LQR and FLQR controllers in terms of T, PO, Eg and the RMSEs

under internal disturbance.

Table 4.13. Variation of the mass of the third link

Variation of the mass of the third link Values
Initial mass 0.0832 [kg]
Initial mass + 10% of the third link 0.09152[kg]
Initial mass + 15% of the third link 0.09568[kg]
Initial mass + 20% of the third link 0.09984 [kg]

05 I I 63 with internal perturbation -LQR
—~ — — = 3 with internal perturbation-FLQR
> |
s ° f

0.5 1 1 1 1
0 5 10 15 20 25
t(s)
1 T T T T
r
o O ™ T
3 62 with internal perturbation -LQR
=1 — — — #2 with internal perturbation-FLQR
-2 L L 1 I
0 5 10 15 20 25
t(s)
20 T T T T
/ 61 with internal perturbation-LQR
S10H\ — — — 91 with internal perturbation-FLQR | -
35 \
= 0 ~ V
1 1 1 I
0 5 10 15 20 25

t(s)

Figure 4.20. Example of the response of LQR and FLQR controller under
internal disturbance with a variation of mass of the third link in T=10s

(Initial mass + 15% of the third link)
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Table 4.14. Quantitative Comparison of Performance of LQR and FLQR controllers
under internal disturbance

Controllers Joints
under internal Parameters
. First Link (6;) | Second Link (8,) | Third link (63)
disturbance
Ts (S) 3.657 4.31 1.3
PO % 47.82 35 37,94
LOR
Ess () 0.008 0.0025 0.00216
RMSE (°) 0.0107 3.3523e-04 5.8010e-05
Ts (S) 2.441 2.46 1
PO % 46.9 28 18,78
FLQR
Ess () 0.0001 0.000019 0.00006
RMSE (°) 0.0080 2.4495e-04 2.0152e-05

The performance of the two controllers' effort is determined by the RMSEs between

the control signal and zero voltage. The calculated RMSEs are given in Table 4.15.

According to the obtained signals results, the system controlled with FLQR needs

more effort to control the system. Figure 4.21 show the control signals of LQR and

FLQR controllers under internal and external disturbances.

Control signals under external perturbations

Control signal-LQR
Control signal-FLQR | |

-

1 1

10
t(s)

15 20

Control signals under internal perturbations

25

Control signal-LQR
Control signal-FLQR

> OW
1k
2 L
0 5
5
0 Ne==
>
5t
-10 *
0 5

10
t(s)

15 20

25

Figure 4.21. The control signals of LQR and FLQR controllers
under internal and external disturbances
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Table 4.15. RMSEs of the control signals for the controllers

Disturbances Controller RMSE
LQR 3.1030e-04
External disturbance
FLQR 5.1703e-04
LOR 4.4932e-04
Internal disturbance
FLQR 6.0451e-04

c) Noise and external disturbance

The simulation results obtained by LQR and FLQR controllers are obtained in the case
without noise; it is not always the same case for a real experimental system. In the
other hand, in a real experimental implementation, the system can be affected by noise.
However, all situations cannot be measurable. White noise with different SNR is added
to the system in the simulation to approach to a real experimental system. The level of
added noise to the system is a critical point in the design of the controller. The LQR
and FLQR controllers’ performance is tested by adding white noise to the DLRIP. In
the LQG and FLQG controllers, the KF has succeeded to estimate the states in the
noise cases applied to the system. The reference trajectory signal (+100° each 6.24s)
shown in Figures 4.22 and 4.23 is applied to a horizontal arm when the pendulums are

stabilized in the equilibrium point.

The initial condition vector is xT = [0 —0.050000]. The LQG and FLQG
controllers are capable of eliminating noise, and the system remains stable for the
determined time. The most important difference point between the LQR, FLQR
controllers and LQG, FLQG controllers results is the effect of noise. LQR and FLQR
controllers don't contain any algorithm to ignore the noise combined to the DLRIP. As
can be seen from Figures 4.22 and 4.23, the added noise reflect the outputs of the
system, which is eliminated by the LQG and FLQG controllers, respectively. Table
4.16 shows a comparison of LQG and FLQG controllers under noise and external
disturbance in terms of T, PO, E¢, and RMSEs.
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Table 4.16. Quantitative Comparison of Performance of LQG and FLQG controllers
under noise and external disturbance

Controllers under Joints
noise and external | Parameters _ _ _ o
disturbance First Link (6,) | Second Link (6,) | Third link (83)
Ts(S) 3.26 3.01 2.15
PO % 1.57 48 3.8
LQG
Ess () 0.2 0.008 0.001
RMSE (°) 0.1891 6.7008e-04 6.0974e-05
Ts(S) 2.23 2.3 1.25
PO % 0.76 46 3
FLQG
Ess (°) 0.001 0.003 0.0002
RMSE (°) 0.1614 4.3504e-04 1.5244e-05

d) Noise and internal disturbance

In part (c), the robustness of the two controllers LQG and FLQG is tested under noise
and external disturbance. To test the controllers' response under noise and external
disturbance, also the mass of the third link is varied from [10-20%] to the initial mass
of the third link in time of 10s. The two controllers are robust under the internal
disturbance. The variation of mass of the third link is given in Table 4.13. Figure 4.24
shows an example of the response of LQG and FLQG controllers under internal
disturbance. Table 4.17 shows the comparison of LQG and FLQG controllers in terms
of Tg, PO, Egs and RMSEs under internal disturbance.

Table 4.17. Quantitative Comparison of Performance of LQG and FLQG controllers
under noise and internal disturbance.

Controllers under Joints

noise and internal | Parameters | ) ) o
. First Link (61) | Second Link (8,) | Third link (65)
disturbance

To(s) 3.48 2.81 1.1
LQG PO % 68.1 456 275
E, (°) 0.07 0.05 0.003

174



Table 4.17.(Cont.) Quantitative Comparison of Performance of LQG and FLQG
controllers under noise and internal disturbance.

RMSE (°) 0.0085 2.6818e-04 4.6408e-05
Ts(s) 2.2 2.14 0.95
PO % 45.2 41.1 21.8
FLQG
Eg (°) 0.001 0.0010 0.00009
RMSE (°) 0.0043 1.7146e-04 3.4258e-05
T T 03 with noise and internal perturbation -LQG
0.2 L 63 with noise and internal perturbation-FLQG
ot !
-0.2F N
-04E | | | | -
0 5 10 15 20 25
t(s)
1 ' : 02 with noise and internal perturbation -LQG
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’8\) 0 1
°
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Figure 4.24. Example of the response of LQG and FLQG controller under internal
disturbance with a variation of mass of the third link in T=10s (Initial mass + 15%

of the Third link)

Figure 4.25. shows the control signals of LQG and FLQG controllers under noise,
internal and external disturbances. The performance of the two controllers' effort is
determined by the RMSEs between the control signal and zero voltage. The calculated
RMSEs are given in Table 4.18. According to the obtained signals results, the system

controlled with FLQG needs more effort to control the system.
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Figure 4.25. The control signals of LQG and FLQG controllers under noise,
internal and external disturbances

Table 4.18. RMSEs of the control signals for the controllers

Disturbances Controller RMSE
) ) LQG 3.1331e-04
Noise and external disturbance
FLQG 5.1696e-04
) ) ) LQG 3.9782e-04
Noise and internal disturbance
FLQG 5.4488e-04

e) LQG and FLQG controllers under different variances of SNR white noise

To test the LQG and FLQG algorithms in the presence of white noise, the DLRIP
system is tested for three different variances of SNR of white noise. The LQR and
FLQR algorithm takes into account the presence of the noise. The LQG and FLQG
controllers show very good noise rejection feature. Even in the presence of very high
noise, the LQG and FLQG can trace the desired response. Figure 4.26 shows an
example of LQR and LQG responses with different variances of SNR of white noise:
(@) SNR =0.001dB, (b) SNR =0.01dB and(c) SNR =0.1dB.
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Figure 4.26. Examples of LQR and LQG responses: (a) witch SNR =0.001dB, (b)
witch SNR =0.1dB and (c) witch SNR =0.1dB
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Figure 4.26.(Cont.) Examples of LQR and LQG responses: (a) witch SNR =0.001dB,
(b) witch SNR =0.1dB and (c) witch SNR =0.1dB

4.5.3. Performance evaluation of controllers of the DLRIP

Ts, PO, E¢ and the position RMSEs of the joints of both groups of controllers (LQR-
FLQR and LQG-FLQG) under external and internal disturbances are given in Tables
4.12, 4.14, 4.16 and 4.17. According to the calculated Ty, PO, E¢s and position
RMSEs, the nonlinear controllers (FLQR and FLQG) produce more accurate results
than the linear controllers (LQR and LQG). In order to see the performance of the
FLQR and FLQG compared with LQR and LQG respectively; The improvement
percentages of T, PO, E¢ and position RMSEs were computed for each disturbance
cases, and they are given in Tables 4.19, 4.20, 4.21 and 4.22. Considering the T, PO,
Es and position RMSEs in all joints, the percentage obtained by the FLQR and FLQG

controllers yields better results.
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Table 4.19. Comparison of the performance parameters in terms of percentage between
LQR-FLQR under external disturbance

Joint
Controllers Parameters
First Link (64) Second Link (8,) Third link (63)
T 24.69 % 12.05 % 11.61%
LQR-FLQR
PO 47.01 % 51.06 % 28.43 %
under external
) E¢ 90 % 80 % 60 %
disturbance
RMSE 6.69 % 74.99 % 75 %

According to the calculated improvement percentages in Table 4.19, the FLQR
returned more accurately than LQR under external disturbance for all joints. The T
Improvement percentages are 24.69% for the first link, 12.05% for the second link and
11.61% for the third link. The PO improvement percentages are 47.01% for the first
link, 51.06% for the second link and 28.43% for the third link. The E;s improvement
percentages are 90% for the first link, 80% for the second link and 60% for the third
link. The RMSEs improvement percentages are 6.69% for the first link, 74.99% for
the second link and 75% for the third link.

Table 4.20. Comparison of the performance parameters in terms of percentage between
LQR-FLQR under internal disturbance

Controllers | Parameters oint
First Link (6;) | Second Link (6,) | Third link (65)
LQR-FLQR Ts 33.25% 42.92 % 23.07 %
under PO 1.92 % 20 % 50.50 %
internal Egs 98.75% 99.24% 97.22%
disturbance RMSE 25.23 % 26.93 % 65.26%

According to the calculated rate of improvement percentages in Table 4.20, the FLQR
returned more accurately than LQR under internal disturbance for all joints. The T
improvement percentages are 33.25% for the first link, 42.92% for the second link and
23.07% for the third link. The PO improvement percentages are 1.92% for the first
link, 20% for the second link and 50.50% for the third link. The E¢, improvement
percentages are 98.75% for the first link, 99.24% for the second link and 97.22% for
the third link. The RMSE improvement percentages are 25.23% for the first link,
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26.93% for the second link and 65.26% for the third link.

Table 4.21. Comparison of the performance parameters in terms of percentage between
LQG-FLQG under noise and external disturbance

Controllers | Parameters Joint

First Link (8,) Second Link (6,) Third link (65)
LQG-FLQG T 31.59 % 23.58 % 41.86 %
under noise PO 51.59 % 4.16 % 21.05 %
and external E¢ 99.5 % 62.5% 80%
disturbance RMSE 14.64 % 35.07 % 74.99 %

According to the calculated rate of improvement percentages in Table 4.21, the FLQG
returned more accurately than LQG under external disturbance for all joints. The T
improvement percentages are 31.59% for the first link, 23.58% for the second link and
41.86% for the third link. The PO improvement percentages are 51.59% for the first
link, 4.16% for the second link and 21.06% for the third link. The E¢; improvement
percentages are 99.5% for the first link, 62.5% for the second link and 80% for the
third link. The RMSE improvement percentages are 14.64% for the first link, 35.07%
for the second link and 74.99% for the third link.

Table 4.22. Comparison of the performance of parameters in terms of percentage
between LQG-FLQG under noise and internal disturbance

Controllers Parameters Joint

First Link (6;) | Second Link (8,) Third link (65)
LQG-FLQG T 36.78% 23.84% 13.63%
under noise PO 33.62% 9.86% 20.72%
and internal Egs 98.57% 98% 97%
disturbance RMSE 49.41% 36.06% 26.18%

According to the calculated rate of improvement percentages in Table 4.22, the FLQG
returned more accurately than LQG under noise and internal disturbance for all joints.
The T, improvement percentages are 36.78% for the first link, 23.84% for the second
link and 13.63% for the third link. The PO improvement percentages are 33.62% for
the first link, 9.86% for the second link and 20.72% for the third link. The E

improvement percentages are 98.57% for the first link, 98% for the second link and
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97% for the third link. The RMSE improvement percentages are 49.41% for the first
link, 36.06% for the second link and 26.18% for the third link. Moreover, the RMSEs
of the control signals for the controllers (LQR-FLQR and LQG-FLQG) under external
and internal disturbances are given in Tables 4.15 and 4.18. According to the
calculated RMSEs of the control signals, the controllers (FLQR and FLQG) produce
more effort than the (LQR and LQG) to control the DLRIP. The incremental
percentages of RMSEs of the control signals are computed for each disturbance cases,

and they are given in Table 4.23.

Table 4.23. Comparison of the controllers based on Incremental percentages of RMSE
control signal

Controllers Rate
FLQOR versus LOR 34.53% - 66.62%
FLQG versus LQG 36.96% - 64.99%

According to the incremental calculated percentages of RMSEs of the control signals
in Table 4.23, the FLQR returned more effort than LQR with 34.53 % under internal
disturbance and with 66.62% under external disturbance. The FLQG returned more
effort than LQG with 36.96 % under noise and internal disturbance; Also, with 64.99

% under noise and external disturbance.

In this section, both FLQR and FLQG controllers were developed for the stability
control of the DLRIP and they were compared with LQR and LQG controllers,
respectively. The developed controllers were tested under internal and external
disturbances to determine the robustness performance of the controllers. According to
the obtained simulation results the nonlinear FLQR and FLQG controllers are robust
and produce better results than the LQR and LQG controllers in terms of T, PO, E
and RMSEs. RMSEs improvement percentages between FLQR and LQR range from
6.69% to 75% and 25.23% to 65.26% under external and internal disturbances,
respectively. Similarly, RMSEs improvement percentages between FLQG and LQG
range from 14.64% to 74.99 % and 25.23 % to 49.41 % under external and internal
disturbances, respectively. Moreover, the LQG and FLQG controllers in the DLRIP
were tested in the presence of white noise with different SNRs. The LQG and FLQG

controllers show very good noise rejection feature. The increment percentages of
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RMSEs of the control signals for the FLQR and FLQG compared with LQR and LQG
is from 34.53% to 66.62%. Accordingly, the FLQR and FLQG controllers need more
control efforts than the classical LQR and LQG. The design compromise between
controller performance and efforts should be made based on which one is more
important than others. Generally, the performance of the controller is a more crucial

aspect of control applications.
4.6. Anti-swing Control of The DLRIP
4.6.1. Anti-swing ANFIS-LQR controller of the DLRIP

The design aspect and the procedure of the ANFIS-LQR controller are explained with
details in section (4.2.6). In this section, only the ANFIS-LQR parameters used for the
anti-swing control of the DLRIP will be explained. The ANFIS parameters such as the
number and type of membership functions, error tolerance, epochs number and

learning method applied to the DLRIP are given in Table 4.24.

