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ANTI SWING CONTROL OF A SINGLE, DOUBLE AND TRIPLE LINK 

ROTARY INVERTED PENDULUM WITH NONLINEAR FRICTION 

MODELS 

ABSTRACT 

RIPS is one of the fundamental problems in the control theory field. To verify the 

modern control theory, RIPS may be considered as a better example in control 

engineering. It is the best model for the attitude control such as space booster, rocket, 

satellite, aircraft stabilization in the turbulent air-flow, humanoid robots, etc…. The 

RIPS is a highly non-linear and open-loop unstable system that makes the control more 

challenging. It is an intriguing subject from the control point of view due to its intrinsic 

nonlinearity. The RIPS include a nonlinearity due to the frictions in the joints. 

Common control approaches require a good knowledge of the frictions in the joints of 

the system and accurate friction estimation to obtain the desired performances of 

feedback controllers. However, the frictions have high non-linear values, which result 

in steady-state errors, limit cycles, and poor performance of the system. It has an 

influence on the system's response, and it should be considered seriously. Therefore, 

friction estimation has the potential to ameliorate the quality and dynamic behavior of 

the system.  

One of the aims of this thesis is to estimate the nonlinear frictions in the triple link 

rotary inverted pendulum. In this research, novel NFFEMs are developed to estimate 

the joint friction coefficients of three link rotary pendulum and compared with 

AFEMs. The different versions of AFEMs and NFFEMs are generated based on each 

of the following friction estimation models: NCFM, LFM, and NLFM. The aim of this 

friction study is to obtain joint friction models which depend on both velocity and 

acceleration in a large range of motion trajectory that involves difficult and sudden 

large changes. In the proposed NFFEMs, joint velocities and accelerations of the 

TLRIP are used as the input variables of the NF system trained by using a RBNN. 

Several experiments are conducted on the TLRIP system to verify the NFFEMs. In 

order to determine the estimation performance of the friction models, total RMSEs 

between position simulation results obtained from each joint friction model and 

encoders in the experimental setup are computed. Based on the position RMSEs, the 

NFFEMs produce better estimation results than the AFEMs. Among the novel 

NFFEMs, the NFNLM gives the best results. 

Another aim of this thesis is to develop non-linear controllers for the stabilization and 

anti-swing control problems. PID, LQR and swing-up based LQR controllers are 

developed for the stability control of the SLRIP. Moreover, FLQR and FLQG 

controllers are developed for the stability control of DLRIP and TLRIP. The aim of 

the stability control is to study the dynamic performance of both FLQR and FLQG 

controllers and to compare them with the classical LQR and LQG controllers, 

respectively. To determine the control performance of the controllers, Ts, PO, Ess, MP 

and the total RMSEs of the joint positions are computed. Furthermore, the dynamic 

responses of the controllers were compared based on robustness analysis under internal 
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and external disturbances. To show the control performance of the controllers, several 

simulations were conducted. Based on the comparative results, the dynamic responses 

of both FLQR and FLQG controllers produce better results than the dynamic responses 

of the classical LQR and LQG controllers, respectively. Moreover, the robustness 

results indicate that the FLQR and FLQG controllers under the internal and external 

disturbances were effective. Furthermore, an anti-swing control of the SLRIP, DLRIP 

and TLRIP is developed. To determine the control performance of the anti-swing 

controllers, different control parameters are computed, such as Ts, MP, Ess, and 

RMSEs of the joint positions. Based on the comparative results, the LQR controller 

produces better results than the classical PID for the SLRIP. Moreover, a novel RBNF-

LQR controller is developed for an anti-swing control of the DLRIP and TLRIP. The 

objective of this research is to study the RBNF-LQR controller and to compare it with 

the FLQR and the LQR controllers. In the proposed RBNF-LQR controllers, the 

positions and velocities of state variables multiplied by their LQR gains are trained by 

using RBNNs architecture. The outputs of the two RBNNs are used as the input 

variables of the fuzzy controller. The novel architecture of the RBNF controller is 

developed in order to obtain better control performance than the classical ANFIS. To 

show the control performance of the anti-swing controllers, simulation and 

experiments results are given and compared. According to the comparative results, the 

RBNF-LQR anti-swing controller produces better results than FLQR and LQR. 

Furthermore, the performance of the three controllers developed was compared based 

on robustness analysis under external disturbance. The results obtained here indicate 

that the RBNF-LQR anti-swing controller produces better performance than others in 

term of vibration suppression capability. 

Keywords: Anti-swing Control, Fuzzy Based LQR and LQG Control, Nonlinear 

Friction Joint Estimation Model, Radial Basis Function Neural Network Control, 

Single Double Triple Link Rotary Pendulums. 
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DOĞRUSAL OLMAYAN SÜRTÜNME MODELLERİYLE TEK, ÇİFT VE ÜÇ 

BAĞLI DÖNEL TERS SARKACIN SALINIM ÖNLEYİCİ KONTROLÜ  

ÖZET 

Dönel ters sarkaç sistemi, kontrol teorisi alanındaki temel problemlerden biridir. Dönel 

ters sarkaç sistemleri, kontrol mühendisliğinde modern kontrol teorisinin uygulanması 

için bir örnek deneysel düzenek olarak kullanılmaktadır. Roketlerin, uyduların ve 

uçakların türbülanslı hava akışı içerisindeki konumlarının kontrolü, insansı robotların 

benzetimi esnasında model olarak sarkaç sistemleri kullanılmaktadır. Döner ters 

sarkaç sistemi, kontrolü daha zor hale getiren son derece doğrusal olmayan ve açık 

döngülü kararsız bir sistemdir. Doğrusal olmaması nedeniyle kontrol açısından ilgi 

çekici bir konudur. Döner ters sarkaç sistemi, eklemlerdeki sürtünmelerden 

kaynaklanan bir doğrusal olmayan davranışlar sergiler. Yaygın kontrol yaklaşımları, 

geri besleme denetleyicileri ile sistemin kontrolünde istenen performansları elde 

edilebilmesi için sistemin eklemlerindeki sürtünmeler hakkında net bir bilgi ve doğru 

sürtünme tahmini modeller gerektirir. Bununla birlikte, sürtünmelerin yüksek doğrusal 

olmayan ifadeleri içermesi, kararlı durum hatalarına, sınır döngülerine ve sistemin 

kötü performansı göstermesine neden olmaktadır. Sistemin tepkisi üzerinde doğrudan 

etkisi vardır ve dikkate alınmalıdır. Bu nedenle, sürtünme tahmini, sistemin kontrol 

performansını ve dinamik davranışını iyileştirme potansiyeline sahiptir. 

Bu tezin amaçlarından biri, üç bağlı ters dönel sarkaçtaki doğrusal olmayan 

sürtünmeleri tahmin etmektir. Bu araştırmada, üç bağlı döner sarkacın eklem sürtünme 

katsayılarını tahmin etmek ve uyarlamalı sürtünme modelleriyle karşılaştırmak için 

yeni nöro-bulanık sürtünme tahmin modelleri geliştirilmiştir. Uyarlanabilir sürtünme 

modellerinin ve nöro-bulanık sürtünme tahmin modellerinin farklı versiyonları, 

aşağıdaki sürtünme tahmin modellerinin her birine dayalı olarak oluşturulmaktadır: 

Konservatif olmayan sürtünme modeli, doğrusal sürtünme modeli ve doğrusal 

olmayan sürtünme modeli. Bu sürtünme çalışmasının amacı, zor ve ani büyük 

değişiklikleri içeren geniş bir hareket yörüngesinde hem hıza hem de ivmeye bağlı 

olan eklem sürtünme modellerini elde etmektir. Önerilen nöro-bulanık sürtünme 

tahmin modellerinde, üç bağlı döner ters sarkacın eklem hızları ve ivmeleri, radyal 

tabanlı bir sinir ağı kullanılarak eğitilen nöro-bulanık systemin, girdi değişkenleri 

olarak kullanılmıştır. Nöro-bulanık sürtünme tahmin modellerini doğrulamak için üç 

bağlı dönel ters sarkaç sistemi üzerinde bazı deneyler yapılmıştır. Sürtünme 

modellerinin tahmin performansının belirlenmesi için her bir eklem sürtünme 

modelinden elde edilen konum simülasyon sonuçları ile deney düzeneğindeki 

kodlayıcılar arasındaki toplam kök ortalama kare hataları hesaplanmıştır. Konum kökü 

ortalama kare hatalarına dayalı olarak, nöro-bulanık sürtünme tahmin modelleri, nöro-

bulanık sürtünme tahmin modellerinden daha iyi tahmin sonuçları üretmiştir. Yeni 

nöro-bulanık sürtünme tahmin modelleri arasında, nöro-bulanık doğrusal olmayan 

sürtünme tahmin modeli en iyi sonuçları vermektedir. 

Bu tezin bir diğer amacı, stabilizasyon ve salınım önleyici kontrol problemleri için 

doğrusal olmayan kontrolörler geliştirmektir. Orantılı integral türev, doğrusal 
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kuadratik regülatör ve salınım tabanlı doğrusal kuadratik regülatör denetleyicileri, tek 

bağlı dönel ters sarkacın stabilizasyon kontrolü için geliştirilmiştir. Ayrıca, çift ve üç 

bağlı dönel ters sarkacın stabilizasyon kontrolü için bulanık tabanlı doğrusal kuadratik 

regülatör ve bulanık tabanlı doğrusal ikinci dereceden gauss kontrolörleri 

geliştirilmiştir. Stabilite kontrolünün amacı, hem bulanık tabanlı doğrusal kuadratik 

regülatör hem de bulanık tabanlı doğrusal ikinci dereceden gauss kontrolörlerinin 

dinamik performansını incelemek ve bunları sırasıyla klasik doğrusal kuadratik 

regülatör ve doğrusal ikinci dereceden gauss kontrolörleriyle karşılaştırmaktır. 

Kontrolörlerin kontrol performansını belirlemek için, yerleşme süresi, pik aşımı, sabit 

durum hatası, maksimum piki ve eklem konumlarının toplam kök ortalama kare 

hataları hesaplanır. Ayrıca, kontrolörlerin dinamik tepkileri, iç ve dış bozucu etkiler 

altında sağlamlık (gürbüzlük) analizine dayalı olarak karşılaştırılmıştır. Kontrolörlerin 

kontrol performansını göstermek için bazı simülasyonlar gerçekleştirilmiştir. 

Karşılaştırmalı sonuçlara dayanarak, hem bulanık tabanlı doğrusal kuadratik regülatör 

hem de bulanık tabanlı doğrusal ikinci dereceden gauss kontrolörlerinin dinamik 

yanıtları, sırasıyla klasik doğrusal kuadratik regülatör ve doğrusal ikinci dereceden 

gauss kontrolörlerinin dinamik yanıtlarından daha iyi sonuçlar üretmektedir. Dahası, 

sağlamlık sonuçları, iç ve dış bozucu etkiler altındaki bulanık tabanlı doğrusal 

kuadratik regülatör ve bulanık tabanlı doğrusal ikinci dereceden gauss kontrolörlerinin 

etkili olduğunu göstermektedir. Ayrıca, tek bağlı ters dönel sarkaç, çift bağlı ters dönel 

sarkaç, ve üç bağlı dönel ters sarkaç için bir salınım önleyici kontrolü geliştirilmiştir. 

Salınım önleyici kontrolörlerin kontrol performansını belirlemek için, eklem 

konumlarının yerleşme süresi, sabit durum hatası, maksimum piki ve eklem 

konumlarının toplam kök ortalama kare hataları gibi farklı kontrol parametreleri 

hesaplanmaktadır. Karşılaştırmalı sonuçlara göre, doğrusal kuadratik regülatör 

kontrolörü tek bağlı ters dönel sarkaç için klasik orantılı integral türev kontrolöründen 

daha iyi sonuçlar vermiştir. Dahası, çift bağlı döner ters sarkaç ve üç bağlı döner ters 

sarkacın anti-salınım kontrolü için yeni bir radyal temel nöro-bulanık tabanlı doğrusal 

karesel regülatör denetleyici geliştirilmiştir. Bu araştırmanın amacı, radyal temel nöro-

bulanık tabanlı doğrusal kuadratik düzenleyici denetleyiciyi incelemek ve onu bulanık 

tabanlı doğrusal karesel düzenleyici ve doğrusal karesel düzenleyici denetleyicileri ile 

karşılaştırmaktır. Önerilen radyal temel nöro-bulanık tabanlı doğrusal kuadratik 

düzenleyici denetleyicilerde, doğrusal karesel düzenleyici kazanımlarıyla çarpılan 

durum değişkenlerinin konumları ve hızları, radyal temel yapay sinir ağları mimarisi 

kullanılarak eğitilmektedir. İki radyal temelli sinir ağının çıktıları, bulanık 

denetleyicinin giriş değişkenleri olarak kullanılmıştır. Radyal temel neuro-fuzzy 

denetleyicinin yeni mimarisi, klasik uyarlanabilir nöro-bulanık çıkarım sisteminden 

daha iyi kontrol performansı elde etmek için geliştirilmiştir. Salınım önleyici 

kontrolörlerin kontrol performansını göstermek için simülasyon ve deney sonuçları 

verilmiş ve karşılaştırılmıştır. Karşılaştırmalı sonuçlara göre, radyal temel nöro-

bulanık tabanlı doğrusal kuadratik düzenleyici salınım önleyici denetleyicisi, bulanık 

tabanlı doğrusal kuadratik düzenleyici ve doğrusal kuadtarik düzenleyiciden daha iyi 

sonuçlar vermektedir. Ayrıca, geliştirilen üç denetleyicinin performansı, harici bozucu 

etkiler altındaki sağlamlık analizine dayalı olarak karşılaştırılmıştır. Burada elde 

edilen sonuçlar, radyal temel nöro-bulanık tabanlı doğrusal karesel regülatör anti-

salınım denetleyicisinin titreşim bastırma özelliği açısından diğerlerinden daha iyi 

performans ürettiğini göstermektedir. 
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INTRODUCTION 

PS is the most well-known equipment in the field of ACE. PS is an open-loop and 

unstable system used in different application such as Segway human transporter, 

missile launcher or humanoid robot, etc.... Therefore, it has been a benchmark control 

problem in the field of ACE which verifies a modern control theory.  It is an expensive 

system, can be designed and installed in a research laboratory for control education. 