Table 4.24. ANFIS parameters to the DLRIP

ANFIS parameter Value
Number of membership functions 7
Type of membership function Triangular
Error tolerance Zero
Epochs number 1000
Learning method Hybrid

e and é are of the DLRIP calculated as follows:

[E] — kT = K61 0, + Kez 0, + K93 03 (4.37)
é - - Ke'l 61 + Ke'z 62 + Ke’363 )
Where
_[Ke, Ko, Ko, 0 0 0 439
0 0 0 Ke‘l Ke‘z Ke.3 .
X = [61 92 92 el 92 93] (439)

The sampling rate is chosen as 1khz for the 50s. (e, ¢) and (U) are the inputs and output

of ANFIS, respectively. For one example, the loaded data for training, the training
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error, and the trained data in ANFIS editor are shown in Figure 4.27. The network
structure and the surface relationship of the two inputs and one output are shown in

Figure 4.28. The block diagram of the ANFIS-LQR of the DLRIP is given as an
example in Figure 4.8 in section (4.2.6).

Training Data (ocoo)

-10 : . . . . !
0 1000 2000 3000 4000 5000 £000
data set index
(a)
Training Error
0.1
0.09
5 0.08
Woor
0.06
0.05
0 200 400 800 800 1000
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(b)
5 Training data: o FIS output : *
5
&
=
o
-10 : : : : : !
0 1000 2000 3000 4000 5000 6000
Index
(©)

Figure 4.27. One example (a) the loaded data for training (b)
the training error and (c) the trained data
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Figure 4.28. ANFIS: (a) network structure (b) inputs-output surface

4.6.2. Anti-swing RBNF-LQR controller of the DLRIP

The RBNF-LQR controller is explained in details in section (4.2.6). The RBNF-LQR
is developed to obtain better control performance than the classical ANFIS-LQR
controller. Two RBNNSs are used to train the positions and velocities of state variables
multiplied by their LQR gains, respectively. The inputs and output (u) data obtained
from the non-linear FLQR controller are used for the training of both RBNNs. The
block diagram of RBNF-LQR controller is shown as an example in Figure 4.9 in
section (4.2.7). 300000 data of each input and 100000 data of output are used to train
for RBNNSs. For the two RBNNs, Bayesian Regularization (BR) algorithm is used to
treat the inputs and the output. 70% of the data used for simulation were used for
training, 15% for validation, and 15% for the testing for each RBFNN. The realized
values and calculated values of all data for each RBNN are shown in Figure 4.29. The
regression value for all data is 0.99 for both RBNNs. As can be seen in Figure 4.30,
the best validation performance value is obtained at the 66-ith and 66-ith iterations for
both RBNNSs, respectively. The Mamdani type fuzzy model is developed and

explained in section (4.2.6).
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Figure 4.30. Convergence behavior of the RBNNs during training iterations : (a)
positions RBNN (b) velocities RBNN

4.6.3. Comparison between the two anti-swing NF controllers of the DLRIP

In this section, both anti-swing NF controllers (ANFIS-LQR and RBNF-LQR) are
compared based on the performance of the control signal obtained from the three joints
of the DLRIP. According to the obtained results, the RBNF-LQR controller returned
better control performance than ANFIS-LQR controller. Furthermore, the RBNF-LQR
controller is chosen as our NF controller applied to the DLRIP. Figure 4.31. shown a
comparison between the ANFIS-LQR and RBNF-LQR based on the performance of
the control signal. In the next section, three controllers (RBNF-LQR, FLQR and LQR)
are developed for the anti-swing control of the DLRIP. The three controllers are
modelled and simulated in MATLAB/Simulink.
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Figure 4.31. Control signal obtained by the ANFIS-LQR and RBNF-LQR
4.6.4. Anti-swing control results and robustness analysis of the DLRIP

The developed controllers (RBNF-LQR, FLQR and LQR) for the anti-swing control
of the DLRIP are modeled and simulated using the SimMechanics Toolbox in
MATLAB/Simulink. The anti-swing control is performed by the initial conditions of
0, =0°, 6, =60° 65 =0° and gain matrix K=[-0.1826 56.1059 1.3411 -0.8416
8.8488  0.4982]. All output variables of the DLRIP need to be stabilized at the
reference point by all anti-swing controllers. Moreover, a comparison between the
angle signals (64,0, and 85) with anti-swing controllers in simulation given in Figures

4.32.
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According to the obtained results, all controllers have effectively maintained the anti-
swing control of the DLRIP with minimum vibration. The RBNF-LQR controller is
developed in order to give the best results in terms of Ty, MP, Egs and the RMSEs
than the FLQR and LQR controllers. Table 4.25 shows the comparison of LQR, FLQR
and RBNF-LQR anti-swing controllers in terms of Ty, MP, Egs and the RMSES in

simulation.

Table 4.25. Comparison of the performance of LQR, FLQR and RBNF-LQR anti-
swing controllers for the DLRIP

Joints
Controllers Parameters i i i __
First Link (61) | Second Link (8,) Third link (85)
Ts(s) 24.07 2.9841 3.34
MP (°) 97.91 30.76 45.65
LQR
Ess (°) 0.263 0.5 0.1
RMSE (°) 0.1845 0.0619 0.2004
Ts(s) 8.7760 1.8947 3.0847
MP (°) 74.26 22.49 44.09
FLQR
Ess (°) 0.01 0.08 0.05
RMSE (°) 0.0833 0.0581 0.0576
Ts(s) 7.3811 4.26 2.72
MP (°) 42.54 13.91 15
RBNF-LQR
Ess (°) 0.001 0.0051 0.0027
RMSE (°) 0.0372 0.0637 0.0133

According to the calculated parameters, the RBNF-LQR produces better results than
the FLQR and LQR. To verify the RBNF-LQR performance compared with other anti-
swing controllers; the improvement percentages of all parameters are calculated and
given in Table 4.26.

Table 4.26. Comparison of the performance parameters in terms of percentage between
RBNF-LQR versus FLOR and RBNF-LQR versus LQR

Joints
Controllers Parameters i i i __
First Link (6;) | Second Link (8;) Third link (85)
RBNF-LQR T 69.33% 29.95% 18.62%
versus LQR MP 56.55% 54.77% 67.14%
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Table 4.26.(Cont.) Comparison of the performance parameters in terms of percentage
between RBNF-LQR versus FLQR and RBNF-LQR versus LQR

Egs 99.61% 98.98% 97.30%

RMSE 79.83% 2.82% 93.36%

Ts 15.89% 55.52% 11.82%

RBNF-LQR MP 42.71% 38.15% 65.97%
versus FLQR Egs 90.00% 93.62% 94.60%
RMSE 55.34% 8.79% 73.40%

According to the calculated rate of improvement percentages in Table 4.26, the RBNF-
LQR returned more accurately than LQR for the anti-swing control of the DLRIP. The
T, improvement percentages are 69.33% for the first link, 29.95% for the second link
and 18.62 % for the third link. The MP improvement percentages are 56.55% for the
first link, 54.77% for the second link and 67.14% for the third link. The Eg
improvement percentages are 99.61% for the first link, 98.98% for the second link and
97.30% for the third link. The RMSE improvement percentages are 79.83% for the
first link, 2.82% for the second link and 93.36% for the third link. Furthermore, the
RBNF-LQR returned more accurately than FLQR for the anti-swing control of the
DLRIP. The T improvement percentages are 15.98% for the first link, 55.52% for the
second link and 11.82 % for the third link. The MP improvement percentages are
42.71% for the first link, 38.15% for the second link and 65.97% for the third link.
The E¢ improvement percentages are 99 % for the first link, 93.62% for the second
link and 94.60% for the third link. The RMSE improvement percentages are 55.34%
for the first link, 8.79% for the second link and 73.40% for the third link.

- Robustness analysis:

In this part, the developed controllers are tested for robustness under external
disturbance. Figure 4.33 shows the angle signals (6, 6, and 65) with LQR, FLQR and
RBNF-LQR controllers for the DLRIP under external disturbance. Based on the
obtained results, all controllers are robust under external disturbance. The external
disturbance is applied to the system at t=25s when the system is stable at zero position.
The RBNF-LQR controller is developed to provide better control parameters than the
FLQR and LQR. Table 4.27 shows a comparison of controllers in terms of Ts, MP,
Ess and the RMSEs under external disturbance. According to the obtained results, the
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RBNF-LQR yields more perfect results than the LQR and FLQR. To analyze the
performance of the RBNF-LQR compared with FLQR and LQR under external

disturbance; The improvement percentages of T;, MP, Ess and position RMSEs are

calculated and given in Table 4.28.
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Figure 4.33. Comparison between the angle signals (6,6, and 65) with LQR, FLQR
and RBNF-LQR anti-swing controllers under external disturbance for DLRIP

Table 4.27. Comparison of the performance of LQR, FLQR and RBNF-LQR anti-

swing controllers under external for the DLRIP

Controllers Joints
under external Parameters ) ) ) o
. First Link (6;) | Second Link (6,) | Third link (85)
disturbance
Ts(s) 18.9 7.5 8.3
LQR MP (°) 55 15 15
Ess (°) 0.4 0.046 0.00223
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Table 4.27.(Cont.) Comparison of the performance of LQR, FLQR and RBNF-LQR
anti-swing controllers under external for the DLRIP

RMSE (°) 0.1396 0.0015 0.0019

Ty(s) 16.8 6.1 5.1

MP (°) 43 1 0.8

FLQR

Eq, (°) 0.19 0.044 0.0017
RMSE (°) 0.1378 0.0010 0.0011

Ty(s) 125 5.1 25

MP (°) 41 0.8 0.7

RBNF-LQR

E, (°) 0.02 0.043 0.0016
RMSE (°) 0.1094 9.5958¢-04 0.0010

Table 4.28. Comparison of the performance parameters in terms of percentage between
RBNF-LQR versus FLQR and RBNF-LQR versus LQR under external disturbance

Controllers Parameters g
First Link (6;) | Second Link (8,) Third link (65)

Ts 11.11% 32.00% 69.87%

RBNF-LQR MP 21.81% 46.66% 53.33%
versus LQR Egs 95% 6.52% 28.25%
RMSE 21.63% 4.042% 47.36%

T 33.86% 16.39% 50.98%

RBNF-LOQR MP 25.45% 19.99% 12.50%
versus FLQR Ess 89.47 2.27% 5.882%
RMSE 20.60% 36.02% 9.090%

According to the calculated rate of improvement percentages in Table 4.28, the RBNF-
LQR returned more accurately than LQR for the anti-swing control under the external
disturbance of the DLRIP. The T improvement percentages are 11.11% for the first
link, 32% for the second link and 68.87% for the third link. The MP improvement
percentages are 21.81% for the first link, 46.66% for the second link and 53.33% for
the third link. The E¢ improvement percentages are 95% for the first link, 6.52% for
the second link and 28.25% for the third link. The RMSE improvement percentages
are 21.63% for the first link, 4.042% for the second link and 47.36% for the third link.
Furthermore, the RBNF-LQR returned more accurately than FLQR for the anti-swing

control under the external disturbance of the DLRIP. The T, improvement percentages
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are 33.86% for the first link, 16.39% for the second link and 50.98% for the third link.
The MP improvement percentages are 25.45% for the first link, 19.99% for the second
link and 12.50% for the third link. The Egs improvement percentages are 89.47% for
the first link, 2.27% for the second link and 5.882% for the third link. The RMSE
improvement percentages are 20.60% for the first link, 36.02% for the second link and
9.090% for the third link.

In this section, a RBNF-LQR was developed and compared with FLQR and the
classical LQR controller for the anti-swing control of the DLRIP. According to the
obtained simulation results the RBNF-LQR controller gives better results than the
FLQR and LQR controller in terms of Ts, MP, E¢c and RMSE. RMSESs improvement
percentages between RBNF-LQR versus FLQR and RBNF-LQR versus LQR are from
8.79% to 73.40% and 2.82% to 93.36%, respectively. Furthermore, the RBNF-LQR
controller produces better results than the FLQR and LQR controllers under external
disturbance. RMSEs improvement percentages between RBNF-LQR versus FLQR
and RBNF-LQR versus LQR are from 4.042% to 47.36% and 9.090% to 36.02% under

external disturbance, respectively.
4.7. Stabilisation Control of the TLRIP
4.7.1. Model linearization of the TLRIP

The linear state-space model of the system is given in equation (4.24). X is the state
vector of the TLRIP,x" = [8; 8, 6; 0, 6, 6, 0, 6,]. uis the control
input u =1y, (T Istorque input of the first link). A, B, C and D are matrices for the

state-space representation.

The aim is to design a robust controller for stabilizing the pendulum links in the
upright position with minimum deflection. The stable equilibrium point corresponds
to a state in each pendulum is downward position (8; = 0° and 8,=6; = 8, = 180°).
The unstable equilibrium corresponds to the state in each pendulum points vertically
upwards which is against gravity (6; =0, =03= 0,= 0"). Substituting system
parameters and constants for respective terms, A, B, C and D state-space matrices of
the TLRIP become:
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The LQR gain vector of the TLRIP is given in equation (4.43).

K =[-3.1623 214.0004 — 252.2487 — 138.1634
—9.7926 —7.5319]

—5.3538 1.7422

(4.40)

(4.41)

(4.42)

(4.43)

The proposed controller for the stabilization control TLRIP will be described in the

next section.

4.7.2. Robustness analyze of the TLRIP

In this section, LQR, FLOR, LQG and FLQG are modelled and simulated in the
MATLAB/Simulink environment for the stabilization control of the TLRIP. The

simulation is performed by the sampling time 1ms and 50s simulation time. A

numerical method Bogacki-Shampine solver is selected with fixed-step. According to

simulation results, a comparative study of all controllers is given. The controllers are

tested for robustness under internal, external disturbances and noise. The simulation

194



results can provide a good background and feasibility for a real experimental
implementation to the stabilization control problem of the TLRIP. SimMechanics

model for control of TLRIP with the controller is shown in Figure 4.34.
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Figure 4.34. SimMechanics model of the TLRIP with the controller
a) External disturbance

The simulation of LQR and FLQR controllers is performed with the calculated gain
matrix K given in equation (392) and an initial condition vector which is xT =
[000—0.0500 00]. As can be seen from Figure 4.33, The output variables of two
controllers are stabilized at the reference points, the three pendulum angles (6, , 65
and 06,) are stabilized. Similarly, the horizontal arm stabilized at a reference trajectory
+50° each 25s. Figure 4.35 shows the angle signals (64, 6, , 65 and 6,) with LQR and
FLQR controllers for the TLRIP system.
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Figure 4.35. The angle signals (64, 6,, 65 and 6,) with LQR and FLQR controllers

According to the obtained results using the LQR controller, the LQR is robust, and it
has successfully maintained the control of the TLRIP. An FLQR controller is
developed to give us more best Tg, PO, Eg and the RMSEs than the classical LQR
controllers. The two controllers are robust under external disturbance. Table 4.29

shows the comparison of LQR and FLQR controllers in terms of T, PO, Eg and the
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RMSEs under external disturbance.

Table 4.29. Quantitative Comparison of Performance of LQR and FLQR controllers
under external disturbance for the TLRIP

Controllers Joints
under external | Parameters _ _ _ — _
) First Link | Second Link | Third link | Fourth link
disturbance
(01) (02) (83) (84)
Ts(S) 9.54 9.10 8.9 1.33
PO (%) 14 40 19 4.1
LQR
Es (°) 0.89 0.019 55e7° 2.44 5
RMSE (°) 0.4472 7.745e~* 1.4522e~* | 1.7575e7°
Ts(S) 5.21 4,55 3.50 1.1s
PO (%) 0.7 15 10 3.2
FLQR
Egs () 0.35 0.000232 1,15e75 98e7°
RMSE (°) 0.3920 1.9363e™* | 9.6814e™> | 8.7876e°°

b) Internal disturbance

The robustness of two controllers LQR and FLQR is tested under external disturbance.
To test the controllers' response under internal disturbance, the mass of the fourth link

is varied from [10-20%] to the initial mass of the fourth link in time of 20s.

The two controllers are robust under the internal disturbance. Figure 4.36. shows an
example of the response of LQR and FLQR controllers under internal disturbance.
Table 4.30 shows the comparison of LQR and FLQR controllers in terms of T, PO,

E¢ and the RMSEs under internal disturbance.
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Figure 4.36. Example of the response of LQR and FLQR controller
under internal disturbance with a variation of mass of the fourth

link in T=20s (Initial mass + 15% of the third link)

Table 4.30. Quantitative Comparison of Performance of LQR and FLQR controllers

under internal disturbance for the TLRIP

Controllers Joints
under internal Parameters | First Link | Second Link Third link | Fourth link
disturbance (64) (62) (63) (64)
Ts(S) 13.67 5.31 5.22 1.35
PO (%) 19.54 18.87 2.1 5.23
LQR
Es (°) 1.9e-03 1.5e-03 2.0e-04 9.0e-07
RMSE (°) 0.0038 8.5891e-05 1.0736e-05 | 0.0879e-05
Ts(S) 5.341 1.16 1 1.2
PO (%) 5.9 5 1.18 2.14
FLOR
Egs () 1.2e-03 0.5e-03 0.1e-04 4.5e-07
RMSE (°) 0.0022 2.1473e-05 2.2534e-06 | 1.4725e-06

c) Noise and external disturbance
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The simulation results obtained by LQR and FLQR controllers are obtained in the case
without noise; it is not always the same case for a real experimental system. In the
other hand, in a real experimental implementation, the system can be affected by noise.
However, all situations cannot be measurable. White noise with different SNR is added
to the system in the simulation to approach to a real experimental system. The level of
added noise to the system is a critical point in the design of the controller. The LQR
and FLQR controllers’ performance is tested by adding white noise to the TLRIP. In
the LQG and FLQG controllers, the KF has succeeded to estimate the states in the
noise cases applied to the system. The reference trajectory signal (50° each 25s)
shown in Figures 4.37 and 4.38 is applied to a horizontal arm when the pendulums are
stabilized in the equilibrium point. The initial condition vector is xT = [000 —
0.0500 0 0]. The LQG and FLQG controllers are capable of eliminating noise, and
the system remains stable for the determined time. The most important difference point
between the LQR, FLQR controllers and LQG, FLQG controllers results is the effect
of noise. LQR and FLQR controllers don't contain any algorithm to ignore the noise
combined to the TLRIP. As can be seen from Figures 4.37 and 4.38, the added noise
reflect the outputs of the system, which is eliminated by the LQG and FLQG
controllers, respectively. Table 4.31 shows a comparison of LQG and FLQG

controllers under noise and external disturbance in terms of T, PO, E¢ s and RMSEs.

Table 4.31. Quantitative Comparison of Performance of LQG and FLQG controllers
under noise and external disturbance for the TLRIP

Controllers under Joints
noise and external | Parameters | First Link Second Third link | Fourth link
disturbance (CH) Link (6,) (653) (64)
Ts(s) 9.26 4.5 3.47 1.4
LG PO (%) 1.24 47 20 3.7
E (°) 0.5 0.02 0.003 0.0004
RMSE (°) | 0.3895 | 2.5841e-04 | 1.2920e-04 | 1.1628e-04
Ts(s) 5.56 3.2 2.9 0.9
PO (%) 0.32 44 18.2 3
FLQG Es (°) 0.04 0.005 0.001 0.0002
RMSE (°) | 0.3887 | 2.4587¢-04 1'19;74& 1157804
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d) Noise and internal disturbance

The robustness of the two controllers LQG and FLQG is tested under noise and
external disturbance. To test the controllers’ response under noise and internal
disturbance, also the mass of the fourth link is varied from [10-20%] to the initial mass
of the third link in time of 20s.

The two controllers are robust under the internal disturbance. Figure 4.39. shows an
example of the response of LQG and FLQG controllers under internal disturbance.
Table 4.32 shows the comparison of LQG and FLQG controllers in terms of T, PO,

Ess and RMSEs under internal disturbance.

Table 4.32. Quantitative Comparison of Performance of LQG and FLQG controllers
under noise and internal disturbance for the TLRIP

Controllers

Joints
under noise and
internal Parameters | rirgt | ink | Second Link | Third link | Fourth link
disturbance (©1) (82) (83) (84)
Ty(s) 12.48 3.81 4.9 1.5
PO (%) 9.21 9.1 5 434
LQG
Ess (°) 0.01 0.0005 095e-05 | 31€05
RMSE (°) | 00019 | 4.2945¢-05 | 1.0736e-05 | 9-614€-06
Ts(s) 5.2 2.14 2.95 0.2
PO (%) 2.78 5.2 0.1 2.27
FLQG
Ess (°) 0.001 0.0001 0.1e-06 2.5e-05
RMSE (°) | 7.6861e-04 | 2.1473¢-05 | 1.1267e-06 | 0-009¢-06

The performance of the two controllers' effort is determined by the RMSEs between
the control signal and zero voltage. The calculated RMSEs are given in Table 4.33.
According to the obtained signals results, the system controlled with FLQR and FLQG
needs more effort to control the system.
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internal disturbance with a variation of mass of the third link in T=20s (Initial

mass + 15% of the Third link)

Table 4.33. RMSEs of the control signals for the controllers

Disturbances Controller RMSE
LQR 0.6369
External disturbance
FLOR 1.4761
LOR 4.7102e-04
Internal disturbance
FLQR 8.269e-04
LQG 6.874e-04
Noise and external disturbance
FLQG 9.3946e-04
LQG 5.1354e-04
Noise and internal disturbance
FLQG 8.9823e-04
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4.7.3. Performance evaluation of controllers of the TLRIP

Ts, PO, E¢ and the position RMSEs of the joints of both groups of controllers (LQR-
FLQR and LQG-FLQG) under external and internal disturbances are given in Tables
4.29, 4.30, 4.31 and 4.32. According to the calculated Ty, PO, Eg and position
RMSEs, the nonlinear controllers (FLQR and FLQG) produce more accurate results
than the linear controllers (LQR and LQG). In order to see the performance of the
FLQR and FLQG compared with LQR and LQG respectively; The improvement
percentages of T, PO, E¢ and position RMSEs were computed for each disturbance
cases, and they are given in Tables 4.34, 4.35, 4.36 and 4.37. Considering the T, PO,
E and position RMSEs in all joints, the percentage obtained by the FLQR and FLQG

controllers yields better results.

Table 4.34. Comparison of the performance parameters in terms of percentage between
LQR-FLQR under external disturbance

Joint
Controlel; Parameters First Link Second Third link Fourth link
(6,) Link (6,) (65) 0,)
T, 47.58% 50% 60.67% 17.29%
LQR-FLQR PO 50% 62.5% 47.36% 21.95%
under external :
disturbance Ess 60.67% | 98.77% 79.09% 59.83%
RMSE | 1234% | 74.99% 33.33% 49.99%

According to the calculated improvement percentages in Table 4.34, the FLQR
returned more accurately than LQR under external disturbance for all joints. The T
improvement percentages are 47.58% for the first link, 50% for the second link,
60.67% for the third link and 17.29% for the fourth link. The PO improvement
percentages are 50% for the first link, 62.5 % for the second link, 47.36% for the third
link and 21.95% for the fourth link. The Egs improvement percentages are 60.67% for
the first link, 98.77% for the second link, 79.99% for the third link and 59.83% for
the fourth link. The RMSESs improvement percentages are 12.34% for the first link,
74.99% for the second link,33.33% for the third link and 49.99% for the fourth link.

203



Table 4.35. Comparison of the performance parameters in terms of percentage between
LQR-FLQR under internal disturbance

Joint
Controllers Parameters | First Link | Second Link Third link Fourth link
(01) (82) (83) (84)
T 60.92% 78.15% 80.84% 11.11%
LQR-FLQR
] PO 69.80% 73.50% 52.38% 59.08%
under internal
. E 36.84% 80% 95% 50%
disturbance
RMSE 42.10% 74.99% 78.99% 81.59%

According to the calculated improvement percentages in Table 4.35, the FLQR
returned more accurately than LQR under external disturbance for all joints. The T
improvement percentages are 60.92% for the first link, 78.15% for the second link,
80.84% for the third link and 11.11% for the fourth link. The PO improvement
percentages are 69.80% for the first link, 73.50% for the second link, 52.38% for the
third link and 59.08% for the fourth link. The Egs improvement percentages are
36.84% for the first link, 80% for the second link, 95% for the third link and 50% for
the fourth link. The RMSESs improvement percentages are 42.10% for the first link,
74.99% for the second link,78.99% for the third link and 81.59% for the fourth link.

Table 4.36. Comparison of the performance parameters in terms of percentage between
LQG-FLQG under noise and external disturbance

Joint

Controllers Parameters | First Link Second Third Fourth
(64) Link (6,) link (63) | link (6,4)

T, 39.95% 28.88% 16.42% 35.71%

LQG-FLQG
) PO 74.19% 6.38% 9% 18.91%
under noise and
] Egs 92% 75% 66.66% 50%
external disturbance
RMSE 0.20% 4.85% 7.21% 0.42%

According to the calculated improvement percentages in Table 4.36, the FLQR
returned more accurately than LQR under external disturbance for all joints. The T
improvement percentages are 39.95% for the first link, 28.88% for the second link,
16.42% for the third link and 35.71% for the fourth link. The PO improvement
percentages are 74.19% for the first link, 6.38% for the second link, 9% for the third
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link and 18.91% for the fourth link. The E¢s improvement percentages are 92% for the
first link, 75% for the second link, 60.66% for the third link and 50% for the fourth
link. The RMSEs improvement percentages are 0.20% for the first link, 4.85% for the
second link,7.21% for the third link and 0.42% for the fourth link.

Table 4.37. Comparison of the performance of parameters in terms of percentage
between LQG-FLQG under noise and internal disturbance

Joint
Controllers Parameters - - — -
First Link Second Third link Fourth link
(81) Link (83) (83) (84)
86.66%
T, 58.33% 43.83% 39.79% °
LQG-FLQG 47.69%
. PO 69.81% 42.85% 95% 69%
under noise and
internal 19.35%
Eq 90% 80% 98.94% °
disturbance
RMSE 59.54% 49.99% 98.81% 37.49%

According to the calculated improvement percentages in Table 4.37, the FLQR
returned more accurately than LQR under external disturbance for all joints. The T
improvement percentages are 58.33% for the first link, 43.83% for the second link,
39.79% for the third link and 86.66% for the fourth link. The PO improvement
percentages are 69.81% for the first link, 42.85% for the second link, 95% for the third
link and 47.69% for the fourth link. The Egs improvement percentages are 90% for the
first link, 80% for the second link, 98.94% for the third link and 19.35% for the fourth
link. The RMSEs improvement percentages are 59.54% for the first link, 49.99% for
the second 1ink,98.81% for the third link and 37.49% for the fourth link. Moreover,
the RMSEs of the control signals for the controllers (LQR-FLQR and LQG-FLQG)
under external and internal disturbances are given in Table 4.33. According to the
calculated RMSEs of the control signals, the controllers (FLQR and FLQG) produce
more effort than the (LQR and LQG) to control the TLRIP. The incremental
percentages of RMSEs of the control signals are computed for each disturbance cases,

and they are given in Table 4.38.
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Table 4.38. Comparison of the controllers based on Incremental percentages of RMSE
control signal

Controllers Rate
FLQR versus LQR 56,85% - 75,55%
FLQG versus LQG 36.65% - 74,92%

According to the incremental calculated percentages of RMSEs of the control signals
in Table 4.38, the FLQR returned more effort than LQR with 56,85% under internal
disturbance and with 75,55% under external disturbance. The FLQG returned more
effort than LQG with 36.65% under noise and internal disturbance; Also, with 74,92%

under noise and external disturbance.

In this study, both FLQR and FLQG controllers were developed for the stability
control of the TLRIP, and they were compared with LQR and LQG controllers,
respectively. The developed controllers were tested under internal and external
disturbances to determine the robustness performance of the controllers. According to
the obtained simulation results the nonlinear FLQR and FLQG controllers are robust
and produce better results than the LQR and LQG controllers in terms of T, PO, E
and RMSEs. RMSEs improvement percentages between FLQR and LQR range from
12.34% to 74,99% and 42,10% to 81,59% under external and internal disturbances,
respectively. Similarly, RMSEs improvement percentages between FLQG and LQG
range from 0.20% to 7.21 % and 37,.49 % to 98,81 % under external and internal
disturbances, respectively. Moreover, the increment percentages of RMSEs of the
control signals for the FLQR and FLQG compared with LQR and LQG is from 36.65%
to 75.55%. Accordingly, the FLQR and FLQG controllers need more control efforts
than the classical LQR and LQG.

The design compromise between controller performance and efforts should be made
based on which one is more important than others. Generally, the performance of the

controller is a more crucial aspect of control applications.
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4.8. Anti-swing Control of the TLRIP
4.8.1. Anti-swing ANFIS-LQR controller of the TLRIP

The design aspect and the procedure of the ANFIS-LQR controller are explained with
details in section (4.2.6). In this section, only the ANFIS-LQR parameters used for the
anti-swing control of the TLRIP will be explained. The ANFIS parameters such as the
number and type of membership functions, error tolerance, epochs number and

learning method applied to the TLRIP are given in Table 4.39.