RIPS is one of the most interesting and popular mechatronic systems in the ACE field, 

and it can exist in many different forms. RIPS is a challenging problem in the area of 

control engineering applications in linear and nonlinear control. RIPS can be called 

“Furuta Pendulum”. Furuta pendulum is a SLRIP. It consists of a driven arm which 

rotates in the horizontal plane and a pendulum attached to the extremity of the base 

arm which rotate in the vertical plane. Furuta pendulum was developed by K. Furuta 

at Tokyo Institute of Technology and was called the “TITECH pendulum”.  Due to the 

gravitational forces and the coupling arising from the Coriolis and centripetal forces, 

RIPS is underactuated, unstable and extremely nonlinear. 

RIPS include nonlinearity due to the frictions in the joints. RIPS is the most convenient 

example to understand the influence of the joint frictions on the performance of 

feedback controllers, which aim to stabilise the pendulum in the upward unstable 

position and the downward stable position. Furthermore, frictions can have high 

nonlinear values which result in steady-state errors, limit cycles, and poor performance 

of the system. It influences the system’s control response that should be considered 

seriously. Therefore, friction estimation has the potential to ameliorate the quality and 

dynamic behavior of the system. In this thesis, joint frictions of the TLRIP are 

examined based on its experimental and simulation dynamic responses. TLRIP might 

be considered as the most appropriate mechanical setup to investigate friction 

phenomena and understand the frictions’ influence in the dynamics of any mechanical 

system. 
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In this work, three different friction estimation models such as Non-Conservative, 

Linear and Nonlinear friction models are compared to estimate the joint frictions of 

the TLRIP developed in our laboratory. NCFM considers only viscous frictions. LFM 

is dependent on Coulomb and viscous frictions. The NLFM is the sum of five types of 

frictions: the zero drift error of friction, the Coulomb friction, the viscous friction, and 

two experimental frictions. Based on comparative experimental friction analysis, the 

joint frictions of the TLRIP are estimated more effectively using an NLFM. Moreover,  

AFEMs were developed to estimate the frictions in three pendulums’ joints of the 

TLRIP and compared with existing friction estimation models NCFM, LFM, and 

NLFM. Joint accelerations were classified into three groups such as low, medium and 

high. The adaptive friction coefficients were optimised based on this classification of 

acceleration. Based on the position RMSEs obtained from each joint friction model, 

the AFEMs were better than the existing friction estimation models (NCFM, LFM, 

and NLFM). Among the friction estimation models, the best results were produced by 

ANLFM. Besides, NFFEMs are developed to estimate the joint friction coefficients in 

a TLRIP system and compared with the AFEMs. The different versions of AFEMs and 

NFFEMs are generated based on each of the following friction estimation models: 

NCFM, LFM, and NLFM. The aim of this study is to obtain joint friction models which 

depend on both velocity and acceleration in a large range of motion trajectory that 

involves difficult and sudden large changes. In the proposed NFFEMs, joint velocities 

and accelerations of the TLRIP are used as the input variables of the NF system trained 

by using a Radial RBNN. Several experiments are conducted on TLRIP system to 

verify the NFFEMs. In order to determine the estimation performance of the friction 

models, RMSEs between position simulation results obtained from each joint friction 

model and encoders in the experimental setup are computed. Based on the RMSEs’ 

position, the NFFEMs produce better estimation results than the AFEMs. Among 

NFFEMs, the NFNLM gives the best results. 

The friction study has three important contributions to the literature. Firstly, all friction 

models in the literature depend only on velocity. However, the friction model 

developed here depends on both velocity and acceleration. This approach has enabled 

us to obtain a two-dimensional friction model. Secondly, the coefficients of all friction 

models in the literature were constant when the physical quantities change. On the 
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other hand, the coefficients of the friction models in this work vary depending on the 

state of the velocity and acceleration. Hence, this friction model allows for better 

estimation of the effects of friction in different velocity and acceleration conditions. 

Thirdly, much of existing researches in the literature have studied only the frictions of 

the linear motion which depends on linear velocity and force. This work examines 

frictions on the joints which have hard rotational motions. 

In this work, the stability control problem is studied for the SLRIP, DLRIP and TLRIP 

systems, respectively. For the stability control problem of the SLRIP, a PID, LQR and 

swing-up based LQR controllers are developed and compared under external 

disturbance. The robustness results indicate that the LQR controller under external 

disturbances was effective. Moreover, for stability control of the DLRIP and TLRIP 

systems, FLQR and FLQG controllers are developed. The aim is to study dynamic 

performance analysis of both FLQR and FLQG controllers and to compare them with 

the classical LQR and LQG controllers, respectively. A dynamic mechanical 

simulation model of the system was obtained using both the numerically 

SimMechanics toolbox in MATLAB and the analytically dynamic nonlinear equations. 

To determine the control performance of the controllers, Ts, PO, Ess, and the RMSEs 

of the joint positions are computed. Furthermore, the dynamic responses of the 

controllers were compared based on robustness analysis under internal and external 

disturbances. To show the control performance of the controllers, several simulations 

were conducted. Based on the comparative results, the dynamic responses of both 

FLQR and FLQG controllers produce better results than the dynamic responses of the 

classical LQR and LQG controllers, respectively. Moreover, the robustness results 

indicate that the FLQR and FLQG controllers under the internal and external 

disturbances were effective. 

In this work, anti-swing control of the SLRIP, DLRIP and TLRIP is developed. To 

determine the control performance of the anti-swing controllers, different control 

parameters are computed such as Ts, MP, Ess, and the RMSEs of the joint positions. 

Based on the robustness comparative results, the LQR controller produces better 

results than classical PID under external disturbance for the SLRIP. Moreover, RBNF-

LQR controller is developed for an anti-swing control of the DLRIP and TLRIP. The 

objective of this work is to study the RBNF-LQR controller and to compare it with a 
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FLQR and the LQR controllers. In the proposed RBNF-LQR controllers, the positions 

and velocities of state variables multiplied by their LQR gains are trained by using 

RBNNs architecture. The output of the two RBNNs are used as the input variables of 

the fuzzy controller. The novel architecture of RBNF controller is developed in order 

to obtain better control performance than the classical ANFIS. According to the 

comparative results, the RBNF-LQR anti-swing controller produces better results than 

FLQR and LQR. Furthermore, the performance of three controllers developed was 

compared based on robustness analysis under external disturbance. Moreover, to show 

the control performance of the anti-swing controllers, simulation and experiments 

results are given and compared.The results obtained here indicate that the RBNF-LQR 

anti-swing controller has better performance than others in term of the vibration 

suppression capability. This thesis is organized as follows: 

The first chapter deals with the overview of the PS: working principles, types, 

classification and application of the IPS are described. A detailed literature survey of 

IPS is provided, and the structure of the RIPS is investigated. Definition and 

contributions of the thesis are presented.  

The second chapter investigates kinematic model, nonlinear dynamic model, Jacobian 

and dynamic simulation of the SLRIP, DLRIP and TLRIP systems. The kinematic 

model of each system is derived based on the DH convention. Rotation and homogeneous 

transformation matrices between coordinates are calculated. The nonlinear dynamic 

equations of each system are obtained by the Newton-Euler method and explained in 

details. The nonlinear dynamic equations are obtained based on the calculated rotation 

and homogeneous transformation matrices. The Jacobian matrix of the system is 

calculated and used to estimate the best length of each link. Dynamic comparison 

between the obtained results from both nonlinear mathematical and the 

Matlab/SimMechanics models is described. Finally, inertia analysis of the vertical 

arms of the TLRIP is given. 

In the third chapter, novel approaches to estimate the joint friction coefficients of three 

link rotary pendulum are explained in detailed. Firstly, three NCFM, LFM, NLFM are 

compared to estimate the joint frictions of the TLRIP developed in our laboratory. 

Secondly, AFEMs were developed to estimate the frictions in three pendulums’ joints 
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of the TLRIP and compared with NCFM, LFM, NLFM. Finally, NFFEMs were 

developed to estimate the joint friction coefficients in TLRIP and compared with an 

AFEMs. NFFEMs are developed in order to obtain joint friction models which, depend 

on both velocity and acceleration in a large range of motion trajectory that involves 

difficult and sudden large changes. In the proposed NFFEMs, joint velocities and 

accelerations of the TLRIP are used as the input variables of the NF system trained by 

using an RBNN. 

In the fourth chapter, stability and anti-swing control problems of the SLRIP, DLRIP 

and TLRIP systems are explained. PID, LQR and swing-up based LQR controllers are 

developed for stabilisation control problem of the SLRIP. Furthermore, FLQR and 

FLQG controllers are developed for stability control of DLRIP and TLRIP. FLQR and 

FLQG controllers are compared with the LQR and LQG controllers, respectively. The 

dynamic responses of the controllers were compared based on robustness analysis such 

as under noises, internal and external disturbances. For the anti-swing control problem, 

PID and LQR controllers are applied to the SLRIP. Furthermore, a novel RBNF-LQR 

controller is developed for an anti-swing control of the DLRIP and TLRIP. The RBNF-

LQR controller was compared with the FLQR and the LQR controllers. The novel 

architecture RBNF controller is developed in order to obtain better control 

performance than ANFIS. The dynamic responses of the anti-swing controllers were 

compared based on robustness analysis under external disturbances. 

The last chapter focuses on experimental studies. The anti-swing control of a SLRIP 

DLRIP and TLRIP with NLFMs are verified in real experimental setups. The results 

obtained experimentally are compared with simulation results.  
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1. INVERTED PENDULUM SYSTEM 

1.1. Introduction 

The reviews existing in literature are undertaken as a part of the TLRIP project. It is 

focused to understand: the background and the principal application of the IPS, the 

nonlinear analytic mathematical model, numerical mechanical simulation model, 

mechanical design aspects, friction models, control algorithms, and other successful 

projects of the similar nature. The IPS is a classic model of the nonlinear control topic. 

It is used frequently to study the design, implementation and control development for 

nonlinear systems. The IPS appears in the undergraduate control textbooks, for 

example, it is used as an example to describe the physical systems mathematically by 

Dorf and Bishop [1]. The physical analysis of the IPS has been an important 

consideration in the modern control theory studies [2]. The control of the IPS, for 

which different configurations exist, is a very complicated task. it has provided the 

best demonstration of the capabilities of the scientific and engineering area [3]. The 

control of this type of systems is based on to maintain the hinged pendulum in a 

predetermined stable position by adding a driving force. In the most ordinary case, the 

objective is to keep the pendulum on the upward position [4-5]. The pendulum must 

be stable against the gravitational force, which would make it in an upward position to 

a more resting-state stable. Different mechanical configurations have been studied in 

the field of IPS [6]. Furthermore, many controllers have been used to maintain the 

inverted pendulum to a stable position. The control problem of the IPS has been 

complicated by adding the pendulums link together. The IPS configuration depends 

on the actuation method and the number of DOF. The simple model of the controllable 

IPS given in [1], is consist of a pendulum link directly attached to the shaft of the 

motor. This model of the IPS is controlled open-loop using a stepper motor, this model 

is deemed too simple for further consideration. Figure 1.1. shows the simple model of 

the IPS. 
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Figure 1.1. A simple model of the IPS 

In Figure 1.1, 𝜏 is the input torque motor, and an optical encoder is used to measure 

the angular shaft position of the motor. 𝜃 is the angular position of the pendulum link, 

and 𝑚 is mass attached to the pendulum link. Therefore, to have a simple controllable 

IPS, the system must have at least two DOF. For the two DOF system, the pendulum 

base is limited to move in one linear or rotary dimension, and the pendulum angle is 

varied only in the vertical dimension [7]. A classification of the IPS based on the 

number actuators in the system is given in Figure 1.2. In the next section, different 

configurations of the IPS will be discussed. 

1.2. Single Actuator Linear Serial IPS 

1.2.1. Single link linear inverted pendulum 

Figure 1.3 shows examples of physical models and a real experimental implementation 

of the SLLIP. In the SLLIP, a motor is used to move a cart linearly along a straight 

track, to modify the pendulum angle, as shown in Figure 1.3 (c). The pendulum link 

of the SLLIP is attached to the cart joint. The rotational axis of the pendulum about 

the cart joint is horizontal and perpendicular to the direction of the cart's movement. 

The input of the SLLIP is a force applied to the cart, via the motor [8]. 
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Figure 1.2. Classification of the IPS according to the actuator configuration
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The SLLIP has two equilibrium points [9-10], Figure 1.3 (a) shows one of them; the 

objective is to maintain the pendulum in the upward vertical position above the cart. 

Allowing for small changes in its angle and preventing it from falling. The pendulum 

position above the cart is an unstable equilibrium state of the system. Figure 1.3 (b) 

shows the other equilibrium state is somewhat similar to the known problem of the 

gantry crane system control. The aim is to keep the pendulum link in the downward 

vertical position below the cart. The cart moves and prevents the pendulum from 

oscillating. 

 

                   (a)                                          (b)                                           (c) 

Figure 1.3. SLLIP: (a) physical model of a cart-pole system, (b) physical model of a 

crane system and (c) real experimental implementation [11] 

A reproduction of the diagram is shown in Figure 1.3 (a) and (b). F is the input force, 

𝑋 is the linear displacement of the cart, θ is the angular position of the pendulum, 𝑚1 

is the mass of the cart and 𝑚2 is the mass of the pendulum link. 

1.2.2. Double link linear inverted pendulum 

Figure 1.4 shows a physical model and real experimental implementation example of 

a DLLIP. The mechanical configuration of the DLLIP have a cart with linear motion, 

and two series pendulum links mounted to the cart. The system aims to maintain the 

two pendulum links in the upward vertical position [12-14]. DLLIP is an under-

actuated system, and it is highly unstable. The number of DOFs surpasses the actuation 

number. The dynamic complexity and the nonlinearity of the system increase; for this 

reason, the system controllability will be more complex. In Figure 1.4, 𝐹 is the input 
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force, 𝑋 is the cart position, 𝜃1 is the angular position of the first pendulum link and 

𝜃2 is the angular position of the second pendulum link. 𝐿1, 𝐿2 are the lengths of the 

first and second links, respectively. Moreover, 𝑚0, 𝑚1 and 𝑚2 are the mass of the cart, 

first link and second links respectively.  

 

(a)                                                                  (b) 

Figure 1.4. DLRIP: (a) physical model and (b) real experimental implementation [15] 

1.2.3. Triple link linear inverted pendulum 

A physical model and real experimental example of the TLLIP system are shown in 

Figure 1.5. The TLLIP consists of three pendulum links of various lengths mounted 

on the cart. The cart is driven on a rail track by a servo motor. Each pendulum link 

rotates in the vertical plane about the axis of a position. The system aims to maintain 

the three pendulum links in the up-ward vertical position [16-17]. TLLIP is an under-

actuated system and highly unstable. TLLIP is 4 DOFs with complex dynamic 

behaviour. The dynamic of the system is highly nonlinear. For this reason, the control 

of the three links is very complex [18-19]. In Figure 1.5, 𝐹 is the input force, 𝑋 is the 

cart position, 𝜃1 is the angular position of the first pendulum link, 𝜃2 is the angular 

position of the second pendulum link and 𝜃3  is the angular position of the third 

pendulum link. 𝐿1 , 𝐿2 , 𝐿3   are the lengths of the first, second and third links, 
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respectively. Furthermore, 𝑚0, 𝑚1, 𝑚2 and 𝑚3 are the mass of the cart, first, second 

and third links, respectively. 

 

                                        (a)                                                 (b) 

Figure 1.5. TLLIP: (a) physical model and (b) real experimental 

implementation [20] 

1.2.4. Linear flexible inverted pendulum 

Figure 1.6 shows a physical model and real experimental implementation example of 

a LFIP. LFIP is composed of a flexible pendulum link which moves horizontally by 

the cart in the 𝑋 −direction, and a load is attached at the end of the pendulum link. The 

cart can be driven by a torque servo motor on a rail. The control of the cart motion and 

inverted flexible pendulum link is assumed by controlling the motor rotation [21]. The 

main feature of this IPS model, which distinguishes it from other IPS, is that to take 

into account the large deformations of the pendulum link its length is assumed constant 

giving rise to a holonomic constraint. The system aims to maintain the flexible 

pendulum link in the up-ward vertical position [22]. In Figure 1.6 (a), 𝜏 is the input 

torque provided by the servo motor, 𝑧 is the motion axis of the cart, 𝛼(𝜃, 𝑋𝑒) is the 
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deflection of the flexible pendulum link (𝜃) is the deflection angle and 𝑋𝑒  is the 

deflection length and 𝑚 is the load mass. 

  

                                (a)                                                                  (b) 

Figure 1.6. LFIP: (a) physical model and (b) real experimental implementation [22] 

1.2.5. Spring-loaded inverted pendulum 

The physical model of the SLIP system is shown in Figure 1.7. The SLIP model 

consists of a point mass attached to a massless leg with a linear spring. SLIP is usually 

used for analysing running and hopping for a wide range of species. It consists of two 

phases, the flight and the stance phase. In the flight phase, the point mass follows a 

ballistic trajectory until the foot touches the ground with a fixed angle. This is known 

as touchdown and signals the start of the stance phase. At this point, the foot position 

remains fixed, the spring starts to compress, and the point mass remains moving. When 

the spring length is equal to the resting spring length, the spring lifts off and enters the 

flight phase again. The angle makes by the spring with the ground is reset to the 

original attack angle, that is, the spring is rotated [23-24]. The SLIP was introduced by 

Blickhan and used as modeling of legged locomotion [25]. In Figure 1.7, 𝑚 is the mass 

of the load, 𝑘 is the stiffness of the spring, 𝐿0 is the length of the spring, and 𝛼  is the 

attack angle (control parameter). 
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Figure 1.7. Physical model of the standard SLIP system 

1.2.6. Variable length inverted pendulum 

The VLIP is an underactuated mechanical system with 2DOF with a single input to 

adjust the length of the pendulum link. VLIP can also be viewed as a model of the 

child’s swing motion. The VLIP is composed of a torque servo-motor used to move 

the pendulum link in the vertical upward position and a sliding mass mounted to the 

pendulum link. The aim is to maintain the pendulum link in the upward vertical 

position on changing the sliding mass position [26-28]. Figure 1.8 shows a physical 

model of the VLIP. 

 

Figure 1.8. Physical model of 

the VLIP 
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In Figure 1.8, l is the distance from the center of the sliding mass to the origin of 

coordinates around which the pendulum link rotates. θ is the angle of the pendulum 

deviation from the vertical position. 

1.3. Single Actuator Linear Parallel IPS 

1.3.1. Linear twin inverted pendulum 

A physical model and real experimental example of a LTIP are shown in Figure 1.9. 

The LTIP consists of a straight line rail, a cart moving on the rail, a longer first 

pendulum link attached to the cart in the right side. Furthermore, a shorter second 

pendulum link attached to the cart in the left side, and a driving unit. The two pendulum 

links can rotate freely around their pivots. The aim is to maintain the two pendulum 

links in the up-ward vertical position [29-31]. In Figure 1.9 (a) the force 𝐹 applied to 

cart in objective to balance the two pendulum links on the cart and to maintain 𝜃1 and 

𝜃2  in a stable position. 𝜃1, 𝜃2  are the angle of the first pendulum and second pendulum 

links, respectively. 𝑋 refers to the cart position, 𝑚0, 𝑚1, 𝑚2 are the cart mass, the mass 

of the first pendulum and second pendulum links, respectively. 𝐿1, 𝐿2  are the distance 

between the joint and the centre of mass of the two pendulum links, respectively.  

 

  (a)                                                        (b) 

Figure 1.9. LTIP: (a) physical model and (b) real experimental implementation 

[32] 
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1.4. Single Actuator Rotary Serial IPS 

1.4.1. Single link rotary inverted pendulum 

According to the works existing in the literature, there is another single link pendulum 

with different mechanical configuration. In this configuration, the motion of the 

pendulum link is limited to rotate on the vertical plane. Figure 1.10 shows a physical 

model and real experimental implementation examples of a SLRIP. The pendulum 

base link is attached to the horizontal arm link via a joint. The rotation axis of the 

pendulum link is collinear with the axis of the horizontal arm link. The angle of the 

pendulum link is 𝜃2. The horizontal arm link is coupled directly to the motor shaft 

giving it rotary motion. The angular position of the rotary link  (horizontal arm) is 𝜃1. 

The system input is the torque τ, applied using the motor. The driving force to control 

the pendulum angle 𝜃2 come from the rotational arm [33-34]. 𝑚1 and 𝑚2 are the mass 

of the horizontal arm and the pendulum link, respectively. The first SLRIP system is 

called “Furuta Pendulum” [35]. The Furuta pendulum system was developed by 

“Katsuhisa Furuta” at Tokyo Institute of Technology”. The Furuta Pendulum is used 

to experiment with the nonlinear controllers. 

 

                                    (a)                                                    (b) 

Figure 1.10. SLRIP: (a) physical model and (b) real experimental 

implementation [36] 
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Moreover, based on the works existing in the literature, any number of links may be 

mounted on the cart or the horizontal rotor arm. Double and three-link systems are 

observed and demonstrated. For these type of configuration, each link, including the 

rotary horizontal arm link or cart, has only one DOF. 

1.4.2. Double link rotary inverted pendulum 

A physical model and real experimental implementation example of a DLRIP are 

shown in Figure 1.11.  DLRIP comprises a horizontal rotary link and two pendulum 

links. A direct drive brushless DC torque motor servo system is necessary to provide 

torque to the horizontal arm link to control the system. The rotary arm link rotates in 

the horizontal plane. The first pendulum link is connected to the extremity of the rotary 

link and the second pendulum link is connected to the extremity of first pendulum link. 

The two pendulum links move like an inverted pendulum in a plane perpendicular to 

the rotary link [37-39]. In Figure 1.11 (a), 𝜏 is the input torque motor,  θ0 is the angular 

position of the horizontal arm, 𝜃1 is the angular position of the first pendulum link and 

𝜃2  is the angular position of the second pendulum link. 𝐿0, 𝐿1, 𝐿2 are the lengths of 

the horizontal arm, the first pendulum link and second pendulum link, respectively. 

Moreover, 𝑚0, 𝑚1 and 𝑚2 are the mass of the horizontal arm, the first pendulum link 

and second pendulum link, respectively. 

 

(a)                                              (b) 

Figure 1.11. DLRIP: (a) physical model and (b) real 

experimental implementation [40] 
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1.4.3. Triple link rotary inverted pendulum 

The case studied in this thesis is as the one depicted in Figure 1.12. Figure 1.12 shows 

examples of a CAD model and real experimental implementation of TLRIP developed 

in our Laboratory (ARRL) in the Department of Mechatronics Engineering at Kocaeli 

University. Three hinged links connected in series will be mounted over a horizontal 

arm which gives the system a rotary motion. The apparatus is commonly named either 

TLRIP. The TLRIP is composed of a horizontal arm which is controlled by a torque 

servo motor, attached to the three vertical pendulum links. A balance mass can be 

mounted on the horizontal arm to maintain the balance inertia of the system. The angle 

of the horizontal arm link is 𝜃1 and the angles of three vertical pendulum links are 𝜃2, 

𝜃3 and 𝜃4. 𝐿1 is the length from the centre of horizontal arm to the first pendulum link. 

𝐿2, 𝐿3, 𝐿4 are the lengths of the first, second and third pendulum links respectively. 

𝑚1 , 𝑚2 , 𝑚3  and 𝑚4  are the mass of the horizontal, first, second and third links, 

respectively. The three rotary pendulum links have two equilibrium points in the 

upward and downward positions. 

  

(a)                                                                       (b) 

Figure 1.12. TLRIP: (a) CAD model and (b) real experimental implementation 
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It is clear from the mechanical construction of the TLRIP that by rotating the horizontal 

arm from side to side, the angles of the links will be affected. The controller 

implementation is based on manipulating those angles to make them equal to 

predetermined angles values. More physical variables parameters should be measured 

to obtain appropriate information about the system’s dynamic behaviour.  

1.4.4. Pendubot 

In contrast to the TLRIP, the mechanical configuration of the IPS can be rotational 

with a radial pendulum. This system can be called “Pendubot”. A physical model and 

real experimental implementation example of a Pendubot are shown in Figure 1.13. 

The angle of the first pendulum link (𝜃1) is controlled by a torque motor directly, and 

the angle of the second pendulum (𝜃2) is freely hinged. The second pendulum link 

moves freely around the first link, and the control objective is to bring the system to 

the stable equilibrium points [41-43]. Pendubot is used for nonlinear control research, 

for education in various concepts as nonlinear dynamics, robotics and control system 

design. 

 

(a)                                                                (b) 

Figure 1.13. Pendubot: (a) physical model and (b) real experimental 

implementation [44] 

In Figure 1.13, 𝜏 is the input torque motor in the first pendulum link. 𝜃1 and 𝜃2 are the 

angular position of the first and second pendulum links, respectively. 
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1.4.5. Acrobot  

Figure 1.14 shows examples of a physical model and real experimental implementation 

of an Acrobot system. It is a planar two-links robotic arm in the vertical plane. Acrobot 

has an actuator at the elbow (active joint) but doesn't have actuator at the shoulder 

(passive joint), and it is working against gravity. The Acrobot system resembles a 

gymnast on a parallel bar, which controls his motion predominantly by an effort at the 

waist [45]. The most important control task studied by the Acrobot system is the 

swing-up control, in which the system must use the elbow torque to move the system 

into a vertical configuration then balance [46]. 

  

          (a)                                                         (b) 

Figure 1.14.  Acrobot: (a) schematic model and (b) real experimental 

implementation [47] 

𝜏 is the input torque motor in the second pendulum joint (active joint). 𝜃1 and 𝜃2 are 

the angular position of the first and second pendulum links, respectively. 

1.4.6. Reaction wheel pendulum 

RWP is a variant of IPS, was first introduced by Spong [48]. It has a pendulum link 

which can spin freely around the support point at one of its ends. The RWP have a 

torque servo motor attached to the extremity of the pivot, acting on a wheel of inertia 

with which the oscillations of the wheel are controlled, due to the reaction torque 𝜏. 