Table 4.39. ANFIS parameters to the TLRIP

ANFIS parameter Value
Number of membership functions 7
Type of membership function Gaussian
Error tolerance Zero
Epochs number 600
Learning method Hybrid

e and é are of the TLRIP calculated as follows:

e Ke'lel + Ke'zez + Ke'363 + Ke’4e4
Where
Kg. K Ko, Ko, 0 0 0 0
O I 2o S (4.45)
0 0 0 O Kel KOZ 93 94
x=[0, 0, 63 63 6, 6, 6, 6,] (4.46)

The sampling rate is chosen as 1khz for the 50s. (e, ¢) and (U) are the inputs and output
of ANFIS, respectively. For one example, the loaded data for training, the training
error, and the trained data in ANFIS editor for the TLRIP are shown in Figure 4.40.
The network structure and the surface relationship of the two inputs and one output
are shown in Figure 4.41.
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4.8.2. Anti-swing RBNF-LQR controller of the TLRIP

The RBNF-LQR controller is explained in details in section (4.2.6). The RBNF-LQR
is developed to obtain better control performance than the classical ANFIS-LQR
controller. Two RBNNSs are used to train the positions and velocities of state variables
multiplied by their LQR gains, respectively. The inputs and output (u) data obtained
from the non-linear FLQR controller are used for the training of both RBNNSs. The
block diagram of RBNF-LQR controller is shown as an example in Figure 4.9 in
section (4.2.7). 400000 data of each input and 100000 data of output are used to train
for RBNNSs. For the two RBNNs, Bayesian Regularization (BR) algorithm is used to
treat the inputs and the output. 70% of the data used for simulation were used for
training, 15% for validation, and 15% for the testing for each RBFNN. The realized
values and calculated values of all data for each RBNN of the TLRIP are shown in
Figure 4.42. The regression value for all data is 0.99 for both RBNNSs. As can be seen
in Figure 4.43, the best validation performance value of the TLRIP is obtained at the
246-ith and 336-ith iterations for both RBNNSs, respectively. The Mamdani type fuzzy

model is developed and explained in section (4.2.6).
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Figure 4.42. Regression graphs for : (a) positions RBNN (b)
velocities RBNN

210



Training: R=0.99391 Validation: R=0.9926

© <
< ©
8 4 O Data D 8 4 O Data
= Fit S Fit
< 2t Y=T @ 2| Y=T
+ +
@ @
5 ¢ 5 °
© ©
L) L)
2 2
|°|. “ ﬁ '4 o)
] 1 ®
5 -6 5 6 0XL
= é) 5 ol
] £
o -8 o -8
5 0 5 8 -6 -4 2 0 2 4
Target Target
© Test: R=0.99224 - All: R=0.99325
I <+
8 4 O Data D 8 Data
=1 Fit =1
S ol y=T =)
+ +
A Al
Q 0 Q
o o
® ®
) -
* *
2 2
S 4 oF
I I
t 8 1
5 -6 5 -
a2 |8 o
= =
=] 8 =]
O - O -

(b)
Figure 4.42.(Cont.) Regression graphs for : (a) positions RBNN
(b) velocities RBNN

Best Validation Performance is 0.0020194 at epoch 264 Best Validation Performance is 0.0029184 at epoch 338
102 .

Train
= \/alidation === Validation
= Test = Test

Best Best

= Train

o
)
o

= —
< o
= =]

N
<
o

Mean Squared Error (mse)
3 3
Mean Squared Error (mse)

£

N 3
L 1 1 L 1 10' = L 1 1 L 1 L
0 50 100 150 200 250 0 50 100 150 200 250 300

270 Epochs 344 Epochs

Figure 4.43. Convergence behavior of the RBNNs during training iterations: (a)
positions RBNN (b) velocities RBNN

211



4.8.3. Comparison between the two anti-swing NF controllers of the TLRIP

In this section, both anti-swing NF controllers (ANFIS-LQR and RBNF-LQR) are
compared based on the performance of the control signal obtained from the four joints
of the TLRIP. According to the obtained results, the RBNF-LQR controller returned
better control performance than ANFIS-LQR controller. Furthermore, the RBNF-LQR
controller is chosen as our NF controller applied to the TLRIP. Figure 4.44. shown a
comparison between the ANFIS-LQR and RBNF-LQR based on the performance of
the control signal. In the next section, three controllers (RBNF-LQR, FLQR and LQR)
are developed for the anti-swing control of the TLRIP. The three controllers are
modelled and simulated in MATLAB/Simulink.
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Figure 4.44. Control signal obtained by the ANFIS-LQR and RBNF-LQR
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4.8.4. Anti-swing control results and robustness analysis of the TLRIP

The developed controllers (RBNF-LQR, FLQR and LQR) for the anti-swing control
of the TLRIP are modeled and simulated using the SimMechanics Toolbox in
MATLAB/Simulink. The anti-swing control is performed by the initial conditions of
8, =0°, 6, =60°65=0° 6, =0° and gain matrix K=[-0.9826 5.0197 1.5798
1.0011 -0.2527  4.9547  0.3282]. All output variables of the TLRIP need to be
stabilized at the reference point by all anti-swing controllers. Moreover, a comparison
between the angle signals (8,,6,, 65 and 6,) with anti-swing controllers in simulation

given in Figures 4.45.

O WA FA : . . . |
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Figure 4.45. Comparison between the angle signals (6,,6,, 65 and 6,) with LQR,
FLQR and RBNF-LQR anti-swing controllers for TLRIP
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According to the obtained results, all controllers have effectively maintained the anti-

swing control of the TLRIP with minimum vibration. The RBNF-LQR controller is

developed in order to give the best results in terms of Ty, MP, Egs and the RMSEs
than the FLQR and LQR controllers. Table 4.40 shows the comparison of LQR, FLQR
and RBNF-LQR anti-swing controllers in terms of Tg, MP, E¢s and RMSEs.

Table 4.40. Comparison of the performance of LQR, FLQR and RBNF-LQR anti-

swing controllers for the TLRIP

Joints
Controllers | Parameters | ™Fir'ink | Second Link | Third link | Fourth link
(81) (6,) (63) (04)
Ts(s) 8.0366 6.9355 6.1150 6.3084
MP (°) 356.35 93.1785 13.3801 20.3612
LQR
Ess (°) 0.28 0.00037 0.00023 0.046
RMSE (°) | 1.0593 0.1539 0.0230 0.0356
Ts(s) 7.9398 5.1135 4.4178 4.6032
MP(°) | 1575294 | 21.9637 11.0300 19.9357
FLQR
Ess (°) 0.2 0.00033 0.00020 0.040
RMSE (°) | 0.4118 0.0603 0.0158 0.0257
Ts(s) 7.6090 1.0923 2.4879 3.2473
MP(°) | 29.6568 14.3582 7.5322 4.5816
RBNF-LQR
Eqs () 0.1 0.0001 0.0001 0.020
RMSE (°) | 0.0143 0.0169 0.0033 0.0019

According to the calculated parameters, the RBNF-LQR produces better results than
the FLQR and LQR. To verify the RBNF-LQR performance compared with other anti-

swing controllers; the improvement percentages of all parameters are calculated and

given in Table 4.41.
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Table 4.41. Comparison of the performance parameters in terms of percentage between
RBNF-LQR versus FLQR and RBNF-LQR versus LQR for the TLRIP

Joints
Controllers Parameters | First Link | Second Link | Third link Fourth link
(61) (62) (63) (64)

T 5.32% 84.25% 59.31% 48.52%

RBNF-LQR MP 91.67% 84.59% 43.70% 77.49%
versus LOR Eqs 64.28% 72.97% 56.52% 56.52%
RMSE 98.65% 89.01% 85.65% 94.66%

T, 4.16% 78.63% 43.68% 43.68%

RBNF-LQR MP 81.17% 34.62% 31.71% 77.01%
versus FLQR Ess 50.00% 69.69% 50.00% 50.00%
RMSE 96.52% 71.97% 79.11% 92.60%

According to the calculated rate of improvement percentages in Table 4.41, the RBNF-
LQR returned more accurately than LQR for the anti-swing control of the TLRIP. The
T, improvement percentages are 5.32% for the first link, 84.25% for the second link,
59.31 % for the third link and 48.52 % for the fourth link. The MP improvement
percentages are 91.67% for the first link, 84.59% for the second link, 43.70% for the
third link and 77.49% for the fourth link. The E;, improvement percentages are
64.28% for the first link, 72.79% for the second link, 56.52% for the third link and
56.52 % for the fourth link. The RMSE improvement percentages are 98.65% for the
first link, 89.01% for the second link, 85.65% for the third link and 94.66 % for the
fourth link. Furthermore, the RBNF-LQR returned more accurately than FLQR for the
anti-swing control of the TLRIP. The T, improvement percentages are 4.16% for the
first link, 78.63% for the second link, 43.68% for the third link and 43.68% for the
fourth link. The MP improvement percentages are 81.17% for the first link, 34.62%
for the second link, 31.71% for the third link and 77.01% for the fourth link. The Eg
improvement percentages are 50% for the first link, 69.69% for the second link, 50%
for the third link and 50% for the fourth link. The RMSE improvement percentages
are 96.52% for the first link, 71.97% for the second link,79.11% for the third link and
92.60% for the fourth link.
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- Robustness analysis:

In this part, the developed controllers are tested for robustness under external
disturbance. Figure 4.46 shows the angle signals (64, 6,, 65 and 6,) with LQR, FLQR
and RBNF-LQR controllers for the TLRIP under external disturbance. Based on the
obtained results, all controllers are robust under external disturbance. The external
disturbance is applied to the system at t=25s when the system is stable at zero position.
The RBNF-LQR controller is developed to provide better control parameters than the
FLQR and LQR. Table 4.42 shows a comparison of controllers in terms of Ts, MP,
Ess and the RMSEs under external disturbance. According to the obtained results, the
RBNF-LQR yields more perfect results than the LQR and FLQR. To analyze the
performance of the RBNF-LQR compared with FLQR and LQR under external
disturbance; The improvement percentages of T;, MP, Ess and position RMSEs are

calculated and given in Table 4.43.
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Figure 4.46. Comparison between the angle signals (6,,6,, 6;and 6,) with LOQR,
FLQR and RBNF-LQR anti-swing controllers under external disturbance for TLRIP
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Table 4.42. Comparison of the performance of LQR, FLQR and RBNF-LQR anti-
swing controllers under external for the TLRIP

Controllers Joints
under N . . .
Parameters | First Link | Second Link Third link Fourth link
external
. (81) (82) (83) (04)
disturbance
Ts(S) 21.61 17.653 12.400 18.2952
LOR MP (°) 86.47 10.7703 4.6733 4.6697
Ess (9) 0.55 0.1 0.02 0.043
RMSE (°) 0.2569 0.0179 0.0066 0.0063
Ts(S) 13.4539 12.417 8.3664 14.6523
MP (°) 42.4970 3.9547 3.6651 2.0547
FLQR
Ess (°) 0.20 0.004 0.00022 0.041
RMSE (°) 0.1387 0.0057 0.0045 0.0024
Ts(s) 12.4939 12.021 8.1917 9.1151
MP (°) 20.8681 2.3063 1.8112 0.6816
RBNF-LQR
Ess (°) 0.15 0.002 0.0020 0.04
RMSE (°) 0.0964 0.0030 0.0023 9.8547e-04

Table 4.43. Comparison of the performance parameters in terms of percentage between
RBNF-LQR versus FLQR and RBNF-LQR versus LQR under external disturbance
for the TLRIP

Joints
Controllers Parameters | First Link | Second Link | Third link | Third link
(61) (62) (63) (64)

T, 41.18% 31.90% 33.93% 50.17%

RBNF-LQR MP 75.86% 78.58% 61.24% 85.40%
versus LQR Eqs 72.72% 98% 90% 6.67%
RMSE 62.47% 83.24% 65.15% 84.35%

T, 7.10% 3.189% 2.088% 37.79%

RBNF-LQR MP 50.88% 41.68% 50.58% 66.82%
versus FLQR Egs 25.00% 64.91% 55.55% 2.43%
RMSE 30.49% 47.36% 48.88% 58.93%
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According to the calculated rate of improvement percentages in Table 4.43, the RBNF-
LQR returned more accurately than LQR for the anti-swing control under the external
disturbance of the TLRIP. The T improvement percentages are 41.18% for the first
link, 31.90% for the second link, 33.93 % for the third link and 50.17% for the fourth
link. The MP improvement percentages are 75.86% for the first link, 78.58% for the
second link, 61.24% for the third link and 85.40% for the fourth link. The Eg
improvement percentages are 72.72% for the first link, 98% for the second link, 90%
for the third link and 6.67 % for the fourth link. The RMSE improvement percentages
are 62.47% for the first link, 83.24% for the second link, 65.15% for the third link and
84.35% for the fourth link. Furthermore, the RBNF-LQR returned more accurately
than FLQR for the anti-swing control under the external disturbance of the TLRIP.
The Ts improvement percentages are 7.10% for the first link, 3.189% for the second
link, 2.88% for the third link and 37.79% for the fourth link. The MP improvement
percentages are 50.88% for the first link, 41.68% for the second link, 50.58% for the
third link and 66.82% for the fourth link. The Egs improvement percentages are 25%
for the first link, 64.91% for the second link, 55.55% for the third link and 2.43% for
the fourth link. The RMSE improvement percentages are 30.49% for the first link,
47.36% for the second link, 48.88% for the third link and 58.93% for the fourth link.

In this section, a RBNF-LQR was developed and compared with FLQR and the
classical LQR controller for the anti-swing control of the TLRIP. According to the
obtained simulation results the RBNF-LQR controller gives better results than the
FLQR and LQR controller in terms of Ty, MP, E;; and RMSE. RMSESs improvement
percentages between RBNF-LQR versus FLQR and RBNF-LQR versus LQR are from
71.97% t0 96.52% and 85.65% to 98.65%, respectively. Furthermore, the RBNF-LQR
controller produces better results than the FLQR and LQR controllers under external
disturbance. RMSEs improvement percentages between RBNF-LQR versus FLQR
and RBNF-LQR versus LQR are from 30.49% to 58.93% and 62.47% to 84.35% under

external disturbance, respectively.
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5. IMPLEMENTATION OF THE REAL SYSTEM AND EXPERIMENTAL
WORK

The last chapter of this thesis deals with the real prototype of the and the experimental
works. All anti-swing controllers investigate in the previous chapter for each model
(SLRIP, DLRIP and TLRIP), are developed and verified experimentally. At first, the
mechanical structure of the system such as the DC torque motor servo system, Motor
driver, encoders, pendulums, slippings..., are described with details. Secondly, PID
and LQR controllers are developed for the anti-swing control problem of the real
implementation of the SLRIP. Furthermore, RBNF-LQR, FLQR and LQR are
developed for the anti-swing control of the real implementations of the DLRIP and
TLRIP, respectively. The dynamic responses of the anti-swing controllers were

compared experimentally based on robustness analysis under external disturbances.
5.1. General Structure of the Experimental System

Our system comprises a horizontal rotary link and three pendulum links. A direct drive
brushless DC torque motor servo system is mounted to provide torque to the horizontal
arm to control the system. The rotary arm rotates in the horizontal plane. The first
pendulum link is connected to the extremity of the rotary link, the second pendulum
link is connected to the extremity of first pendulum link, and the third pendulum link
is connected to the extremity of second pendulum link. The three pendulum links move
like an inverted pendulum in a plane perpendicular to the rotary link. A balance mass
can be attached to the other extremity of the horizontal arm to maintain the balance
inertia of the system. The three pendulum links are demountable with can provide three
systems SLRIP, DLRIP and TLRIP. In Figure 5.1, an original prototype design and
CAD drawing of the system are depicted.
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Figure 5.1. (a) CAD design and (b) real prototype of the TLRIP system




The mechanical structure of the system required to achieve the following

requirements:

- The base of the platform should be structurally robust and fixed to the floor to
avoid the slip of the system out of the working area of the system.

- The three pendulum links must be easily demountable for different control
application (SLRIP, DLRIP and TLRIP).

- The friction existing in the joint of pendulums must be seriously taken into
consideration for the mechanical design of the system.

- The system must be provided for attempts to handle manual control.

Moreover, the electronic part of the system, which contains sensors, actuator and

signal processing equipment needed to achieve the following requirements:

Controller board should have a high degree of accuracy.

Sensors must have a high rate of data acquisition.

Actuator needed to provide the necessaire effort to control the system.

All cables and hardware must be housed and isolated internally provide very good

protection against electrical and magnetic interference.

The horizontal arm of the system is driven by a direct drive brushless DC torque motor
(Type: TMH-130-050-NC, £ 10V). The motor is driven by a driver motor (Model:
Lenze, Type: Inverter Drives 8400 TopLine, 2.2 Kw). The pendulums' angles are
measured with three encoders having a resolution of 2048 pulses per revolution
(Model: Fenac Type: 2048 PPR sin cosine accurate speed information). The signals
obtained from the encoder passes through the slip ring mounted in the first joint
(Model: Moflon, Type: MT10 Series). A dSPACE-DS1103 controller board treats the

received signals from the encoders.
5.1.1. Brushless DC torque servo-motor

The system is driven by a direct drive brushless DC torque servo-motor (Type: TMH-
130-050-NC, = 10V) in joint of the horizontal link (6;). T is the torque applied at the

horizontal link produced by the torque servo-motor, it is given in the equation (5.1).
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_ NmKe (Vin— Km6)
Rm

(5.1)

Where the motor efficiency coefficient n,, = 0.73. Motor constant K, = 0.52. The
armature resistance R, = 23.4. V,, is the input voltage. The datasheet of the servo-
motor is given in Table 5.1. Figure 5.2 shows the direct drive brushless DC torque
servo-motor (Type: TMH-130-050-NC, = 10V). [145]

Table 5.1. Datasheet of the direct drive brushless DC torque servo-motor (Type:
TMH-130-050-NC, + 10V)

Motor Parameters Symbols Units TMH-130-050-NC
Rated Torque T, Nm 10.4
Peak Torque TR Nm 34.13
Rated Speed N, rpm 375

No-Load Speed Nno—1oad rpm 480
Torque Constant K Nm/A 7.43
Voltage Constant K, Virpm 0.636

Max. Cogging Torque Teog Nm 0.002
Torque Ripple 0 o ple % 0.25
Number of Pole 2n - 24
Rated Current I, Arms 14
Peak Current Ipeak Arms 5.9

Line Resistance Ry @20° Ohm 23.4

Line Inductance LiL mh 127.3
Stator Weight W, kg 2.95
Rotor Weight W, kg 0.96
Total Weight Wiotal kg 391
Meh. Time Constant Kmech ms 0.56
Thermal Resistance® Ry °C/W 0.61

Inertia J Kg.m? 0.0011
Motor Constant K Nm/W 0.52
Rotor ID mm 55
Stator OD mm 130
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Figure 5.2. Brushless DC torque servo-motor Type:
TMH-130-050-NC, + 10V

5.1.2. Driver motor

The brushless DC torque servo-motor (Type: TMH-130-050-NC, + 10V) is driven by
a driver motor (Model: Lenze, Type: Inverter Drives 8400 TopLine) [146]. This driver
is used in order to easily achieve high dynamic performance and precision in the first
link of the TLRIP. The power of the driver is 2.2Kw, which supply a single phase
200/240v. This driver is particularly suitable for handling and positioning systems
such as the control of the RIPS. Figure 5.3 shown the driver motor used in our system

(Model: Lenze, Type: Inverter Drives 8400 TopLine).
5.1.3. Encoders

The pendulums' angles are measured with three encoders having a resolution of 2048
pulses per revolution (Model: Fenac, Type: 2048 PPR sin cosine accurate speed
information) [147]. The encoder is an electro-mechanical device that converts the
angular position of the shaft to digital output signals. Figure 5.4 shown an example of

the encoder model used in joints for the system.
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Figure 5.3. Driver motor (Model:
Lenze, Type: 8400 TopLine, 2.2Kw)

Figure 5.4. Encoder (Model: Fenac, Type:
2048 PPR sin cosine accurate speed
information)
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5.1.4. Slip ring

The signals obtained from the encoder of each joint are passes through the slip ring
mounted in the first joint. The model of the slip ring is Moflon, type: MT10 series
[148]. The slip ring is an electromechanical device that allows the transmission of
electrical signals from a stationary to a rotating structure. Figure 5.5 shown an
example of the slip ring model mounted in the first joint of the horizontal arm.

Figure 5.5. Slip ring (Model: Moflon, Type: MT10
Series)

5.1.5. Controller board

A dSPACE-DS1103 controller board is used to treat the received signals from the
encoders. At present dASPACE DS1103 is the famous hardware and real-time software
tools which operate through Matlab/Simulink interface programming for rapid control
prototyping [149]. However, it has different various ADC and DAC ports, internal
memory and a different number of input/output ports etc. Figure 5.6 shown an

example of a dSPACE controller board.
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Figure 5.6. An example of a dSPACE controller board
5.2. Anti-swing Control for a Real Experimental Implementation of the SLRIP

The two anti-swing controllers (PID and LQR) developed in the Simulink
environment in the last chapter, will be verified experimentally in this section. The
initial conditions of the links are taken with 6; =0 ° and 6, = 60°. The optimized PID
controller parameters for the anti-swing controller are given in Table 4.7 in the last
chapter. The anti-swing LQR controller is performed with K= [-0.2586 46.3074
1.136 -1.9724]. All output variables of the real experimental implementation of the
SLRIP must be stabilized at the reference zero position by the both PID and LQR anti-
swing controllers. The real experimental implementation of the SLRIP is shown in
Figure 5.7. The dSPACE models of the anti-swing controllers (PID and LQR) in
Matlab/Simulink are depicted in Figure 5.8. As can be seen from Figure 5.9, the
horizontal arm and the pendulum link were stabilized at the reference position with

minimum vibrations.
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5.2.1. Performance evaluation of the anti-swing PID and LQR controllers

Figure 5.9 presents a comparison between the angle signals (6, and 6,) with PID and
LQR anti-swing controllers of the real experimental implementation of the SLRIP.
According to the obtained results, the PID has successfully maintained the control of
the SLRIP with minimum vibrations. Furthermore, the LQR controller is developed
to give better Ts, MP, E¢ and the RMSEs than the PID controller. Table 5.2 shown
the comparison of PID and LQR controllers in terms of T;, MP, Egs and RMSEs in
the experiment. According to the calculated Ty, MP, E¢ and position RMSEs, the
LQR produces more perfect results than the PID. To understand the LQR performance
compared with PID; The improvement percentages of all parameters were calculated

for each case and given in Table 5.3.
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Figure 5.9. Angle signals (6, and 6,) with PID and LQR anti-swing
controllers of the SLRIP in the experiment
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Table 5.2. Quantitative comparison of the performance of PID and LQR anti-swing
controllers in the experiment

Joints
Anti-swing controllers | Parameters i i i
First Link (64) Second Link (8,)
Ts (S) 2.3701 2.0935
MP (°) 173.18 48.07
PID
Ess (°) 0.1 0.01
RMSE (°) 0.7325 0.2087
Ts () 1.9601 1.6307
MP % 144.36 38.3203
LQR
Ess (°) 0.09 0.002
RMSE (°) 0.5468 0.1808

Table 5.3. Quantitative comparison of the performance parameters in terms of
percentage between PID-LQR anti-swing controllers in the experiment

o Joints
Anti-swing controllers Parameters i ] i
First Link (6,) Second Link (6,)
T 17.21% 22.10 %
MP 16.64 % 20.28 %
LQR versus PID
Egs 91 % 80 %
RMSE 25.37% 13.36 %

According to the calculated improvement percentages in Table 5.3, the LQR returned
more accurately than PID for all joints. The T improvement percentages are 17.21%
for the first link and 22.10% for the second link. The MP improvement percentages
are 16.64% for the first link and 20.28% for the second link. The Egs improvement
percentages are 91% for the first link, and 80% for the second link. The RMSEs

improvement percentages are 25.37% for the first link and 13.36% for the second link.

The developed anti-swing controllers are tested for robustness under external
disturbances in the experiment. The pendulum angles (6,) and the link angle (6,) are
stabilized at zero positions. Figure 5.10 shows the angle signals (6, and 6,) with PID
and LQR anti-swing controllers for the SLRIP under external disturbance in zero
position at T=1s. Both anti-swing controllers are robust, and it has successfully

maintained the control of the SLRIP under external disturbance. Table 5.4 shows the
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comparison of PID and LQR controllers in terms of Ts, MP, Ess and the RMSEs under
external disturbance in the experiment. According to the calculated parameters, the
LQR vyields more perfect results than the PID under external disturbance. To see the
performance of the PID compared with LQR; The improvement percentages of all

parameters were calculated and given in Table 5.5.
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Figure 5.10. Comparison between the angle signals (6, and 6,) under external
disturbance with PID and LQR anti-swing controllers of the SLRIP in the
experiment
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Table 5.4. Quantitative comparison of the performance of the PID and LQR anti-

swing controllers under external disturbance in the experiment

Anti-swing controllers Joints
] Parameters i i i
under external disturbance First Link (8,) Second Link (6;)
T (S) 1.2703 0.5939
MP (°) 19.1602 6.7336
PID
Ess () 0.05 0.007
RMSE (°) 0.0778 0.0198
Ts () 0.4521 0.5818
MP % 4.1748 2.6016
LOR
Ess () 0.03 0.005
RMSE (°) 0.0122 0.0085

Table 5.5. Quantitative comparison of the performance parameters in terms of
percentage between PID-LQR anti-swing controllers in the experiment

Anti-swing controllers Joints
4 Parameters i i i
under external disturbance First Link (64) Second Link (6,)
T 64.40% 2.037%
MP 78.211 % 61.36%
LQR versus PID
Egs 40% 28.57%
RMSE 84.31% 57.07%

According to the calculated improvement percentages in Table 5.5, the LQR returned
more accurately than PID for all joints. The Ty improvement percentages are 64.40%
for the first link and 2.037% for the second link. The PO improvement percentages
are 78.211% for the first link and 61.36% for the second link. The Egs improvement
percentages are 40% for the first link, and 28.57% for the second link. The RMSEs

improvement percentages are 84.31% for the first link and 57.07% for the second link.
5.3. Anti-swing Control for a Real Experimental Implementation of the DLRIP

Three controllers RBNF-LQR, FLQR and LQR developed in the Simulink
environment will be verified experimentally in this section. The anti-swing control is
performed by the initial conditions of 8; =0 °, 6, = 60° 65 = 0°, and gain matrix
K=[-0.1826 56.1059 1.3411 -0.8416 8.8488 0.4982]. All output variables of
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the DLRIP need to be stabilized at the reference point by all anti-swing controllers.
The real experimental implementation of the DLRIP is shown in Figure 5.11. The
dSPACE models of the anti-swing controllers (RBNF-LQR, FLQR and LQR) in
Matlab/Simulink are depicted in Figure 5.12. As can be seen from Figure 5.13, the
horizontal arm and the two pendulum links were stabilized at the reference position

with minimum vibrations.

Figure 5.11. Real experimental
implementation of the DLRIP
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Figure 5.12. dSPACE models of the anti-swing controllers in Matlab/Simulink: (a)
LOR, (b) FLQR and (c) RBNF-LQR
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Figure 5.12.(Cont) dSPACE models of the anti-swing controllers in
Matlab/Simulink: (a) LQR, (b) FLQR and (c) RBNF-LQR

5.3.1. Performance evaluation of the anti-swing LQR, FLQR and RBNF-LQR

controllers

Figure 5.13 shows a comparison between the angle signals (6,,0, and 85) with anti-
swing controllers of the DLRIP in experiment case. According to the obtained results,
all controllers have effectively maintained the anti-swing control of the DLRP with
minimum vibration. The RBNF-LQR controller is developed in order to give the best
results in terms of Tg, MP, E and the RMSEs than the FLQR and LQR controllers.
Table 5.6 shows the comparison of LQR, FLOR and RBNF-LQR anti-swing
controllers in terms of T, MP, E¢ and the RMSEs in the experiment. To verify the
RBNF-LQR performance compared with other anti-swing controllers; the

improvement percentages of all parameters are calculated and given in Table 5.7.
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Figure 5.13. Comparison between the angle signals (64,6, and 65) with LQR, FLQR
and RBNF-LQR anti-swing controllers for DLRIP in the experiment

Table 5.6. Comparison of the performance of the LQR, FLQR and RBNF-LQR anti-

swing controllers in the experiment

Joints
Anti-swing i i i S
Parameters First Link Second Link Third link
controllers
(81) (82) (83)
Ts(S) 22.13 1.7292 5.2754
MP (°) 87.56 27.7 243
LQR
Ess (°) 0.27 0.5 0.1
RMSE (°) 0.1634 0.0605 0.0792
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Table 5.6.(Cont.) Comparison of the performance of the LQR, FLQR and RBNF-LQR
anti-swing controllers in the experiment

Ts(s) 9.0763 1.4984 5.1250

MP (°) 72.39 26.1 25.1

FLQR

E, (°) 0.025 0.08 0.05
RMSE (°) 0.0908 0.0562 0.0628
Ts(S) 6.3799 7.3946 4.1944
MP (°) 45.77 17.65 4.8959

RBNF-LQR

Eq, (°) 0.01 0.02 0.001
RMSE (°) 0.0829 0.1354 0.0256

Table 5.7. Comparison of the performance parameters in terms of percentage between
RBNF-LQR versus FLQR and RBNF-LQR versus LQR in the experiment

Joints
Anti-swing controllers Parameters | First Link Second o
) Third link (63)
(01) Link (62)
Ts 71.17% 76.61% 20.49%
MP 47.72% 36.28% 79.85%
RBNF-LOR versus LOR
Egs 96.29% 96 % 99%
RMSE 49.26% 55.31% 67.67%
T 29.70% 79.73% 18.15%
RBNF-LQR versus MP 36.77% 32.37% 4.47%
FLQR Egs 60% 75% 98%
RMSE 8.70% 58.49% 59.23%