The physical model of the RWP system is depicted in Figure 1.15. 𝜑 is the angle of 

the pendulum link in the vertical position. 𝛼 is the angle between the pendulum and 
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the wheel. 𝜃  is the angle between the vertical axis and the wheel axis. The RWP 

presents two control problems: the first is to maintain the local stability of the system 

around the equilibrium position. The second control problem is to swing up the 

pendulum link from the rest position to the upright vertical position. [49]  

 

Figure 1.15. Physical model of the RWP  

1.5. Single Actuator Rotary Parallel IPS 

1.5.1. Rotary twin inverted pendulum 

A physical model and example of a real experimental implementation of a RTIP are 

shown in Figure 1.16. Similar to SLRIP, the RTIP has three parts: rotary horizontal 

arm, first pendulum link (the long one) and second pendulum link (more short than the 

first pendulum link). Among them, the rotary horizontal arm is driven by a torque 

servo motor. The first and second pendulum links are attached to the horizontal arm. 

The two pendulum links do 2 DOF oscillation in the vertical plane, perpendicular to 

the horizontal arm, only when they are driven by the horizontal arm. The aim is to 

stabilise the two pendulum links in the upward position [50-51]. 𝜏  is the input torque 

of applied by the servo motor to the horizontal arm. 𝜃1 stands for rotation angle of the 

rotary arm, 𝜃2 , 𝜃3  represent the angle of the first and second pendulum deviation from 

the vertical position, respectively. 
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          (a)                                                                (b) 

Figure 1.16. RTIP: (a) physical model and (b) real experimental implementation [52] 

1.5.2. Rotary triple link inverted pendulum 

The physical model of a RTLIP is depicted in Figure 1.17. The RTLIP has six parts: 

three rotary horizontal arms, first pendulum link (the long one), second pendulum link 

(average length), and third pendulum link (the short one). The three rotary horizontal 

arms are attached to the shaft of the servo motor [51]. The first, second and third 

pendulum links are attached in the extremity of the three horizontal arms, respectively. 

The three pendulum links do 3 DOF oscillation in the vertical plane, perpendicular to 

the horizontal arm, only when they are driven by the horizontal arm [53]. The aim is 

to stabilise the three pendulum links in the upward position. 𝜏  is the input torque 

applied by the servo motor to the horizontal arm. 𝜃0 is the rotation angle of the rotary 

arm. 𝜃1 , 𝜃2  and 𝜃3  are the angles of the first, second and third pendulum links, 

respectively. 

1.6. Multi-Actuator Planar IPS 

1.6.1. Linear-linear planar inverted pendulum  

In some mechanical configuration, the pendulum link can be moved about two axes 

instead of one axis. The base point of the pendulum link is actuated in 2 DOF, which 
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form a horizontal plane. These types of configuration are called the Planar Inverted 

Pendulum (PIP). The PIP referred to as a spatial inverted pendulum, and it is a more 

complex system compared to the linear and rotary inverted pendulum [54]. A physical 

model and example of a real experimental implementation of the LLPIP are shown in 

Figure 1.18. The LLPIP comprises two rails with 𝑋 −axis and 𝑌 −axis, the cart is 

driven with two servo-motor in each axis, and a pendulum link. The aim of this system 

is to stabilise the pendulum link in the upward vertical position [55]. 

 

Figure 1.17. A physical model of the RTLIP 

 

             (a)                                                   (b) 

Figure 1.18. LLPIP: (a) physical model and (b) real experimental 

implementation [56] 
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1.6.2. Rotary-rotary planar inverted pendulum 

A physical model and 3D example of a RRPIP are shown in Figure 1.19. The RRPIP 

consists of three main part: two horizontal arms and a pendulum link. The first 

horizontal arm is connected to the shaft of the servo-motor and allowed to revolute in 

the horizontal plane. The two horizontal arms are attached with a revolute joint in the 

extremity, and a servo motor is attached to the joint to provide a torque to rotate it in 

the horizontal plane. The pendulum link is attached link in joint at the other extremity 

of the second horizontal arm. [57] 

 

          (a)                                                                 (b) 

Figure 1.19. RRPIP: (a) physical model and (b) 3D model  

𝜃1 is the angular position of the first horizontal arm. 𝜃2 is the angular position of the 

second horizontal arm. 𝜃3 is the angular position of the pendulum link measured with 

respect to the vertical upright position. 𝜏1, 𝜏2 are the input torques in the joints of the 

first and second horizontal arms, respectively. 

1.6.3. Rotary-linear planar inverted pendulum 

A 3D model example of a RLPIP is shown in Figure 1.20. The RRPIP is composed of 

a horizontal arm, and a pendulum link module mounted to the horizontal arm. The 

mechanism of RRPIP has two different motion inputs (rotational and linear). The 

horizontal arm is connected with the shaft of the servo-motor and allowed to revolute 
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in the horizontal plane. Furthermore, the pendulum link moves linearly all along the 

horizontal arm. 

 

Figure 1.20. A 3D model example of a RLPIP  

1.7. Multi-Actuator 3D IPS 

1.7.1. Two-wheeled inverted pendulum mobile robot 

TWIPMRs are underactuated mechanical systems. They are used in the autonomous 

robotics, intelligent vehicles, etc…. Mobility and dexterity are the two principal 

advantages of this type of robots. TWIPMRs are based on the concept of IPS are also 

known as self-balancing robots, and they are useful used like service robots, human 

transportation and baggage transportation... etc. TWIPMR has the capability to stand 

firm with its two wheels (balancing) and make a sharp U-turn (rotation). The research 

on the TWIPMR is known as the self-balancing robot [58]. The system is inherently 

unstable and without external control would roll around the wheels’ rotation axis and 

eventually fall. By driving the motors in the right direction returns the system to a 

stable upward position [59]. The two wheels of the robot are only two points of contact 

with the ground. TWIPMRs are classified into two class: without input coupling where 

the actuator is mounted on the wheel, and with input coupling where the actuator is 
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mounted on the pendulum [60-61]. The first class is more complex in order of 

mechanical construction, but it is easier in controller design owing to the absence of 

input coupling between the wheel and pendulum. The second class is easier in order 

of mechanical construction, but it is more challenging in controller design due to the 

input coupling between the wheel and the pendulum. A physical model and example 

of a real experimental implementation of a TWIPMR are shown in Figure 1.21. It is 

required to balance the pendulum at a zero degrees (𝜃 = 0°) . 

 

          (a)                                                          (b) 

Figure 1.21. TWIPMR: (a) physical model and (b) real experimental implementation 

[62] 

Furthermore, this type of system can be driven with multi-wheel, called Multi-

Wheeled Inverted Pendulum Mobile Robot (MWIPMR)  

1.7.2. Quadrotor driven inverted pendulum 

Recently, QDIP has attracted much attention in the field of ACE. QDIP is a nonlinear 

underactuated mechanical system. The system is composed of Quadrotor and an 

inverted pendulum link mounted on the top of the Quadrotor. The aim is to stabilise 

the pendulum link in the upward vertical position in the space. QDIP is an 8-DOFs 

system (Quadrotor have 6-DOFs and the inverted pendulum have 2-DOFs). Linear and 

nonlinear controllers can be designed to stabilise the whole system. A physical model 

and example of a real experimental implementation of a QDIP are shown in Figure 

1.22. [63] 
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Figure 1.22. QDIP: (a) physical model and (b) real experimental 

implementation [64] 

1.8. Control Methods Used for the IPS 

According to the literature reviews, there are two balance points for the IPS. The first 

balance point is when the pendulums are in the downward position and stable. The 

second equilibrium point is when the pendulums are in the upward and unstable. Figure 

1.23 shows an example of the stable and unstable equilibrium points of a DLLIP. 

 

Figure 1.23. Example of the stable and unstable equilibrium points of a DLLIP 
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Each equilibrium point creates a different control problem. The swing-up control 

problem consists of swinging of the pendulums from the downward position (stable 

equilibrium point) to the upward position (unstable equilibrium point) using the input 

torque provided by a motor. A Linear or nonlinear controller need to be applied to 

maintain the stability control of pendulums in the upward vertical position. The 

stability control problem considers the control of the system once it is already in the 

upward position (unstable equilibrium point). The pendulum links are held in the 

upward position and stationary by the experimenters while the controller is initialised.   

Furthermore, the anti-swing control problem exists. Its consists to control the 

pendulums from the upward position (determined angle position of the pendulum) to 

the downward position using the torque motor in order to minimise the oscillation and 

vibration of the pendulum links The anti-swing control method is usefully used for the 

crane systems. There are three basic control problems in IPS. Moreover, the applied 

control methods can be different for each model of IPS. 

1.8.1. Stabilisation control problem 

According to the works existing in the literature, it can be seen that the control methods 

used for the stabilisation problem are: PID, optimal control, Fuzzy logic and Sliding 

mode control methods…etc. These methods are the basic methods used to stabilisation 

control problem of the IPS. 

In 1995, D.J. Block et al. [65], are mounted two pendulum links in a fixed place, and 

only the first pendulum link was driven by a torque motor. It is a concept of a two links 

underactuated planar revolute robot (Pendubot). The system is used for research and 

instruction in the field of ACE. The stabilisation problem for the Pendubot is solved 

by linearising the equations of motion about equilibrium point, and a linear state 

feedback controller is developed. Furthermore, the partial feedback linearization 

method is applied to swing up the Pendubot. 

 In 1996, Li-Xin Wang [66], has developed a stable adaptive fuzzy controller for the 

tracking application of SLLIP. This technique is used in order to keep the inverted 

pendulum in an upward position (The unstable equilibrium point). The adaptive fuzzy 

controller is constructed from a set of fuzzy rules. The fuzzy parameters are adjusted 

on-line according to some adaptation law for the purpose of controlling the plant to 
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track a given trajectory. The adaptive fuzzy controllers are used to control the SLLIP 

to track the trajectory. The simulation results indicate that adaptive fuzzy controllers 

can perform successful tracking. 

In 1996, F. Cheng et al. [67], have developed a high accuracy FLC to stabilise a DLLIP 

in the upright position. The composition coefficient is gained by combining the fuzzy 

control theory with the optimal control theory. Thus a high-resolution fuzzy controller 

is obtained. This controller has verified under a real experimental setup of a DLLIP. 

In 1998, K.G. Eltohamy et al. [16], have developed a single-input feedback controller 

for a TLLIP by using a nonlinear optimisation technique. This technique is necessary 

because the traditional linear design method cannot incorporate the nonlinear 

dynamics of the system and its physical limitations. The TLLIP has been successfully 

stabilised about the vertical upward position through a good understanding of the 

factors influencing to the control effort. According to obtained results, the linear 

controller which doesn't look robust enough to achieve stability. 

In 2002, J. Aracil, F. Gordillo and J.A. Acosta [68],_ have developed a technique for 

obtaining stable and robust oscillations around the upright position in a SLRIP (Furuta 

pendulum). A control law has been introduced that drives the system to a stable limit 

cycle. This control law belongs to the family of energy shaping methods. The results 

have been verified in both simulation and experiment. 

In 2010, Nasir et al. [69], have developed a conventional controller PID controller and 

modern controller Sliding Mode Control (SMC) for a SLLIP. Both control methods 

are succeeded to control the system for the stabilisation control problem. Moreover, 

the two controllers are compared according to the time specification performance. The 

performance of controllers is given based on the simulation results. The result indicates 

that SMC produced better response compared to the PID control strategy. 

In 2010, S. Kizir and Z. Bingül [70], are focused on both stabilisation and swing-up 

problems for a real experimental setup of a SLLIP. Different controllers are tested 

using the experimental setup. The FLC is used to swing-up the pendulum. PID 

controller is used to stabilising the pendulum in the unstable equilibrium point. 

Furthermore, full status feedback and fuzzy logic methods are successfully applied to 
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control the pendulum link in the upward position. The robustness of each controller 

method is verified in both simulation and experimental environment. 

In 2012, J. Zhang and W. Zhang [71], have developed an LQR self-adjusting controller 

to stabilise a planar double inverted pendulum system. LQR self-adjusting controller 

is based on an optimise factor. Furthermore, the LQR output is refined through the 

optimise factor. By using this method, the control action exerted on the pendulum is 

improved. The obtained results indicate that the controller ensured a fast response, 

good stability and robustness in the different operating conditions applied to the system. 

In 2013, B.Li [72], has worked on the stabilisation control problem of a DLRIP in his 

master thesis. An LQR controller is designed for the system, and its stability analysis 

is presented in the Lyapunov method. To improve the performance of the LQR 

controller, a direct adaptive fuzzy control is developed. According to the simulation 

results of the two control algorithms, the Adaptive Fuzzy Logic Controller (AFLC) 

can increase the LQR Performance and the robustness of the DLRIP. The simulation 

results of the two controllers obtained by their comparative analysis indicate that the 

AFLC is able to enhance the LQR by increasing its robustness in the DLRIP. 

In 2013, Glück et al. [20], are focused on both stabilisation and swing-up problems 

control problems for a real experimental setup of a TLLIP. Nonlinear feedforward 

controller and optimal feedback controllers are applied for the swing-up problem. A 

time-variant Riccati controller was developed in order to stabilise the system along the 

nominal trajectory, and an Extended Kalman Filter (EKF) was used to estimate the no 

measurable states. 