- Robustness analysis:

In this part, the developed controllers are tested for robustness under external
disturbance in the experiment. Figure 5.14 shows the angle signals (64, 6, and 65)
with LQR, FLQR and NLFLQR controllers for the DLRIP under external disturbance.
Based on the obtained results, all controllers are robust under disturbance. The RBNF-
LQR controller is developed to give better control parameters than the FLQR and
LQR. Table 5.8 shows a comparison of controllers in terms of T, MP, Eg¢ and the
RMSEs under external disturbance in the experiment. According to the obtained
results, the RBNF-LQR vyields perfect results than the LQR and FLQR. To see the
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performance of the RBNF-LQR compared with FLQR and LQR under external

disturbance; The improvement percentages of Ty, MP, E¢¢ and position RMSEs were

calculated and given in Table 5.9.
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Figure 5.14. Comparison of the performance LQR, FLQR and RBNF-LQR anti-
swing controllers under external disturbance in the experiment

Table 5.8. Comparison of the performance of the LQR, FLQR and RBNF-LQR anti-
swing controllers

Joints
Anti-swing controllers i i i _
] Parameters First Link Second Link Third link
under external disturbance
(61) (62) (63)
Ts(S) 2.0 2.1 1.1
MP (°) 45 10 16
LQR
Egs () 0.21 0.040 0.01
RMSE (°) 0.0254 0.0051 0.0038
Ts(s 1.0 11 0.9
FLQR )
MP (°) 42 8 14

236



Table 5.8.(Cont.) Comparison of the performance of the LQR, FLQR and RBNF-LQR
anti-swing controllers

E. (°) 0.19 0.035 0.002
RMSE (°) 0.0160 0.0024 0.0031
Ts(s) 0.9s 05 0.2
MP (°) 31 6 11
RBNF-LQR
E. (°) 0.010 0.010 0.001
RMSE (°) 0.0111 0.0017 9.4636e-04

Table 5.9. Comparison of the performance parameters in terms of percentage between
RBNF-LQR versus FLQR and RBNF-LQR versus LQR under external disturbance in
the experiment

Joints
Controllers Parameters First Link Second Link Third link

(61) (62) (63)

Ts(s) 55.00% 76.19% 81.81%

RBNF-LQR versus MP (°) 31.11% 40% 31.25%
LQR Egs (°) 95.23% 75% 90%

RMSE (°) 56.29% 66.66% 75.09%

T4(S) 9.99% 54.54% 77.77%

RBNF-LQR versus MP (°) 26.19% 25% 21.42%
FLQR Eqs (°) 94.73% 71.42% 50%

RMSE (°) 30.62% 29.16% 69.47%

In this section, the RBNF-LQR was developed and compared experimentally with
FLQR and the classical LQR controller for the anti-swing control of the real
experimental implementation of the DLRIP. According to the obtained simulation
results the RBNF-LQR controller gives better results than the FLQR and LQR
controller in terms of Ty, MP, Eq; and RMSE. RMSEs improvement percentages
between RBNF-LQR versus FLQR and RBNF-LQR versus LQR are from 8.70% to
73.40% and 49.26% to 67.67% in the experiment, respectively. Furthermore, the
RBNF-LQR controller produces better results than the FLQR and LQR controllers
under external disturbance. RMSEs improvement percentages between RBNF-LQR
versus FLQR and RBNF-LQR versus LQR are from 29.18% to 69.47% and 59.29%

to 75.09% under external disturbance in the experiment, respectively. Furthermore,
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non-linear controllers may be developed and compared experimentally witch the
RBNF-LQR.

5.4. Anti-swing Control for a Real Experimental Implementation of the TLRIP

Three controllers (RBNF-LQR, FLQR and LQR) are developed for the anti-swing
control of the TLRIP in the Simulink environment in the last chapter, will be verified
experimentally in this section. The anti-swing control is performed by the initial
conditions of 8; =0 °, 6, = 60°, 65 = 0°, 6, = 0°, and gain matrix K=[-0.9826
5.0197 15798 1.0011 -0.2527 4.9547 0.3282]. All output variables of the
TLRIP need to be stabilized at the reference point by all anti-swing controllers. The
real experimental implementation of the TLRIP is shown in Figure 5.15. The dSPACE
models of the anti-swing controllers (RBNF-LQR, FLQR and LQR) in
Matlab/Simulink are depicted in Figure 5.16. As can be seen from Figure 5.17, the
horizontal arm and the three pendulum links were stabilized at the reference position

with minimum vibrations.

Figure  5.15. Real experimental
implementation of the TLRIP
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Figure 5.16. dSPACE models of the anti-swing controllers in Matlab/Simulink: (a)
LQOR, (b) FLQR and (c) RBNF-LQR

5.4.1. Performance evaluation of the anti-swing LQR, FLQR and RBNF-LQR

controllers

Figure 5.17 shows a comparison between the angle signals (6,,06,,05 and 6,) with

anti-swing controllers of the TLRIP in the experiment. According to the obtained

results, all controllers have effectively maintained the anti-swing control of the TLRIP
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with minimum vibration. The RBNF-LQR controller is developed in order to give the
best results in terms of Ty, MP, Eg and the RMSEs than the FLQR and LQR
controllers. Table 5.10 shows the comparison of LQR, FLQR and RBNF-LQR anti-
swing controllers in terms of T, MP, E¢ and the RMSES in the experiment. To verify
the RBNF-LQR performance compared with other anti-swing controllers; the

improvement percentages of all parameters are calculated and given in Table 5.11.
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Figure 5.17. Comparison between the angle signals (6,,6,, 65 and 6,) with
LOR, FLQR and RBNF-LQR anti-swing controllers for TLRIP in the

experiment
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Table 5.10. Comparison of the performance of LQR, FLQR and RBNF-LQR anti-
swing controllers for the TLRIP in the experiment

Anti-swing Joints
controllers | Parameters | FirstLink | Second | Thirdlink | Fourth link
Controllers 0,) Link (8,) (65) 0,)
Ts(S) 7.91 3.48 4.98 5.41
MP (°) 226.40 95.19 18.87 24.61
LQR
Ess (°) 0.35 0.02 0.055 0.1
RMSE (°) 0.7062 0.1539 0.0248 0.0441
Ts(S) 5.324 1.59 2.61 2.59
MP (°) 200.64 25.05 15.03 22.39
FLQR
Egs (°) 0.25 0.015 0.023 0.045
RMSE (°) 0.5147 0.0603 0.01698 0.0321
Ts(S) 2.1 1.27 2.197 1.21
MP (°) 15.78 10.98 10.031 5.69
RBNF-LQR
Ess (°) 0.01 0.0018 0.01 0.0020
RMSE (°) 0.1428 0.0169 0.0041 0.0019

Table 5.11. Comparison of the performance parameters in terms of percentage between
RBNF-LQR versus FLQR and RBNF-LQR versus LQR for the TLRIP in the

experiment
Joints
Controllers Parameters | First Link | Second Link | Third link | Fourth link
(61) (62) (63) (64)
T, 73.45% 63.50% 55.88% 77.63%
RBNF-LQR MP 93.03% 56.16% 45.36% 76.87%
versus LQR Eqs 97.14% 91% 81.81% 98%
RMSE 79.04% 89.01% 83.46% 95.69%
Ts 60.55% 20.12% 15.82% 53.28%
RBNF-LOR MP 92.84% 88.46% 33.26% 74.58%
versus FLQR Eqs 96.00% 88 % 56.52% 95.55%
RMSE 71.24% 71.97% 75.85% 94.08%
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According to the calculated rate of improvement percentages in Table 5.11, the RBNF-
LQR returned more accurately than LQR for the anti-swing control of the TLRIP. The
Ts improvement percentages are 73.45% for the first link, 63.50% for the second link,
55.88% for the third link and 77.63% for the fourth link. The MP improvement
percentages are 93.03% for the first link, 56.36% for the second link, 45.36% for the
third link and 76.87% for the fourth link. The Egs improvement percentages are
97.14% for the first link, 91% for the second link, 81.81% for the third link and 98%
for the fourth link. The RMSE improvement percentages are 79.04% for the first link,
89.01% for the second link, 83.46% for the third link and 95.69% for the fourth link.
Furthermore, the RBNF-LQR returned more accurately than FLQR for the anti-swing
control of the TLRIP. The T improvement percentages are 60.55% for the first link,
20.12% for the second link, 15.82% for the third link and 53.28% for the fourth link.
The MP improvement percentages are 92.84% for the first link, 88.46% for the second
link, 33.26% for the third link and 74.58% for the fourth link. The Egs improvement
percentages are 96% for the first link, 88% for the second link, 56.52% for the third
link and 95.55% for the fourth link. The RMSE improvement percentages are 71.24%
for the first link, 71.97% for the second link, 75.85% for the third link and 94.08% for
the fourth link.

- Robustness analysis:

In this part, the developed controllers are tested for robustness under external
disturbance in the experiment. Figure 5.18 shows the angle signals (64, 6,, 65 and 6,)
with LQR, FLQR and RBNF-LQR controllers for the TLRIP under external
disturbance. Based on the obtained results, all controllers are robust under external
disturbance. The external disturbance is applied to the system at t=25s when the system
is stable at zero position. The RBNF-LQR controller is developed to provide better
control parameters than the FLQR and LQR. Table 5.12 shows a comparison of
controllers in terms of Ts, MP, Ess and the RMSEs under external disturbance.
According to the obtained results, the RBNF-LQR yields more perfect results than the
LQR and FLQR. To analyze the performance of the RBNF-LQR compared with FLQR
and LQR under external disturbance; The improvement percentages of Ty, MP, Ess

and position RMSEs are calculated and given in Table 5.13.

242



50

-50 -

0, (deg)

91 FLQR Experiment
91 RBNF-LQR Experiment
01 LQR Experiment

-100

40 45 50

10 -

f, (deg)
o

92 FLQR Experiment
02 RBNF-LQR Experiment
92 LQR Experiment

1 L

35 40 45 50

t(s)

93 FLQR Experiment
63 RBNF-LQR Experiment
6)3 LQR Experiment

35
t(s)

94 FLQR Experiment
94 RBNF-LQR Experiment
04 LQR Experiment

35 40 45

t(s)

Figure 5.18. Comparison between the angle signals (6,,0,, 6;and 6,) with LQR,
FLQR and RBNF-LQR anti-swing controllers under external disturbance for TLRIP
in the experiment

Table 5.12. Comparison of the performance of LQR, FLQR and RBNF-LQR anti-
swing controllers under external for the TLRIP in the experiment

Controllers Joints
under
Parameters First Link Second Link Third link Fourth link
external
. (81) (82) (83) (84)
disturbance
Ts(s) 12.89 7.872 3.55 3.2952
MP (°) 99.89 13.98 6.478 5.89
LQR
Ess () 0.5 0.65 0.1 0.05
RMSE (°) 0.2851 0.0199 0.0074 0.0070
Ts(s) 7.9 2.5 1.37 1.65
FLOR MP (°) 52.13 478 471 2.2
E¢ () 0.2 0.01 0.03 0.045
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Table 5.12.(Cont) Comparison of the performance of LQR, FLQR and RBNF-LQR
anti-swing controllers under external for the TLRIP in the experiment

RMSE (°) 0.1734 0.0072 0.0057 0.0030
Ty(s) 75 2.35 1.19 1.12
MP (°) 30.91 2.11 2.01 0.71
RBNF-LQR
Eq, (°) 0.1 0.002 0.01 0.001
RMSE (°) 0.1377 0.0061 0.0025 | 9.92628¢-04

Table 5.13. Comparison of the performance parameters in terms of percentage between
RBNF-LQR versus FLQR and RBNF-LQR versus LQR under external disturbance
for the TLRIP in the experiment

Joints
Controllers Parameters | First Link | Second Link | Third link | Third link
(6,) (62) (63) (64)
% 41.81% 70.14% 60.47% 66.01%
RBNF-LQR MP 69.05% 84.90% 68.97% 87.94%
versus LQR Es 80% 99.69% 90% 98%
RMSE 51.70% 69.34% 66.21% 85.81%
Ts 5.06% 5.99% 13.13% 32.12%
RBNF-LQR MP 40.70% 55.85% 57.32% 69.72%
versus FLQR E 50% 80.0% 66.66% 97.771%
RMSE 20.58% 15.27% 56.14% 66.91%

According to the calculated rate of improvement percentages in Table 5.13, the RBNF-
LQR returned more accurately than LQR for the anti-swing control under the external
disturbance of the TLRIP. The Ty improvement percentages are 41.18% for the first
link, 70.14% for the second link, 60.47% for the third link and 66.01% for the fourth
link. The MP improvement percentages are 69.05% for the first link, 84.90% for the
second link, 68.97% for the third link and 87.94% for the fourth link. The Eg
improvement percentages are 80% for the first link, 99.69% for the second link, 90%
for the third link and 98 % for the fourth link. The RMSE improvement percentages
are 51.70% for the first link, 69.34% for the second link, 66.21% for the third link and
85.81% for the fourth link. Furthermore, the RBNF-LQR returned more accurately
than FLQR for the anti-swing control under the external disturbance of the TLRIP.

The Ty improvement percentages are 5.06% for the first link, 5.99% for the second
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link, 13.13% for the third link and 32.12% for the fourth link. The MP improvement
percentages are 40.70% for the first link, 55.85% for the second link, 57.32% for the
third link and 69.72% for the fourth link. The E¢, improvement percentages are 50%
for the first link, 80% for the second link, 66.66% for the third link and 97.77% for the
fourth link. The RMSE improvement percentages are 20.58% for the first link, 15.27%
for the second link, 56.14% for the third link and 66.91% for the fourth link.

In this section, a RBNF-LQR was developed and compared with FLQR and the
classical LQR controller for the anti-swing control of the TLRIP. According to the
obtained experimental results the RBNF-LQR controller gives better results than the
FLQR and LQR controller in terms of Ts, MP, E¢c and RMSE. RMSEs improvement
percentages between RBNF-LQR versus FLQR and RBNF-LQR versus LQR are from
71.24% to 94.08% and 79.04% to 95.69%, respectively. Furthermore, the RBNF-LQR
controller produces better results than the FLQR and LQR controllers under external
disturbance. RMSEs improvement percentages between RBNF-LQR versus FLQR
and RBNF-LQR versus LQR are from 15.27% to0 66.91% and 51.70% to 85.81% under

external disturbance, respectively
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6. CONCLUSIONS AND RECOMMENDATIONS

In this thesis, a novel design of a single, double and triple link rotary inverted system
is developed to be controlled. This system presents an important challenging problem
in the area of linear and nonlinear control engineering applications. The contribution
of this thesis consisted of the development of novel friction estimation models which
take into consideration positions, velocities and accelerations of the joints of three
serial pendulum links. Furthermore, more sophisticated nonlinear controllers such as
FLQR, FLQG, RBNF-LQR are developed for the stabilization and anti-swing control
problems. The novel nonlinear controllers take into consideration the complex inputs-

outputs and nonlinear function approximation of the system.

In this research, joint frictions of the TLRIP are examined based on its experimental
and simulation dynamic responses. Three different friction estimation models such as
NCFM, LFM and NLFM are compared to estimate the joint frictions of the TLRIP
developed in our laboratory. In order to determine the estimation performance of the
friction models, RMSEs between position simulation results obtained from each joint
friction model and encoders in the experimental setup are computed. According to the
comparative experimental friction analysis, the joint frictions of the TLRIP are
estimated more effectively using an NLFM which vyields better improvement
percentage from 11.56% to 94.55%. Moreover, AFEMs were developed to estimate
the frictions in three pendulums’ joints of the TLRIP and compared with existing
friction estimation models NCFM, LFM, and NLFM. Based on the position RMSEs
obtained from each joint friction model, the AFEMSs were better than the existing
friction estimation models (NCFM, LFM, and NLFM). Among the friction estimation
models and considering the RMSEs of position in all joints, the best results were
produced by the ANLFM, which provide the best improvement percentage from
1.99 % to 93.84%. At last, NFFEMs are developed to estimate the joint friction
coefficients in a TLRIP system and compared with an AFEMs. The different versions
of the AFEMs and NFFEMs are generated based on each of the following friction
estimation models: NCFM, LFM, and NLFM. The aim of this study is to obtain joint
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friction models which depend on both velocity and acceleration in a large range of
motion trajectory that involves difficult and sudden large changes. In order to
determine the estimation performance of the friction models, the RMSEs of position
in all joints are computed. The NFFEMSs produce better estimation results than the
AFEMs. Among NFFEMs, the NFNLM gives the best results which provide the best
improvement percentage from 11.56% and 94.55%. In this research, the friction study
has three important contributions to the literature: Firstly, all friction models in the
literature depend only on velocity; however, the friction model developed here
depends on both velocity and acceleration. This approach has enabled us to obtain a
two-dimensional friction model. Secondly, the coefficients of all friction models in the
literature were constant when the physical quantities change. On the other hand, the
coefficients of the friction models in this work vary depending on the state of the
velocity and acceleration. Hence, this friction model allows for better estimation of the
effects of friction in different velocity and acceleration conditions. Thirdly, much of
existing researches in the literature have studied only the frictions of the linear motion
which depends on linear velocity and force. This work examines frictions on the joints

which have hard rotational motions.

The stabilization and anti-swing control problems of the system are studied for the
SLRIP, DLRIP and TLRIP, respectively. To determine the control performance of all
controllers, different control parameters are computed such as Tg, PO, Egg, MP and the
RMSEs of the joint positions. PID, LQR and swing-up based LQR controllers are
developed for the stability control problem of the SLRIP. The controllers are compared
under external disturbance. The robustness results indicate that the LQR controller
under external disturbances was effective. The RMSEs improvement percentages
between LQR versus PID are from 24.28% to 75,28%. Moreover, according to the
incremental calculated percentages of RMSEs of the control signals, the LQR returned
more effort than PID with 42.95 % under external disturbance. Furthermore, nonlinear
FLQR and FLQG controllers are developed for the stability control of the DLRIP and
TLRIP systems. The aim of this work is to study dynamic performance analysis of
both FLQR and FLQG controllers and to compare them with the classical LQR and
LQG controllers, respectively. The developed controllers were tested under internal

and external disturbances to determine the robustness performance of the controllers.
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According to the obtained simulation results, the nonlinear FLQR and FLQG
controllers are robust and produce better results than the LQR and LQG controllers.
Based on to the obtained results of the stability control of the DLRIP, the RMSEs
improvement percentages between FLQR and LQR are from 6.69% to 75% and
25.23% to 65.26% under external and internal disturbances, respectively. Similarly,
RMSEs improvement percentages between FLQG and LQG are from 14.64% to
74.99% and 25.23% to 49.41% under external and internal disturbances, respectively.
Moreover, the LQG and FLQG controllers in the DLRIP were tested in the presence
of white noise with different SNRs. The LQG and FLQG controllers show very good
noise rejection feature. The increment percentages of RMSEs of the control signals for
the FLQR and FLQG compared with LQR and LQG are from 34.53% to 66.62%.
Accordingly, the FLQR and FLQG controllers need more control efforts than the
classical LQR and LQG. On the other hand, based on the obtained results of the
stability control of the TLRIP, the RMSEs improvement percentages between FLQR
and LQR range from 12.34% to 74.99% and 42.10% to 81.59% under external and
internal disturbances, respectively. Similarly, RMSEs improvement percentages
between FLQG and LQG are from 0.20% to 7.21% and 37.49% to 98.81% under
external and internal disturbances, respectively. Moreover, the increment percentages
of RMSEs of the control signals for the FLQR and FLQG compared with LQR and
LQG are from 36.65% to 75.55%. Accordingly, the FLQR and FLQG controllers need
more control efforts than the classical LQR and LQG. The design compromise
between controller performance and efforts should be made based on which one is
more important than others. Generally, the performance of the controller is a more

crucial aspect of control applications.

In this research, PID and LQR are developed for the anti-swing control problem of the
SLRIP. Both controllers are compared under external disturbance. The results indicate
that the LQR controller returned best results than the PID. The RMSEs improvement
percentages between LQR versus PID are from 6.091% to 31.82% and 13.36% to
25.37% in simulation and experiment, respectively. Also, the LQR controller produces
better results than the PID controller under external disturbance. The RMSEs
improvement percentages between LQR versus PID are from 50.09% to 51.28% and

57.07% to 84.31% under external disturbance in simulation and experiment,
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respectively. Furthermore, nonlinear RBNF-LQR controller is developed for the anti-
swing control problem of the DLRIP and TLRIP systems in order to obtain better
results than the FLQR and LQR controllers. Based on the obtained results of the anti-
swing control of the DLRIP. The RMSEs improvement percentages between RBNF-
LQR versus FLQR and RBNF-LQR versus LQR are from 8.79% to 73.40% and 2.82%
to 93.36% in simulation, respectively. The RMSEs improvement percentages between
RBNF-LQR versus FLQR and RBNF-LQR versus LQR are from 8.70% to 73.40%
and 49.26% to 67.67% in the experiment, respectively. Furthermore, the RBNF-LQR
controller produces better results than the FLQR and LQR controllers under external
disturbance. The RMSEs improvement percentages between RBNF-LQR versus
FLOR and RBNF-LQR versus LQR are from 4.042% to 47.36% and 9.090% to
36.02% under external disturbance in simulation, respectively. The RMSEs
improvement percentages between RBNF-LQR versus FLQR and RBNF-LQR versus
LQR are from 29.18% to 69.47% and 59.29% to 75.09% under external disturbance
in the experiment, respectively. On the other hand, based on the obtained results of the
anti-swing control of the TLRIP. The RMSEs improvement percentages between
RBNF-LQR versus FLQR and RBNF-LQR versus LQR are from 71.97% to 96.52%
and 85.65% to 98.65% in simulation, respectively. RMSES improvement percentages
between RBNF-LQR versus FLQR and RBNF-LQR versus LQR are from 71.24% to
94.08% and 79.04% to 95.69% in the experiment, respectively. Furthermore, the
RBNF-LQR controller produces better results than the FLQR and LQR controllers
under external disturbance. RMSEs improvement percentages between RBNF-LQR
versus FLQR and RBNF-LQR versus LQR are from 30.49% to 58.93% and 62.47%
to 84.35% under external disturbance in simulation, respectively. RMSEs
improvement percentages between RBNF-LQR versus FLQR and RBNF-LQR versus
LQR are from 15.27% to 66.91% and 51.70% to 85.81% under external disturbance

in the experiment, respectively.
Some future works recommendation be given as follows:

- The fuzzification ranges and rules of the NF system can be tuned with evolutionary
algorithms to enhance the estimation performance of the NFFEMs.
- More inputs such as jerks and snaps of the joints can be applied to the NF system,

and the TLRIP system can be controlled using the proposed friction models.
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Swing-up controllers can be conducted to prove the experimental performance of
the non-linear controllers such as (FLQR, FLQG, RBNF-LQR).
The proposed controller method can be compared with other non-linear controllers

existing in the literature.
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Appendix-A

The Matlab .m codes used to calculate the mathematical models of the SLRIP, DLRIP
and TLRIP are given in this section. Only the variables of each model must take into

consideration for the codes.

close all; clear; clc;

syms Q1 Q2 Q3 Q4

syms dQ1 dQ2 dQ3 do4
syms ddQl ddQ2 ddQ3 ddo4
syms L1 L2 L3 L4 L5

syms g ml m2 m3 mé4

syms Il I2 I3 I4

%$%%%%%%%%% Vars: R =0, P =1, Not a Joint = -1.
$%%%%%%%%% Alpha(i-1) a(i-1) d(i) Q (1) Vars i
DHstruct = [ 0, 0, 0, 0, 0, % 1
-pi/2, 0, Ll, -pi/2, 0, % 2
0, L2, 0, 0, 0; % 3
0, L3, 0, 0, 0; % 4
0, L4, 0, 0, -1]1; % 5
T = stuff (DHstruct) ;
Zzii = [0 O 11."';
s = zeros(3,1);
dg = [ dQl1 dQ2 dQ3 do4]."';
ddg = [ddQl ddQ2 ddQ3 ddo4].';
TO1l = T(:,:,1); RO1 = T01(1:3,1:3); z01 = RO1(:,3); POl =
TO1(1:3,4);
T02 = TO1*T(:,:,2); R02 = T02(1:3,1:3); 202 = R02(:,3); P02 =
T02(1:3,4);
TO3 = TO02*T(:,:,3); RO3 = T03(1:3,1:3); Z03 = R0O3(:,3); P03 =
TO3(1:3,4);
T04 = TO3*T(:,:,4); RO4 = T04(1:3,1:3); 204 = R04(:,3); P04 =
TO04(1:3,4);
RO1 = T(1:3,1:3,1);%P01 = T(1:3,4,1);
R12 = T(1:3,1:3,2); P12 = T(1:3,4,2);
R23 = T(1:3,1:3,3); P23 = T(1:3,4,3);
R34 = T(1:3,1:3,4); P34 = T(1:3,4,4);
Pcll = [0, L1/2, 0, 11.'; hl = TO01(1:3,:)*Pcll;
Pc22 = [L2/2, 0, 0, 11.'; h2 = T02(1:3,:)*Pc22;
Pc33 = [L3/2, 0, 0, 11.'; h3 = TO03(1:3,:)*Pc33;
Pc44 = [L4/2, 0, 0, 11.'; h4 = T04(1:3,:)*Pc4d4;
Icl = [ 11 , 0, Oy
o, 0, 0;
0, 0, I1]1;

Ic2 = 0, 0, O0;
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0, 12, O;
0o, 0, I2];
Ic3 = 0, 0, O;
0, 13, O0;
0, 0, I31;
Icd = [ 0, 0, Oy
0, 14, O;
0, 0, I471;
Al [diff (h1l,0Q1), s, s,
A2 = [diff(h2,Q1),diff (h2,Q02), S,
A3 = [diff (h3,Q1),diff (h3,Q2),diff (h3,Q3),
A4 = [diff(h4,Q1l),diff(h4,Q2),diff (h4,Q3),diff (h4,Q4
B1 = [z01, s, s, sl;
B2 = [z01,z02, s, sl;
B3 = [z01,202,203, s];
B4 = [Z01,202,203,2z047;
Bl1l = RO1.'"*Bl; Dml = Al.'"*Al*ml + B1ll.'*Icl*B11;
B22 = R02.'*B2; Dm2 = A2.'*A2*m2 + B22.'*Ic2*B22;
B33 = R03."*B3; Dm3 = A3.'*A3*m3 + B33.'*Ic3*B33;
B44 = R04."'*B4; Dm4d = RA4.'*Ad4*md + B44.'*Icd*B44;
D = Dml + Dm2 + Dm3 + Dm4;
dD = diff(D,Q1l)*dQl + diff (D,Q2)*dQ2 + diff(D,Q3)*dQ3 +
diff (D, Q4) *dQ4;
pKpg = 0.5*[dg.'*diff (D ) *dg;
dg.'*diff (D, Q2)*dg;
dg.'*diff (D, Q3)*dg;
dg.'*diff (D, ) *dql;
C = db*dg - pKpg;
G = (-ml*gv.'*Al -m2*gv.'*A2 -m3*gv.'*A3 -md*gv.
tau = D*ddg + C + G;
w0l = wOO + dQ1*z01; wll = RO1l.'*wO01l;
w02 = w0l + dQ2*702; w22 = R02.'*w02;
w03 = w02 + dQ3*703; w33 = R03.'*w03;
w04 = w03 + dQ4*7z04; wd4d4 = RO4.'*w04;
v00 = zeros(3,1);
v0l = v00 + cross(w00,P01 ); Vcl = v0l + cross
v02 = v01l + cross(w01l,P02-P01); Vc2 = v02 + cross
v03 = v02 + cross(w02,P03-P02); Vc3 = v03 + cross
v04 = v03 + cross(w03,P04-P03); Vcd = v04 + cross
Kl = (Vecl.'*Vel*ml + wll.'*Icl*wll)/2; Ul = -ml*gv.
K2 = (Vc2.'*Vc2*m2 + w22.'*Ic2*w22)/2; U2 = -m2*gv.
K3 = (Vc3.'*Ve3*m3 + w33.'*Ic3*w33)/2; U3 = -m3*gv.
K4 = (Vcd.'*Vcd*md + wldd.'*Icd*wdd)/2; U4 = -md*gv.
K = K1 + K2 + K3 + K4;
U = Ul + U2 + U3 + U4;
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h4-pP04

'*hl;
"*h2;
'*h3;
"*h4;
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L =K - U;

Ldgl = diff(L,dQl);
Ldg2 = diff(L,dQ2);
Ldq3 = diff (L,d03);
Ldg4 = diff (L,dQ4);

dLdgl = diff(Ldgl, Ql)* dQl + diff(Ldgl, Q2)* dQ2 + diff(Ldqgl,
do3 + diff(Ldgl, 0Q4)* dQ4 +...

diff (Ldgl,dQl) *ddQl + diff (Ldgl,dQ2)*ddQ2 +
diff (Ldgl,dQ3) *ddQ3 + diff (Ldgl,dQ4) *ddQ4;

dLdg2 = diff(Ldg2, Ql)* dQl + diff (Ldg2, Q2)* dQ2 + diff (Ldq2,
do3 + diff(Ldg2, Q4)* do4 +...

diff (Ldg2,dQl) *ddOl + diff (Ldg2,dQ2) *ddQ2 +
diff (Ldg2,dQ3) *dd03 + diff (Ldqg2,dQ4) *ddo4;

dLdg3 = diff(Ldg3, Ql)* dQl + diff (Ldg3, 02)* d02 + diff (Ldg3,
do3 + diff(Ldg3, 0Q4)* do4 +...