1.8.2. Swing-up control problem  

According to the works existing in the literature, it can be seen that the control methods 

used for the swing-up control problem are generally divided into, feedforward and 

feedback control, energy shaping, nonlinear model predictive control, and optimum 

trajectory approaches...etc.  

In 1992, K. Furuta et al. [73], have proposed a new bang-bang type state feedback 

control algorithm which can swing up the pendulum to the vertical upward position. 
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In the control system, a conventional LQ control method is employed to maintain the 

pendulum in the unstable equilibrium point. Experimental results have shown that the 

proposed method is robust for parameter uncertainties of the controlled system 

computing with feedforward control. 

In 1993, M. Yamakita, K. Nonaka and K. Furuta [74], have proposed a method to 

transfer a state of a double pendulum from a stable equilibrium point to an unstable 

equilibrium point. The proposed method is applied to real experimental 

implementation DLRIP. The proposed method is effective for the swing-up control 

problem. A learning control method is used to modify feedforward control. The 

proposed method is a combination of feedforward and feedback controls. The control 

is not robust when feedforward control is used, and the learning process should be 

repeated if the system parameters are changed. 

In 1995, M. Yamakita, M. Iwashiro, Y. Sugahara and K. Furuta [75], have proposed 

robust methods to swing up a double pendulum links from one equilibrium to the 

others. Two types of control methods are developed for the swing-up control. One is a 

control method based on the energy function, and the other is a method based on the 

control, which makes a limit cycle in the system stable. The proposed methods are 

effective for a real experimental implementation DLRIP.  

In 1997, S. Yasunobu and M. Mori [76], have proposed a fuzzy controller based on 

formulated human's control strategy. It was applied to a SLLIP. This controller is 

applied to an inverted pendulum link which has unknown parameters. The swing-up 

control and the stabilisation control are modelled using FLC. The effectiveness of the 

fuzzy control method by human control strategy was verified in both simulation and 

experimental environments. 

In 2000, K.J Aström and K. Furuta [77-78], have studied the swing-up strategy based 

on the energy control method applied to a SLRIP. Simulation results of different 

situations are explained. 

In 2002, J. Rubi, A. Rubio and A. Avello [79], are studied the swing-up problems for 

a DLLIP. A technique to design controlled trajectories for nonlinear underactuated 

mechanisms is developed. The reference trajectory is obtained as a result of the 
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optimisation of an initial trajectory defined through interpolation by splines. This 

reference is tracked using a gain scheduling linear-quadratic optimal controller 

specifically designed for the reference trajectory. Simulation and the experimental 

results confirm the validity of this approach. 

In 2007, Graichen et al. [80], are studied the swing-up and the stability problems for 

DLLIP. A nonlinear feedforward is used for the swing-up problem. Further, a linear 

feedback controller is used for the stabilisation control problem. The two controllers 

are verified in a real implementation of a DLLIP.  

In 2014, P. Jaiwat and T. Ohtsuka [81], have studied the swing-up strategies based on 

the nonlinear model predictive control for DLLIP. The nonlinear model predictive 

controller is verified in both simulation and real experimental environments. 

1.8.3. Anti-swing control problem  

According to the works existing in the literature, the control methods used for the anti-

swing control problem are generally nonlinear controllers. 

In 1998, Ho-Hoon Lee [82], propose a new dynamic model of a 3-D crane system, it 

is derived based on a newly defined 2DOF swing angle. For the anti-swing control 

problem, a decoupled control scheme based on the dynamic model linearised around 

the stable equilibrium point is developed. The theoretical and experimental results 

show that the proposed control scheme guarantees both rapid damping of load swing 

and accurate control of crane position and rope length with excellent transient 

responses for the practical case of simultaneous travelling, traversing, and slow 

hoisting motions. 

In 2000, B. Vikramaditya and R. Rajamani [83], have proposed a nonlinear trajectory 

tracking controller for a crane system. The state equations of the system are highly 

nonlinear and closely coupled with more DOFs than the number of independent 

actuators available. A modified sliding-surface formulation was developed to design 

the controller. Theoretical bounds were established for tracking the performance of the 

controller. Stability of the control system has been demonstrated both to random initial 

conditions and parameter variations while meeting the desired trajectory tracking 

performance specifications. 
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In 2006, Cheng-Yuan Chang et al. [84], have proposed an enhanced adaptive sliding 

mode fuzzy approach witch applied to control the position and load swing of a 3-D 

overhead crane system. This method includes the robustness and model-free properties 

of the sliding mode and fuzzy logic controllers, respectively. An adaptable slope of the 

sliding surface is given, and the chattering phenomenon of the sliding mode controller 

is discussed to enhance the control performance. Moreover, this work provides a 

compensating algorithm to the control dead zone of an overhead crane system. The 

simulation results demonstrate the effectiveness of this method. 

In 2010, MI. Solihin et al. [85], have developed a Fuzzy-tuned PID controller for a 

robust anti-swing controller applied to a crane system.  The proposed Fuzzy-tuned PID 

utilises fuzzy system as PID gain tuners to achieve robust performance to parameters’ 

variations in the gantry crane. The experimental results show that the proposed anti-

swing controller has a satisfactory performance. Besides, the proposed method is 

straightforward in the design. 

In 2017, Zhongcai Zhang et al. [86], have proposed flatness-based regulation 

controllers for the anti-swing of crane system. The anti-swing and high-speed 

positioning problems are considered for constant cable length crane and varying cable 

length crane, respectively. Furthermore, nonlinear feedback control and a combined 

application of finite-time control and Lyapunov-based control are used to facilitate the 

development of the proposed control laws, which, unlike the traditional energy-based 

control law, is designed in a much simpler manner. 

1.9. Application Fields of the IPS 

IPSs have a wide range of applications. The design and development of these systems 

are increasing each day. The pendulum systems were started to be used in the 1650s, 

witch the first pendulum structure was integrated into the clock structure. Figure 1.24 

shows an example of pendulum clocks. The movement mechanism of the system 

depends on the oscillation of the pendulum processing, and it is used as a simple time 

counting tool. 
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Figure 1.24. Example of a pendulum clock 

Furthermore, balance problems are similar to a simplified IPS problem. Balancing 

systems are used in the robotic field, and they have been developed according to the 

IPS. Additionally, the control problem in the industrial robot arms is similar to the 

control problem of an IPS, such as the control problem of crane systems which used 

to carry loads with minimal oscillation. The oscillation that occurs on the crane 

decreases transport efficiency. Therefore, it is important to solve the swing control 

problem. The solution to this problem is considered as the solution to the pendulum 

problem. Hence, the control principle of the IPS has a wide place in the crane system. 

An example of a gantry crane system is shown in Figure 1.25.  

Finally, one of the most famous applications of the IPS that is commercially available 

is the Segway system, as shown in Figure 1.26. Segway system is a mobile IPS. It has 

been paid attention due to mobility whose structure is a combination of an IPS and a 

wheeled mobile robot. Segway is a typical mobile pendulum a transportation system 

that has been commercialised to carry a human. 
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Figure 1.25. Example of a gantry crane system 

According to the above applications with many more render the IPS of great 

importance for engineers. This is the main reason why IPS is chosen frequently for 

testing new developed control methods. Furthermore, the construction of IPS in a 

university laboratory is relatively easy. Many universities afford the necessary 

equipment for testing the developed control methods in real-time, making it easier for 

students to engage in the problem. Overall, it can be seen that IPSs are a problem that 

is highly applicable in everyday applications. 

 

Figure 1.26. Segway system [150] 
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1.10. Objectives and Contributions of the Thesis 

The main objective of this research is to develop an anti- swing up control of a single, 

double and triple link rotary inverted pendulum with nonlinear friction models. TLRIP 

system has been developed in the ARRL, in the Mechatronics Engineering Department 

part of the Faculty of Engineering at Kocaeli University. In reality, the control of three 

pendulum links attached to a rotary horizontal link seems to be impossible. But 

nowadays, according to computer control power, can give the ability to balance three 

or more pendulum links. The system can be used in classrooms demonstration and 

departmental exhibits. Physically, the system must be robust enough to permit people 

to attempt balancing the pendulum manually to give them a better idea about the degree 

of difficulty applied in the control method phase. The system is a highly nonlinear and 

open-loop unstable system that makes control more challenging. It is an intriguing 

subject from the control point of view due to its intrinsic nonlinearity. On the other 

hand, the system includes a nonlinearity caused by the existing frictions in the joints. 

Common control approaches require a good knowledge of the frictions in the system's 

joints and accurate friction estimation to obtain desired performances of feedback 

controllers. However, the frictions have high nonlinear values resulting in steady-state 

errors, limit cycles, and poor performance of the system [93]. It has an influence on 

the system's response that must be taken seriously. Moreover, friction estimation 

ameliorates the system's quality and dynamic. In this project, NFFEMs are developed 

to estimate the joint friction coefficients in our system and compared with AFEMs. 

The different versions of AFEMs and NFFEMs are generated based on each of the 

following friction estimation models: NCFM, LFM, and NLFM. This study aims to 

obtain joint friction models that depend on both velocity and acceleration in a large 

range of motion trajectory that involves difficult and sudden large changes. 

Additionally, two different control problems are studied for this system, stability and 

anti-swing control problems. For the stabilisation control problem of the system, 

nonlinear controllers such as FLQR and FLQG are developed. The FLQR and FLQG 

controllers were compared to the LQR and LQG based on the response parameters of 

controllers and robustness analysis under internal, external and noise disturbances. For 

the anti-swing control problem of the system, a nonlinear RBNF-LQR controller is 

developed. The RBNF-LQR is compared with FLQR and the LQR controllers. 
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Moreover, the anti-swing controllers' performances were compared based on 

robustness analysis under external disturbance. The anti-swing control of system with 

NLFMs are verified in real experimental setup. The contributions of this thesis can be 

summarized as follows: 

- A detailed review of the IPSs based on their actuator configuration and motions 

type. 

- The complex nonlinear dynamics models of the SLRIP, DLRIP and TLRIP are 

derived using the Euler-Lagrange formulation, explained in detail in chapter 2.  

- All friction models existing in the literature depend only on velocity. However, the 

friction model developed here depends on both velocity and acceleration. This 

approach has enabled us to obtain a two-dimensional friction model.  

- The coefficients of all friction models in the literature were constant when the 

physical quantities change. On the other hand, the coefficients of the friction 

models in this thesis vary depending on the state of the velocity and acceleration. 

Hence, this friction model allows for better estimation of the effects of friction in 

different velocity and acceleration conditions. 

- Much of existing papers in the literature have studied only the frictions of the linear 

motion which depends on linear velocity and force. This thesis examines frictions 

on the joints which have hard rotational motions. 

- In this thesis, a nonlinear FLQR and FLQG controllers are developed to stabilise 

the pendulum links of the system in the upward vertical position. In order to obtain 

the desired angular position of pendulums with a better dynamic response, 

compared to the classical LQR and LQG controllers, the fuzzy controllers were 

combined with the LQR and LQG in objective to adjust the closed-loop controller 

feedback gains, respectively. 

- Nonlinear RBNF-LQR controllers are developed for an anti-swing control of the 

system. In the proposed RBNF-LQR controllers, the positions and velocities of 

state variables multiplied by their LQR gains are trained by using two RBNNs 

architecture. The output of the two RBNNs are used as the input variables of the 

fuzzy controller. The novel architecture of the RBNF controller is developed in 

order to obtain better control performance than the classical ANFIS. 
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2. SYSTEM MODELING AND DYNAMIC SIMULATION 

In this chapter, kinematic, nonlinear dynamic models and Jacobian matrix of each 

model (SLRIP, DLRIP and TLRIP) are explained in details. The kinematic parameters 

of each model are described corresponding to its design. The kinematics model was 

derived using an adaptation of the DH convention. The nonlinear dynamics model was 

derived based on the Euler-Lagrange formulation. Furthermore, rotation and 

transformation matrices of the kinematics model are used to determine the dynamic 

model. Additionally, the Jacobian matrix of each system is calculated, which used to 

estimate the parameters of the system. To verify the mathematical model of each 

system, a numeric model is developed using the Matlab/SimMechanics toolbox. A 

comparison of the pendulum joint positions obtained from the mathematical and 

Matlab/SimMechanics model of each system are explained. Finally, in order to 

examine the effects of the inertia of the three pendulum links, the dynamic equations 

of the TLRIP were solved and simulated in three different inertia cases.  

2.1. Modeling of the SLRIP 

2.1.1. Kinematic model of the SLRIP 

Solid 3D model and kinematics parameters of the SLRIP are shown in the Figure. 2.1. 

The SLRIP comprises a horizontal rotary link and one pendulum link. A direct drive 

brushless DC torque motor servo system is mounted to provide torque to the horizontal 

arm link to control the system. The rotary arm rotates in the horizontal plane. The 

pendulum link is connected to the extremity of the rotary link. The pendulum link 

moves as an inverted pendulum in a plane perpendicular to the rotary link. A balance 

mass is attached to the other extremity of the horizontal arm to maintain the balance 

inertia of the system. The angle of the rotary link (θ1) and the angles of the pendulum 

links (θ2) of the SLRIP are illustrated in Figure 2.1. The SLRIP is assumed to be a 

serial kinematic chain.  The kinematic model of the system is derived based on the DH 

convention [87]. Rotation and homogeneous transformation matrices between 

coordinates the SLRIP are calculated. The parameters and variables of the model are 
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given in Table 2.1. The physical parameters of the SLRIP are given in Table 2.2. DH 

Parameters of the SLRIP are given in Table 2.3. 

 

Figure 2.1. Solid 3D model and kinematic 

parameters of the SLRIP 

Table 2.1.  Parameters and physical variables of the system 

Symbol Description Unit 

θi The angle of the i-th link. [rad] 

 τi Torque for the i-th link. [Nm] 

I1 Inertia tensor of i-th link. [kg · m2] 

Izzi Z-component of the inertia tensor of i-th link. [kg · m2] 

 mi Mass of i-th link. [kg] 

 mB Mass of balance mass. [kg] 

 Li Length of i-th link. [m] 

 bi Viscous damping coefficient of i-th link. [N-m-s/rad] 

g Gravity [N · kg−1] 
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Ti
i−1  denotes a homogeneous transformation matrix from a coordinate attached to an 

i-th link to a coordinate attached to i-1-th link, i = 1,2,3,4. Ti
i−1   is given in equation 

(2.1). [88] 

Table 2.2. Physical parameters of the SLRIP 

Parameters  Values Parameters  Values Parameters  Values 

 m1 
3.1129 

[kg] 
 L1 

0.44 

[m] 
 Izz2 

0.0025 

[kg · m2] 

 m2 
0.08 

[kg] 
 L2 

0.526 

[m] 
 b1,2  

0.0024 

[N-m-s/Rad] 

 mB 
3.1469 

[kg] 
Izz1 

0.4398 

[kg · m2] 
g 

9.81  

[N kg−1] 

 

Table 2.3.  DH-Parameters of the SLRIP 

Coordinate αi−1 ai−1 di θi 

1 0 0 0 θ1 

2 −
𝜋

2
 0 L1 θ2 −

𝜋

2
 

3 0 L2 0 0 

 

Ti
i−1 = [

cos 𝜃𝑖 −sin 𝜃𝑖 0                 𝑎𝑖−1

sin 𝜃𝑖cos 𝑎𝑖−1 cos 𝜃𝑖cos 𝑎𝑖−1 −sin 𝑎𝑖−1 −sin 𝑎𝑖−1 𝑑𝑖

sin 𝜃𝑖sin 𝑎𝑖−1

0
cos 𝜃𝑖sin 𝑎𝑖−1

0

cos 𝑎𝑖−1

0
cos 𝑎𝑖−1 𝑑𝑖

1

]                  (2.1) 

The homogeneous transformation matrix of the SLRIP is derived in equation (2.2) 

using the DH-parameters in Table 2.3. 

T3
0 = T1

0 T2
1 T                                                                                                                      (2.2)3

2   

Where  

T1
0 = [

cos θ1 −sin θ1 0 0
sin θ1 cos θ1 0 0

0
0

0
0

1
0

0
1

] T2
1 = [

sin θ2 cos θ2 0 0
0 0 1 L1

cos θ2

0
− sin θ2

0
0
0

0
1

]                     (2.3) 
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T3
2 = [

1 0 0 L2

0 1 0 0
0
0

0
0

1
0

0
1

]                                                                                                        (2.4) 

T3
0 = 

[

sin θ2 cos θ1 cos θ2 cos θ1 −sin θ1  L2 cos θ1 sin θ2 − L1 sin θ1    

sin θ2 sin θ1 cos θ2 sin θ1 cos θ1     L1 cos θ1 + L2 sin θ1 sin θ2

cos θ2

0
− sin θ2

0
0                                   
0                                   

L2 cos θ2

1

] (2.5) 

The position vector is  given from the calculated homogeneous transformation matrix  

T3
0 , as follows: 

[

Px

Py

Pz

] = [
L2 cos θ1 sin θ2 − L1 sin θ1  
L1 cos θ1 +L2 sin θ1 sin θ2

L2 cos θ2

]                                                                          (2.6) 

2.1.2. Dynamic model of the SLRIP 

The nonlinear motion equations of this system are derived based on the DH convention. 

The nonlinear equations of the RIPS may be given in a matrix form, given in equation 

(2.7): [89] 

D(θ)θ̈ + C(θ, θ̇) + G(θ) =   [
τ1

0
0

]                                                                                    (2.7) 

Where the vector of joint positions is θ, the vectors of angular velocities is θ̇, and the 

vector of angular accelerations is θ̈. D(θ) is the mass matrix, C(θ, θ̇) is Coriolis and 

Centripetal force vector,  G(θ) is the gravity vector and τ1 is the torque input in the 

horizontal link. The dynamic equations of RIPS are derived using the "Euler-

Lagrangian" method [90]. The terms of the mass matrix are calculated using equation 

(2.8) 

D(θ) = ∑[(Ai)
TmiAi + (Bi)

TIiBi]                                                                               (2.8)

n

i=1

 

mi is the mass of i-th link; Ii  ∈  R 3 × 3  is the link inertia tensor with respect to the 

frame attached at the link centroid and parallel to the corresponding attached frame. 
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Ai and Bi∈ R 3×n are Jacobian matrices.  The terms of Coriolis and Centripetal vector 

are calculated using the equations as follows: 

C(θ, θ̇) =  ∑ ∑[ckj
i (θ)θ̇kθ̇j]

n

j=1

n

k=1

                                                                                         (2.9) 

ckj
i (θ) =

∂

∂θk
 Dij (θ) −

1

2

∂

∂θi
 Dkj , 1 ≤ i, j, k ≤ n                                                      (2.10) 

The gravity vectors can be calculated using equation (2.11) 

G(θ) = − ∑ ∑[gk mj Aki
j (θ) ]

n

j=1

n

k=1

                                                                                 (2.11) 

The elements of each matrix calculated are calculated as follows.  ∆ℎ1
and ∆ℎ2

 are 

center of gravity vectors of the first and the second link, respectively. They are given 

in equations (2.12) and (2.13). The two vectors are given according to the coordinate 

system of each link. 

∆h1
= [0

L1

2
0 1] T                                                                                                   (2.12) 

∆h2
= [

L2

2
0 0 1]

T

                                                                                                   (2.13) 

Im1 and Im2 are the inertia tensors of the first and the second link respectively. 

Im1 = [

0 0 0
0 0 0
0 0 Izz1

] , Im2 = [

0 0 0
0 0 0
0 0 Izz2

]                                                                  (2.14) 

According to the main coordinate system, the coordinates of the mass center of each 

link are given in equations (2.15) and (2.16). 

h1 = T1
0  ∆h1

= [

cos θ1 −sin θ1 0 0
sin θ1 cos θ1 0 0

0
0

0
0

1
0

0
1

]

[
 
 
 
 
0
L1

2
0
1 ]

 
 
 
 

 =  

[
 
 
 
 
 −

L1 sin θ1

2
L1 cos θ1

2
0
1 ]

 
 
 
 
 

                         (2.15) 
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h2 = T2
0  ∆h2

= 

[
 
 
 
 
 
 
L2 cos θ1 sin θ2 

2
 − L1 sin θ1

L2 sin θ1 sin θ2 

2
+ L1 cos θ1

L2 cos θ2

2
1 ]

 
 
 
 
 
 

                                                          (2.16) 

Where  

T2
0 = [

sin θ2 cos θ1 cos θ2 cos θ1 −sin θ1 − L1 sin θ1    

sin θ2 sin θ1 cos θ2 sin θ1 cos θ1     L1 cos θ1

cos θ2

0
− sin θ2

0
0             
0             

0
1

]                          (2.17) 

To obtain the Jacobian matrix of the first link, the derivative of the vector h1 is 

calculated according to θ1 and θ2. 𝜉𝑖 indicates the joint type variable (𝜉𝑖=1 for rotary 

joint). i present the unit vector of the third column of the coordinate system. 

z1 = R1
0  i2 = [

cos θ1 −sin θ1 0
sin θ1 cos θ1 0

0 0 1

] [
0
0
1
] =  [

0
0
1
]                                                    (2.18) 

Furthermore, the variables z1 and ξ1 are used. The first link is a rotational link 𝜉1 = 1 

and b1 =  ξ1z
1 = [0 0 1]T . The Jacobian matrix of the first link is given as 

follows: 

J1 =

[
 
 
 
 
 
 
 

∂

∂θ1
(−

L1 sin θ1

2
)

∂

∂θ2
(−

L1 sin θ1

2
)

∂

∂θ1
(
L1 cos θ1

2
)

∂

∂θ2
(
L1 cos θ1

2
)

0
0
0
1

0
0
0
0 ]

 
 
 
 
 
 
 

=  

[
 
 
 
 
 
 
 −

L1 cos θ1  

2
0

−
L1 sin θ1  

2
0

0
0

     0
     0
    1

                0
                 0
                 0

 
]
 
 
 
 
 
 
 

                   (2.19) 

The Jacobian matrix of the first link can be written in two matrices A1and B1. 

A1 =

[
 
 
 
 −

L1 cos θ1  

2
0

−
L1 sin θ1  

2
0

0
0]
 
 
 
 

 and  B1 = [
0
0
1

0
0
0
]                                                               (2.20) 
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Furthermore, to obtain the Jacobian matrix of the second link, the derivative of the 

vector h2  is calculated according to θ1 and θ2. 

z2 = R2
0  i2 = [

cos θ1 sin θ2 cos θ1 cos θ2 −sin θ1

sin θ1 sin θ2 cos θ2 sin θ1 cos θ1

cos θ2 −sin θ2 0
] [

0
0
1
] =  [

− sin θ1

cos θ1

0

]       (2.21) 

The second link is a rotational link, 𝜉2 = 1  and b2 =  ξ2z
2 = [0 0 1]T  . The 

Jacobian matrix of the second link is given as follows: 

J2 = 

 

[
 
 
 
 
 
 
 
 
 

∂

∂θ1
(
L2 cos θ1 sin θ2 

2
 − L1 sin θ1)

∂

∂θ1
(
L2 sin θ1 sin θ2 

2
+ L1 cos θ1)

∂

∂θ1
(
L2 cos θ2

2
)

0
0
1

∂

∂θ2
(
L2 cos θ1 sin θ2 

2
 − L1 sin θ1)

∂

∂θ2
(
L2 sin θ1 sin θ2 

2
+ L1 cos θ1)

∂

∂θ2
(
L2 cos θ2

2
)

− sin θ1

cos θ1

0 ]
 
 
 
 
 
 
 
 
 

      (2.22) 

The Jacobian matrix of the second link can be written in two matrices A2 and B2. 

A2 =

[
 
 
 
 
 
−

L2 sin θ1 sin θ2 

2
 − L1 cos θ1

L2 cos θ1 sin θ2 

2
 − L1 sin θ1

0

L2 cos θ1 cos θ2 

2
 

L2 cos θ2 cos θ1 

2
−L2 sin θ2

2 ]
 
 
 
 
 

                                    (2.23) 

B2 = [
0
0
1

− sin θ1

cos θ1

0

]                                                                                                         (2.24) 

The mass matrix of first and second links are given in equations (2.25) and (2.26), 

respectively. 

D(θ1) =  m1 A1
TA1 + B1

T I1B1 = [
m1L1

2

4
+ Izz1

0

0 0

]                                        (2.26)  

D(θ2) =  m2 A2
TA2 + B2

T I2B2 



44 

 

= 

[
 
 
 
 m2 (

L2
2 sin2θ2

4
+L1

2) −(
L1 L2 m2 cos θ2

2
) 

− (
L1 L2 m2 cos θ2

2
) (

 L2 
2m2 

4
+ Izz2

)
]
 
 
 
 

                                               (2.27) 

The inertial tensor of each link is calculated  according to the main coordinate system, 

given in the following equations :  

I1 = R Im1 R1
0 T  ,   1

0 I2 = R Im2 R2
0 T                                                                            (2.28) 2

0  

The mass matrix of the SLRIP system is given in equation (2.29) 

D(θ) =  D(θ1) + D(θ2) 

= 

[
 
 
 
 
m1L1

2

4
+ Izz1

+ m2 (
L2

2 sin2θ2

4
+L1

2) −(
L1 L2 m2 cos θ2

2
)

− (
L1 L2 m2 cos θ2

2
) (

 L2 
2m2 

4
+ Izz2

)
]
 
 
 
 

                   (2.29) 

The elements of the velocity coupling matrix of the first link, are calculated as follows: 

C2
11 =

∂

∂θ1
 D21(θ) −

1

2
 

∂

∂θ2
 D11(θ) = −

1

8
(L2

2m2 sin(2θ2))                            (2.30) 

C2
12 = 

∂

∂θ1
 D22(θ) −

1

2
 

∂

∂θ2
 D12(θ) =  − 

1

4
(L1L2m2 sin(θ2))                         (2.31) 

C2
21 =  

1

2

∂

∂θ2
 D21(θ) =   

1

4
(L1L2m2 sin(θ2))                                                         (2.32) 

C2
22 =   

1

2
 

∂

∂θ2
D22(θ) =  

1

2
(L1L2m2 sin(θ2))                                                         (2.33) 

The velocity coupling matrix of the first link is given in equation (2.34) 

C2 = [
−

1

8
(L2

2m2 sin(2θ2)) − 
1

4
(L1L2m2 sin(θ2))

1

4
(L1L2m2 sin(θ2)) 0

]                                       (2.34) 
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In order to find the Coriolis and Centripetal force vector of the SLRIP, each element 

of the velocity coupling matrices (C1 and C2 ) need to verify the equality of the 

elements of the following matrices. 