diff (Ldg3,dQl) *ddQl + diff (Ldg3,dQ2) *ddQ2 +
diff (Ldg3,dQ3) *dd03 + diff (Ldg3,dQ4) *ddo4;

dLdg4 = diff (Ldg4, Ql)* dQl + diff (Ldg4, Q2)* dQ2 + diff (Ldg4,
do3 + diff (Ldg4, 0Q4)* do4 +...

diff (Ldg4,dQl) *ddQl + diff (Ldg4,dQ2)*ddQ2 +
diff (Ldg4,dQ3) *ddQ3 + diff (Ldg4,dQ4) *ddQ4;

Lgl = diff(L,Q1);
Lg2 = diff(L,Q2);
Lg3 = diff(L,Q3);
Lg4 = diff(L,0Q4);
tau LE = [dLdgl - Lqgl;

dLdg2 - Lg2;

dLdg3 - Lg3;

dLdg4 - Lg4];
disp ('compare torque equations with LE :')
disp(simplify(tau - tau LE))

disp(char ('-"*ones (1,60)))

W00 = s;

Wll = RO1."*WOO0 + dQ1*Zii;

W22 = R12."*W1ll + dQ2*Zii;

W33 = R23."*W22 + dQ3*Zii;

W44 = R34."*W33 + dQ4*zii;

dwoo = s;

dWll = RO1.'"*dw0O0 + ddQl*Zii + cross(W1ll, dQl1*zZii);
dWw22 = R12.'"*dwll + ddQ2*Zii + cross (W22, dQ2*zii);
dW33 = R23.'"*dW22 + ddQ3*Zii + cross (W33, dQ3*zii);
dW44 = R34.'"*dW33 + ddQ4*Zii + cross (W44, dQ4*7Zii);

dv00 = -gv;
dvll = RO1."'"*( dv00 + cross(dw00, POl) + cross (W00, cross(WO0O,
P0O1)) )
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dv22
P12)
dv33
P23)
dava4
P34)

Pcll (4)

dvel
dve2
dve3
dvci4

Fl11
F22
F33
F44

N1l
N22
N33
N44

f44
£33
£22
fl1

n4d4
n33
n22
nll

)

)

)

tau NE

R12."*(
)7

R23."*(
)7

R34."*(
)7

[]
dvii
dv22
dv33
dv44

+ 4+ o+t

ml*dvcl;
m2*dvec?2;
m3*dve3;
md*dvcéd;

Icl*dWll
Ic2*dwW22
Ic3*dw33
Ic4*dw44

R34*£44
R23*£33
R12*£22

N44

N33 + R3
N22 + R2
N1l + R1

[n11.
n22.
n33.
nd4.

disp ('compare
disp(simplify(tau - tau NE))
disp(char ('-"*ones (1,60)))

disp('compare LE equations with NE

dvll + cross(dwll, P12) + cross(Wll, cross (W11,
dv22 + cross (dW22, P23) + cross (W22, cross (W22,
dv33 + cross (dWw33, P34) + cross (W33, cross (W33,
Pc22(4) = [1; Pc33(4) = [1; Pcdd(4) = [1;
cross (dWll, Pcll) + cross(Wll, cross(Wll, Pcll))
cross (dW22, Pc22) + cross (W22, cross (W22, Pc22))
cross (dW33, Pc33) + cross (W33, cross (W33, Pc33))
cross (dW44, Pcd44) + cross (W44, cross (W44, Pcdd))
+ cross(Wll, Icl*Wll);

+ cross (W22, Ic2*W22);

+ cross (W33, Ic3*W33);

+ cross (W44, Ic4d*Wi4d);

F44,;
+ F33;
+ F22;
+ F11;

+ cross (Pcd44, F44);

4*n44 + cross (Pc33, F33) + cross (P34, R34*f44);
3*n33 + cross (Pc22, F22) + cross (P23, R23*f33);
2*n22 4+ cross(Pcll, Fl1l) + cross(Pl2, R12*f22);
"x7ii;
Y71l
Y71l
Yxzii];

torque equations with NE

disp(simplify(tau LE - tau NE))

disp(collect (simplify (D),
disp(collect (simplify(C),
disp(collect (simplify(G),

{'sin"',
{'sin"',
{'sin"',

% The equations of accelerations

ddQ= (inv (D) * (-C-G) )

HA|

HAD|

'cos'}))
'cos'}))
'cos'}))
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function T = stuff( DHstruct )
T = fun T(fun DH(DHstruct));

function DH = fun DH(DHstruct, Q)
Jnts = fun JointTypes (DHstruct(:,5,1));
if isa (DHstruct, 'sym'), Q =
fun JointVariables('Pos',Jnts.R,Jnts.P); end
szQ = size(Q);
if szQ(2)>1
DH = DHstruct(:,1:4,ones(1,szQ(2)));
tmpQ = permute(Q, [1,3,2]);
if any(Jnts.P), DH(Jnts.P,3,:)
tmpQ (Jnts.P,1,:); end

DH(Jnts.P,3,:) +

+ Q(Jnts.P);
+ Q(Jnts.R);

if any(Jnts.R), DH(Jnts.R,4,:) = DH(Jnts.R,4,:) +
tmpQ (Jnts.R,1,:); end
else
DH = DHstruct(:,1:4);
if any(Jnts.P), DH(Jnts.P,3) = DH(Jnts.P,3)
if any(Jnts.R), DH(Jnts.R,4) = DH(Jnts.R,4)
end
end

function Jnts = fun JointTypes( JointTypes )
if ~isa(JointTypes, 'double'), JointTypes =
end
if size (JointTypes,1l)>1

JointTypes = reshape (JointTypes, [1,numel (JointTypes)]);

end

isdnt = JointTypes ~= -1;
Jnts.N = numel (isdnt (isdnt));
Jnts.P JointTypes (isdnt) =
Jnts.R = ~Jdnts.P;

I~

1;

end

function JntVars = fun JointVariables( type, Rinds,

Jnum = sum(Rinds + Pinds);
Jinds = 48 + (1l:Jnum);
maskl = ones (1, Jnum);
if strcmpi (type, 'pos')
colSzs = 2;
Q str = 8l*maskl;
Q str(l,Pinds) = 68;
Q str(2,:) = Jinds;
elseif strcmpi (type, 'vel')
colSzs = 3;
Q str = [100;81;0]*maskl;
Q str(2,Pinds) = 68;
Q str(3,:) = Jinds;
elseif strcmpi (type, 'acc')
colSzs = 4;
Q str = [100;100;81;0]*maskl;
Q str(3,Pinds) = 68;
Q str(4,:) = Jinds;
elseif strcmpi(type, 'all')
colSzs = [2 3 471;
Q str = 100*ones (9, Jnum) ;
QDrows = [1 4 8];
Q str (QDrows,Rinds) = 81;
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Q str (QDrows,Pinds) = 68;
Q str([2 5 9],:) = ones(1,3).'*Jinds;
end
JntVars = sym(mat2cell (char(Q str.'),maskl,colSzs));
End
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Appendix-B

The Matlab .m codes used to the Jacobian matrices of the SLRIP, DLRIP and TLRIP

is given in this section.

% Jacobian Matrix of the SLRIP
Px= simplify (Ad(1l,4))
Py= simplify (Ad(2,4))
Pz= simplify (Ad(3,4))

o o

$ % disp('Jacobian matrix with derivative ')

Jac=[simplify (diff (Px,Ql)), simplify(diff (Px,Q2));
simplify (diff (Py,Q1)), simplify(diff (Py,Q2));

simplify (diff(Pz,0Q1)), simplify(diff(Pz,Q2));]1;

o\°

o\
o\

o)

% Jacobian matrices obtained from the linear and angular velocities
w00 = zeros(3,1);

v00= zeros (3,1);

wll= RO1l.'*w00+dQ1l*Zii ;

v1ll= RO1.'* (v0OO+cross (w00, P01));
w22= R12.'"*wll+dQ2*Zii ;

v22= R12.'* (vll+cross (wll,P12));
w33= R23.'*w22;

v33= R23.'*(v22+cross (w22,P23));
v03= simplify (RO3*v33);

WO03= simplify (RO3*w33);

M1l = simplify(diff (v03(1,1),d0Q1)
M12 = simplify( diff(v03(1,1),d02
M21 = simplify (diff (v03(2,1),dQl)
M22 = simplify(diff(v03(2,1),dQ2
M31 = simplify (diff (v03(3,1),dQl)
M32 = simplify (diff (v03(3,1),d0Q2)

o

Jaco Lv= [ MI11, M12 ; M21, M22 ; M31, M32;];

o

X1l = simplify (diff (W03 (1,1),dQl))
X12 = simplify( diff (W03 (1,1),dQ2)
X21 = simplify (diff (W03 (2,1),dQl))
X22 = simplify(diff (W03(2,1),dQ2)
)
)

——

) 7

)7

’

’

)
)
)
)
)
)

) 7

)7

’

X31 = simplify(diff (W03(3,1),d0l)
X32 = simplify (diff (W03 (3,1),dQ2)

’

Jaco AvV= [ X11, X12, ; X21, X22; X31, X32;];
Jaco Ma =[Jaco LV;Jaco AV]
Deter SLRIP= det (Jaco Ma)

% Jacobian Matrix DLRIP
Ad=simplify (T04)

Px= simplify (Ad(1,4))
Py= simplify (Ad(2,4))
Pz= simplify (Ad(3,4))
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e

%% % % disp('Jacobian matrix with derivative ')
Jac= [simplify(diff (Px,Q1)), simplify(diff (Px,Q2)),
simplify (diff (Px,Q2));

simplify(diff (Py,Q1)), simplify(diff (Py,Q2)),
simplify (diff (Py,Q3));

simplify(diff (Pz,Q1)), simplify(diff (Pz,Q2)),
simplify (diff(Pz,Q3));1;

o°
o©

% Jacobian matrices obtained from the linear and angular velocities
w00= zeros(3,1);

v00= zeros(3,1);

wll= RO1l.'*w00+dQl*zii;

vll= RO1l.'* (v0O+cross (w00,P01));
w22= R12.'"*wll+dQ2*Zii ;

v22= R12.'* (vll+cross (wll,P12));
w33= R23.'"*w22+dQ3*Zii ;

v33= R23.'* (v22+cross (w22,P23));
widd= R34.'*w33;

v44= R34.'* (v33+cross (w33,P34));
v04= simplify (R04*v44);

W04= simplify (R04*wd4) ;

M1l = simplify(diff(v04(1,1),d0l
M12 = simplify ( diff(v04( 1),do
M13 = simplify (diff(v04(1 1),do
M21 = simplify(diff(v04(2,1),d0l
M22 = simplify(diff(v04(2,1),d0O
M23= simplify(diff(v04(2,1),d03
M31 = simplify(diff (v04( ) ,dO1
M32 = simplify(diff (v04(3,1),dQ2
M33 = simplify (diff (v04( ) ,dQ3

o

o

Jaco Lv= [ MI11, M12, M13 ; M21, M22 , M23 ; M31, M32, M33;];

o

°

—_——_——— N W N~

14

X1l = simplify (diff (W04 (1,1),dol));
X12 = simplify( diff (W04 (1,1),dQ2));
X13 = simplify (diff (W04 (1,1),dQ3));
X21 = simplify (diff (W04 (2,1),d0l));
X22 = simplify(diff (W04 (2,1),d02));

X23= simplify(diff (W04(2,1),dQ3)):;

2 o

6 ©

X31 simplify (diff (w04 (3,1),d0l));
X32 51mpllfy(d1ff(wo4(3 1),d02));
X33 = simplify(diff (w04 (3,1),dQ3));

I oe

Jaco AV= [X11l, X12, X13; X21, X22, X23; X31, X32, X33;];
Jaco Ma =[Jaco_LV;Jaco AV]
Deter DLRIP= det (Jaco Ma)

% Jacobian Matrix TLRIP
Ad=simplify (T05)

Px= simplify(Ad(1l,4))
Py= simplify (Ad(2,4))
Pz= simplify (Ad(3,4))

o\°
o\°

[

% disp('Jacobian matrix with derivative ')

o
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Jac= [simplify(diff (Px,Q1l)), simplify(diff (Px,Q2)),
simplify (diff (Px,0Q03)), simplify(diff (Px,Q4));
simplify(diff (Py,Q1)), simplify(diff (Py,Q2)),
simplify (diff (Py,Q3)), simplify(diff (Py,Q4));
simplify (diff (Pz,Q1)), simplify(diff (Pz,Q2)),
simplify (diff (Pz,Q3)), simplify(diff(Pz,Q4));:1]1;

% Jacobian matrices obtained from the linear and angular velocities
w00= zeros (3,1);

v00= zeros(3,1);

wll= RO1l.'*w00+dQl*Zii;

vll= RO1l.'*(v0O+cross (w00,P01));
w22= R12.'"*wll+dQ2*7zii ;

v22= R12.'* (vll+cross (wll,P12));
w33= R23.'*w22+dQ3*7zii ;

v33= R23.'*(v22+cross (w22,P23));
wd4= R34.'*w33+dQ4*Zii ;

v44= R34.'* (v33+cross (w33,P34));
w55= R45."'*wd4;

v55= R45.'* (vd4d+cross (wd4d,P45));
v05= simplify (RO5*v55);

WO05= simplify (RO5*w55) ;

M1l = simplify(diff (v05(1,1),d0l)
M12 simplify (diff (v05(1,1), dQ2)
M13 simplify (diff(v05(l,l) Q3
M14 = simplify (diff (vO05(1 Q4

° ©°

’

);
)
))
)) i

’

M21 = simplify (diff (v05(2,1),dQl));
M22 = simplify (diff (v05(2,1),d02));
M23 = simplify (diff (v05(2,1),dQ3));
M24 = simplify(diff (v05(2,1),d04));
M31 = simplify(diff(v05(3,l),dQl));
M32 = simplify (diff (v05(3,1),d02));
M33 = simplify (diff (v05(3,1),d0Q3));
M34 = simplify(diff (v05(3,1),d0Q4));

Jaco Lv=[ M11, M12 , M13, M14 ; M21, M22, M23, M24 ; M31, M32, M33,
M34;]1;

o9
3]

X11 = simplify(diff(WO5(1,1),dQl));
X12 = simplify (diff (W05 (1,1),dQ2));
X13 = simplify (diff (WO5(1,1),dQ3));
X14 = simplify (diff (WO5(1,1),dQ4));
X21 = simplify (diff (W05(2,1),dol));
X22 = simplify(diff(wo5(2 1,d02))) ;
X23 = simplify (diff (WO5(2,1),d03));
X24= simplify (diff (WO5(2,1),d04));
X31 = simplify(diff(W05(3,1),dQl));
X32 = simplify (diff (W05 (3,1),d02));
X33 = simplify (diff (WO5(3,1),d03));
X34 = simplify (diff (WO5(3,1),d04));

Jaco AV= [ X11, X12, X13 , X14; X21, X22, X23, X24; X31, X32, X33 ,
X34;1;

Jaco Ma =[Jaco LV;Jaco AV]

Deter TLRIP= det (Jaco Ma)
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