[
0 0

1

4
(L2

2m2 sin(2θ2))
1

2
(L1L2m2 sin(θ2))

] = [
θ1̇

2
θ1̇θ2̇

θ1̇θ2̇ θ2̇
2 ]                            (2.35) 

 [
−

1

8
(L2

2m2 sin(2θ2)) − 
1

4
(L1L2m2 sin(θ2))

1

4
(L1L2m2 sin(θ2)) 0

] = [
θ1̇

2
θ1̇θ2̇

θ1̇θ2̇ θ2̇
2 ]                  (2.36) 

Coriolis and Centripetal force vector of the SLRIP is given in equation (2.37) 

C(θ, θ̇) = [

1

2
(L1L2m2θ2̇

2
sin(θ2) ) +

1

4
(L2

2m2θ1̇θ2̇ sin(2θ2)) 

−
1

8
(L2

2 θ1̇
2
 m2 sin(2θ2))

]                      (2.37) 

The gravity vector of the SLRIP is given in equation (2.38) 

G = [
0

−
1

2
(L2g m2 sin(θ2) )

]                                                                                         (2.38) 

Based on equation (2.7), the nonlinear equations of the SLRIP system is given in a 

matrix form, as follows: 

[
 
 
 
 
m1L1

2

4
+ Izz1

+ m2 (
L2

2 sin2θ2

4
+L1

2) −(
L1 L2 m2 cos θ2

2
)

−(
L1 L2 m2 cos θ2

2
) (

 L2 
2m2 

4
+ Izz2

)
]
 
 
 
 

[
θ1̈

θ2̈

] 

+[

1

2
(L1L2m2θ2̇

2
sin(θ2) ) +

1

4
(L2

2m2θ1̇θ2̇ sin(2θ2)) 

−
1

8
(L2

2 θ1̇
2
 m2 sin(2θ2))

] 

+[
0

−
1

2
(L2g m2 sin(θ2) )

] =  [
τ1

0
]                                                                               (2.39) 
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2.1.3. Jacobian matrix of the SLRIP 

The linear and angular velocities of the links of the SLRIP are used to determine the 

Jacobian matrix. A formula to compute the Jacobian matrix of the SLRIP is given in 

equation (2.40). Jv and Jw represents the Jacobian matrices obtained from the linear 

and angular velocities in the end-link, respectively. [91] 

J(θ) = [
Jv(θ)

Jw(θ)
]                                                                                                                  (2.40) 

The linear velocities matrix of the system is given in equation (2.41). 

V3
0 = R V3

3
3
0

= [
cos θ1 sin θ2 cos θ1 cos θ2 sin θ1

sin θ1 sin θ2 cos θ2 sin θ1 −cos θ1

cos θ2 −sin θ2 0
]  [

−L1 sin θ2θ1̇

L2θ2̇ −L1cos θ2θ1̇

sin θ2L2θ1̇

]                      (2.41) 

The linear velocities matrix of the system can be written as follows: 

V3
0 = [

−L1 cos θ1 − sin θ2  L2 sin θ1 L2 cos θ1 cos θ2

−L1 sin θ1 + sin θ2  L2 cos θ1 
0

L2 cos θ2 sin θ1

−L2 sin θ2

] [
θ1̇

θ2̇

]                            (2.43) 

The Jacobian matrix taken from the linear velocities is given as follows: 

Jv0
3(θ) =  [

−L1 cos θ1 − sin θ2  L2 sin θ1 L2 cos θ1 cos θ2

−L1 sin θ1 + sin θ2  L2 cos θ1 
0

L2 cos θ2 sin θ1

−L2 sin θ2

]                               (2.44) 

The angular velocities matrix of the system is given in equation (2.45) 

w3
0 = R w = [

cos θ1 sin θ2 cos θ1 cos θ2 sin θ1

sin θ1 sin θ2 cos θ2 sin θ1 −cos θ1

cos θ2 −sin θ2 0
] [

θ̇1 cos θ2

−θ̇1 sin θ2

θ̇2

]3
3

3
0     

= [

−θ̇2 sin θ1

θ̇2 cos θ1

θ̇1

]                                                                                                                  (2.45) 

The angular velocities matrix of the system can be written as follows: 
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w3
0 = R w =  [

−θ̇2 sin θ1

θ̇2 cos θ1

θ̇1

]3
3

3
0 = [

0 −sin θ1

0
1

cos θ1

0

] [
θ1̇

θ2̇

]                                                (2.46) 

The Jacobian matrix taken from the angular velocities is given as follows. 

Jw0
3(θ) =  [

0 −sin θ1

0
1

cos θ1

0

]                                                                                                 (2.47) 

The Jacobian matrix taken from the linear and angular velocities is given in equation 

(2.46). 

J0
3(θ) =  

[
 
 
 
 
 
−L1 cos θ1 − sin θ2  L2 sin θ1 L2 cos θ1 cos θ2

−L1 sin θ1 + sin θ2  L2 cos θ1 
0                                   

L2 cos θ2 sin θ1

−L2 sin θ2

0                                                 −sin θ1

0
1

                                                     cos θ1

                                                    0 ]
 
 
 
 
 

                                 (2.48) 

Furthermore, using the determinant of the Jacobian matrix, w = |det (J
0

3(θ) × J
0

3(θ)T)|, 

the optimal length of each link of the SLRIP is estimated using the PSO optimization 

algorithm. The optimal lengths are given in Table 2.2. 

2.1.4. Dynamic simulation of the SLRIP 

According to the equation (2.39), the expression for the angular acceleration vector (θ̈) 

can be given in equation (2.49).  

The two equations of θ̈1 and θ̈2 are derived and simulated in Matlab/Simulink. The 

Matlab code of the mathematical expression of both equations is given in the appendix. 

 [
θ̈1 

θ̈2

] = M−1[τ − C(θ, θ̇) − G(θ)]                                                                              (2.49) 

Figure 2.2 shows the non-linear mathematical model of the SLRIP in Matlab/Simulink. 

In order to verify the mathematical model, a mechanical dynamic model of the SLRIP 

was developed by using the MATLAB/SimMechanics toolbox.   
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Figure 2.2. Mathematical model of the SLRIP in Matlab/Simulink 

MATLAB/SimMechanics model of the SLRIP is shown in Figure 2.3 (a). Different 

views from virtual reality model of the SLRIP in Matlab Simulink is shown in Figure 

2.3 (b). Furthermore, for both model, the initial conditions of pendulums' joint 

positions are chosen as follows  θ1 = 0 °, and θ2 = 20 °. The obtained results from 

both MATLAB/SimMechanics and the mathematical models match exactly. Figure 

2.4 illustrates a comparison of the two joint positions obtained from simulation 

mathematical and the SimMechanics models without frictions. The simulations are 

performed by the sampling time 1ms and 10s simulation time. A numerical method 

Bogacki-Shampine solver is selected with fixed-step. 
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(a) 

 

(b) 

Figure 2.3. (a) MATLAB/SimMechanics model of SLRIP, (b) Different views from 

virtual reality model of SLRIP in Matlab Simulink 
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Figure 2.4. Comparison of the pendulum joint positions obtained from the analytic 

mathematical model and SimMechanics numerical model of the SLRIP 

2.2. Modeling of the DLRIP 

2.2.1. Kinematic model of the DLRIP 

Solid 3D model and kinematics parameters of the DLRIP are shown in the Figure. 2.5. 

DLRIP comprises a horizontal rotary link and two pendulum links. A direct drive 

brushless DC torque motor servo system is mounted to provide torque to the horizontal 

arm to control the system. The rotary arm rotates in the horizontal plane. The first 

pendulum link is connected to the extremity of the rotary link and the second pendulum 

link is connected to the extremity of first pendulum link. The two pendulum links move 
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as an inverted pendulum in a plane perpendicular to the rotary link. A balance mass 

can be attached to the other extremity of the horizontal arm to maintain the balance 

inertia of the system. The angle of the rotary link (θ1) and the angles of the two 

pendulum links (θ2 and θ3) of the DLRIP are illustrated in Figure 2.5. The kinematic 

model of the system is derived based on the DH convention. Rotation and 

homogeneous transformation matrices between coordinates the DLRIP are calculated. 

The parameters and variables of the model are given in Table 2.1 (section 2.1.1). The 

physical parameters of the DLRIP are given in Table 2.4.  DH Parameters of the 

DLRIP are given in Table 2.5. 

 

Figure 2.5. Solid 3D model and kinematic 

parameters of the DLRIP 
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Table 2.4. Physical parameters of the DLRIP 

Parameters  Values Parameters  Values Parameters  Values 

 m1 
3.1129 

[kg] 
 L1 

0.44 

[m] 
 Izz2 

0.0020 

[kg · m2] 

 m2 
0.1908 

[kg] 
 L2 

0.278 

[m] 
Izz1 

0.0015 

[kg · m2] 

 m3 
0.0832 

[kg] 
 L3 

0.430 

[m] 
 b1 ,2,3  

0.0024 

[N-m-s/Rad] 

 mB 
3.1469 

[kg] 
Izz1 

0.4398 

[kg · m2] 
g 

9.82  

[N kg−1] 

 

Table 2.5.  DH-Parameters of the DLRIP 

Coordinate αi−1 ai−1 di θi 

1 0 0 0 θ1 

2 −
𝜋

2
 0 L1 θ2 −

𝜋

2
 

3 0 L2 0 0 

4 0 L3 0 0 

The expression of the homogeneous transformation matrix from a coordinate attached 

to an i-th link to a coordinate attached to i-1-th link, 𝑖 = 1,2,3,4. The expression of 

Ti
i−1   is given in equation (2.1). The homogeneous transformation matrix of the DLRIP 

is derived in equation (2.50) using the DH-parameters in Table 2.5. 

T4
0 = T1

0  T 2
1 T3

2  T                                                                                         4
3                     (2.50) 

Where 

T1
0 = [

cos θ1 −sin θ1 0 0
sin θ1 cos θ1 0 0

0
0

0
0

1
0

0
1

] T2
1 = [

sin θ2 cos θ2 0 0
0 0 1 L1

cos θ2

0
− sin θ2

0
0
0

0
1

]                   (2.51) 

T3
2 = [

cos θ3 −sin θ3 0 L2

sin θ3 cos θ3 0 0
0
0

0
0

1
0

0
1

] T4
3 = [

1 0 0 L3

0 1 0 0
0
0

0
0

1
0

0
1

]                                      (2.52) 
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T4
0 = 

[

sin 𝜃23 cos 𝜃1 cos 𝜃23 cos 𝜃1 −sin 𝜃1 cos 𝜃1( L2 sin 𝜃2 + L3 sin 𝜃23) − L1 sin 𝜃1    

sin 𝜃23 sin 𝜃1 cos 𝜃23 sin 𝜃1 cos 𝜃1 L1 cos 𝜃1 +sin 𝜃1 (L3 sin 𝜃23 + L2 sin 𝜃2)
cos 𝜃23

0
− sin 𝜃23

0
0                                        
0                                        

L3 cos 𝜃23 + L2 cos 𝜃2

1

] (2.53) 

Where  θ23 = (θ2 + θ3). 

The position vector is given from the calculated homogeneous transformation matrix  

T4
0  as follows: 

[

Px

Py

Pz

] = [

cos θ1( L2 sin θ2 + L3 sin θ23) − L1 sin θ1   
L1 cos θ1 +sin θ1 (L3 sin θ23 + L2 sin θ2)

L3 cos θ23 + L2 cos θ2

]                                           (2.54) 

2.2.2. Dynamic model of the DLRIP 

The non-linear motion equations of this DLRIP are derived based on the DH 

convention and can be given in a matrix form, given in equation (2.7). The dynamic 

equations of DLRIP system are derived using the "Euler-Lagrangian" method. The 

terms of each matrix of equation (2.7) are calculated using the equations (2.8-2.11). 

The elements of each matrix calculated are calculated as follows: 

∆h1
, ∆h2

 and ∆h3
 are center of gravity vectors of the first, second and third links 

respectively. The three vectors are given according to the coordinate system of each 

link. 

∆h1
= [0

L1

2
0 1] T , ∆h2

= [
L2

2
0 0 1]

T

and ∆h3
= [

L3

2
0 0 1]

T

 (2.55) 

I1, I2 and I3 are the inertia tensors of the first, second and the third links, respectively. 

I1 = [

0 0 0
0 0 0
0 0 Izz1

] , I2 = [

0 0 0
0 0 0
0 0 Izz2

]   and    I3 = [

0 0 0
0 0 0
0 0 Izz3

]                        (2.56) 

The coordinate of the mass center of each link according to the main coordinate of the 

system, are given in equations (2.57 − 2.59). 
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h1 = T1
0  ∆h1

= [

cos θ1 −sin θ1 0 0
sin θ1 cos θ1 0 0

0
0

0
0

1
0

0
1

]

[
 
 
 
 
0
L1

2
0
1 ]

 
 
 
 

 =  

[
 
 
 
 
 −

L1 sin θ1

2
L1 cos θ1

2
0
1 ]

 
 
 
 
 

                         (2.57) 

h2 = T2
0  ∆h2

= 

[
 
 
 
 
 
 
L2 cos θ1 sin θ2 

2
 − L1 sin θ1

L2 sin θ1 sin θ2 

2
+ L1 cos θ1

L2 cos θ2

2
1 ]

 
 
 
 
 
 

                                                          (2.58) 

h3 = T3
0  ∆h3

 

= 

[
 
 
 
 
 
 
L3 cos θ1 cos θ2 sin θ3 

2
+

L3 cosθ1 cos θ3 sin θ2 

2
+ L2 cos θ1  sin θ2 − L1 sinθ1

L3 cos θ2 sin θ1 sin θ3 

2
+

L3 cosθ3 sin θ1 sin θ2 

2
+ L2 sinθ1  sin θ2 + L1 cos θ1

L3 cos(θ2 + θ3)

2
+ L2 cos θ2

1 ]
 
 
 
 
 
 

(2.59) 

To obtain the Jacobian matrix of the first link, the derivative of the vector h1  is 

calculated according to θ1, θ2 and θ3. 𝜉𝑖 indicates the joint type variable (𝜉𝑖=1 for 

rotary joint). i present the unit vector of the third column of the coordinate system. 

z1 = R1
0  i3 = [

cos θ1 −sin θ1 0
sin θ1 cos θ1 0

0 0 1

] [
0
0
1
] =  [

0
0
1
]                                                     (2.60) 

Furthermore, the first link is a rotational link 𝜉1 = 1 and b1 =  ξ1z
1 = [0 0 1]T. 

The Jacobian matrix of the first link is given as follows: 

J1 =

[
 
 
 
 
 
 
 

∂

∂θ1
(−

L1 sin θ1

2
)

∂

∂θ2
(−

L1 sin θ1

2
)

∂

∂θ3
(−

L1 sin θ1

2
)

∂

∂θ1
(
L1 cos θ1

2
)

∂

∂θ2
(
L1 cos θ1

2
)

∂

∂θ3
(
L1 cos θ1

2
)

0
0
0
1

0                     0
0                     0
0                     0
0                     0 ]
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=

[
 
 
 
 
 
 
 −

L1 cos θ1  

2
0 0

−
L1 sin θ1  

2
0

0 0
0 0

     0
     0
    1

                0 0
                 0 0
                 0 0

 
]
 
 
 
 
 
 
 

                                                                                               (2.61) 

The Jacobian matrix of the first link can be written in two matrices A1 and B1. 

A1 =

[
 
 
 
 −

L1 cos θ1  

2
0 0

−
L1 sin θ1  

2
0

0 0
0 0]

 
 
 
 

 and  B1 = [
0
0
1

0 0
0 0
0 0

]                                               (2.62)  

To obtain the Jacobian matrix of the second link, the derivative of the vector h2 is 

calculated according to θ1, θ2 and θ3.  

z2 = R2
0  i3 = [

cos θ1 sin θ2 cos θ1 cos θ2 −sin θ1

sin θ1 sin θ2 cos θ2 sin θ1 cos θ1

cos θ2 −sin θ2 0
] [

0
0
1
] 

z2 =  [
− sin θ1

cos θ1

0

]                                                                                                               (2.63) 

The second link is a rotational link which ξ2 = 1 and b2 =  ξ2z
2 = [0 0 1]T . The 

Jacobian matrix of the second link is given as follows: 

J2 = 

[
 
 
 
 
 
 
 
 
 

∂

∂θ1
(
L2 cos θ1 sin θ2 

2
 − L1 sin θ1)

∂

∂θ1
(
L2 sin θ1 sin θ2 

2
+ L1 cos θ1)

∂

∂θ1
(
L2 cos θ2

2
)

0
0
1

∂

∂θ2
(
L2 cos θ1 sin θ2 

2
 − L1 sin θ1)

∂

∂θ3
(
L2 cos θ1 sin θ2 

2
 − L1 sin θ1)

∂

∂θ2
(
L2 sin θ1 sin θ2 

2
+ L1 cos θ1)

∂

∂θ3
(
L2 cos θ1 sin θ2 

2
 − L1 sin θ1)

∂

∂θ2
(
L2 cos θ2

2
)                                               

∂

∂θ3
(
L2 cos θ2

2
)

− sin θ1                                                                      0
cos θ1                                                                       0

0                                                                                 0 ]
 
 
 
 
 
 
 
 
 

 

 

(2.64) 
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J2 = 

[
 
 
 
 
 
 
 
 
−

L2 sin θ1 sin θ2 

2
 − L1 cos θ1

L2 cos θ1 sin θ2 

2
 − L1 sin θ1

0
0
0
1

L2 cos θ1 cos θ2 

2
0 

L2 cos θ2 cos θ1 

2
0

−L2 sin θ2

2
            0

− sin θ1                  0
 cos θ1                   0

0                               0]
 
 
 
 
 
 
 
 

                            (2.65) 

The Jacobian matrix of the second link may be written in two matrices A2 and B2. 

A2 = 

[
 
 
 
 
 
−

L2 sin θ1 sin θ2 

2
 − L1 cos θ1

L2 cos θ1 sin θ2 

2
 − L1 sin θ1

0

L2 cos θ1 cos θ2 

2
0 

L2 cos θ2 cos θ1 

2
0

−L2 sin θ2

2
          0 ]

 
 
 
 
 

                            (2.66) 

B2 = [
0
0
1

− sin θ1 0
cos θ1  0

0            0

]                                                                                                 (2.67) 

To obtain the Jacobian matrix of the third link, the derivative of the vector h3  is 

calculated according to θ1, θ2 and θ3. 

z3 = R3
0  i3 = [

sin(θ2 + θ3) + cos θ1 cos(θ2 + θ3) cos θ1 −sin 𝜃1

sin(θ2 + θ3) sin θ1 cos(θ2 + θ3) sin θ1 cos 𝜃1

cos(θ2 + θ3) − sin(θ2 + θ3) 0

] [
0
0
1
] 

= [
− sin θ1

cos θ1

0

]                                                                                                                     (2.68) 

The third link is a rotational link which 𝜉3 = 1 and b3 =  ξ3z
3 = [0 0 1]T . The 

Jacobian matrix of the third link is given as follows: 

J3 =

[
 
 
 
 
 
 
 
 
 

∂

∂θ1

(
L3 cos θ1 cos θ2 sin θ3 

2
+

L3 cos θ1 cos θ3 sin θ2 

2
+ L2 cos θ1  sin θ2 − L1 sin θ1)…

∂

∂θ1

(
L3 cos θ2 sin θ1 sin θ3 

2
+

L3 cos θ3 sin θ1 sin θ2 

2
+ L2 sin θ1  sin θ2 + L1 cos θ1)…

∂

∂θ1

(
L3 cos(θ2 + θ3)

2
+ L2 cos θ2)…

0
0
1
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∂

∂θ2

(
L3 cos θ1 cos θ2 sin θ3 

2
+

L3 cos θ1 cos θ3 sin θ2 

2
+ L2 cos θ1  sin θ2 − L1 sin θ1)…

∂

∂θ2

(
L3 cos θ2 sin θ1 sin θ3 

2
+

L3 cos θ3 sin θ1 sin θ2 

2
+ L2 sin θ1  sin θ2 + L1 cos θ1)…

∂

∂θ2

(
L3 cos(θ2 + θ3)

2
+ L2 cos θ2)…

−sin θ1

cos θ1

0

 

∂

∂θ2

(
L3 cos θ1 cos θ2 sin θ3 

2
+

L3 cos θ1 cos θ3 sin θ2 

2
+ L2 cos θ1  sin θ2 − L1 sin θ1)

∂

∂θ2

(
L3 cos θ2 sin θ1 sin θ3 

2
+

L3 cos θ3 sin θ1 sin θ2 

2
+ L2 sin θ1  sin θ2 + L1 cos θ1)

∂

∂θ2

(
L3 cos(θ2 + θ3)

2
+ L2 cos θ2)

− sin θ1

cos θ1

0 ]
 
 
 
 
 
 
 
 
 

     (2.69) 

The Jacobian matrix of the third link can be written in two matrices A3and B3. 

A3 = 

[
 
 
 
 

L3 cos θ3 sin θ1 sin 2 

2
−

L3 cos θ2 sin θ1 sin θ3 

2
− L2 sin θ1  sin θ2 − L1 cos θ1 …

L3 cos θ1 cos θ2 sin θ3 

2
+

L3 cos θ1 cos θ3  sin θ2 

2
+ L2 cos θ1  sin θ2 − L1 sin θ1 …

0

 

cos θ1 (L3 cos(θ2 + θ3) + 2L2 cos θ2 )

2

cos θ1 (L3 cos(θ2 + θ3))

2

sin θ1 (L3 cos(θ2 + θ3) + 2L2 cos θ2 )

2

sin θ1 (L3 cos(θ2 + θ3))

2

−L3 sin(θ2 + θ3)

2
− L2 sin θ2 −

L3 sin(θ2 + θ3)

2 ]
 
 
 
 
 

                    (2.70) 

B3 = [
0
0
1

− sin θ1 −sin θ1

cos θ1  cos θ1

0            0

]                                                                                     (2.71) 

The mass matrix of first, second and third links are given in equations (2.72-2.74), 

respectively. 

D(θ1) =  m1 A1
TA1 + B1

T I1B1 = [

m1L1
2

4
+ Izz1

0 0

0
0

0 0
0 0

]                                  (2.72) 

D(θ2) =  m2 A2
TA2 + B2

T I2B2 
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=

[
 
 
 
 
 m2 (

L2
2 sin2θ2

4
+L1

2) −(
L1 L2 m2 cos θ2

2
) 0 

− (
L1 L2 m2 cos θ2

2
)

0

(
 L2 

2m2 

4
+ Izz2

)

0

   0
   0

]
 
 
 
 
 

                                         (2.73) 

D(θ3) =  m3 A3
TA3 + B3

T I3B3                                                                                   (2.74) 

To simplify the equations of DLRIP, Table 2.6 gives the employed parameters used in 

this section. 

Table 2.6.  Simplified parameters description of the DLRIP 

Parameters Description Parameters Description 

a1 L3
2m3  a8 L2L3m3 

a2 L2
2m2 a9 L1L2m2 

 a3 L1
2m1 a10 L1L2m3 

  a4 L2
2m3 a11 L1L3m3 

a5 L1
2m2 a12 L2gm2 

a6 L1
2m3 a13 L2gm3 

 a7 L3
2m3  a14 L3gm3  

 

D3
11 = 

Izz3
2

+ a6 +
a4

2
+

a7

8
−

Izz3 cos(2θ2 + 2θ3 )

2
−

a4 cos(2θ2 )

2
 

−
a7 cos(2θ2 + 2θ3)

8
−

a8 cos(θ3 )

2
−

 a8 cos(2θ2 + θ3 )

2
                                     (2.75) 

D3
12 = −

 a11 cos(θ2 + θ3 ) + 2 a10 cos θ2

2
                                                             (2.76) 

D3
13 = −

 a11 cos(θ2 + θ3 )

2
                                                                                         (2.77) 

D3
22 =   a4 +  a8 cos θ3 +

a1

4
+ Izz3                                                                            (2.78) 

D3
23 = 

a1

4
+

 a8 cos θ3

2
+ Izz3                                                                                       (2.79) 
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D3
33 = 

 a7

4
+ Izz3                                                                                                             (2.80) 

D3
21 = D3

12 , D
3
31 = D3

13                                                                                            (2.81) 

The expression of D(θ3) matrix is given in equation (2.82) 

D(θ3) = [

D3
11 D3

12 D3
13

D3
21 D3

22 D3
23

D3
31 D3

32 D3
33

]                                                                                     (2.82) 

The expression of the mass matrix of the DLRIP system is given as follows : 

D(θ) =  D(θ1) + D(θ2) + D(θ3)                                                                                  (2.83) 

D11 = Izz1
+ 

Izz3
2

+ a6 +
a4

2
+

a7

8
−

Izz3 cos(2θ2 + 2θ3 )

2
−

a4 cos(2θ2 )

2
+

 a3

4
 

−
a7 cos(2θ2 + 2θ3)

8

a8 cos(θ3 )

2
−

 a8 cos(2θ2 + θ3 )

2
+  (

a2 sin
2θ2

4
+ a5) (2.84) 

D12 = −
 a11 cos(θ2 + θ3 ) + 2 a10 cos θ2

2
+ − (

a9 cos θ2

2
)                               (2.85) 

D13 = −
 a11 cos(θ2 + θ3 )

2
                                                                                           (2.86) 

D22 =   a4 +  a8 cos θ3 +
a1

4
+ Izz3   + (

 a2 

4
+ Izz2

)                                            (2.87) 

D23 = 
a1

4
+

 a8 cos θ3

2
+ Izz3                                                                                         (2.89) 

D33 = 
 a7

4
+ Izz3                                                                                                               (2.90) 

D21 = D12 , D31 =  D13                                                                                                   (2.91) 

D(θ) = [
D11 D12 D13

D21 D22 D23

D31 D32 D33

]                                                                                             (2.92) 
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The elements of the velocity coupling matrix of the first link, are calculated as follows: 

C1
11 = 

1

2
 

∂

∂θ1
 D11(θ) = 0                                                                                             (2.93) 

C1
12 = 

1

2
 

∂

∂θ1
 D12(θ) = 0                                                                                             (2.94) 

C1
13 = 

1

2
 

∂

∂θ1
 D13(θ) = 0                                                                                             (2.95) 

C1
21 =  

∂

∂θ2
 D11(θ) − 

1

2
 

∂

∂θ1
D21(θ) = L2 sin(2θ2) + L3 sin(2θ2 + 2θ3)          

 +
a2 sin 2θ2

4
+   a4 sin 2θ2 +

a2 sin(2θ2 + 2θ3)

4
+  a8 sin sin(2θ2 + 2θ3)      (2.96) 

C1
22 =  

∂

∂θ2
 D12(θ) − 

1

2
 

∂

∂θ1
D22(θ) 

= 
a11 sin(θ2 + θ3) + a9 sin θ2 + 2 a10 sin θ2

2
                                                         (2.97) 

C1
23 =  

∂

∂θ2
 D13(θ) − 

1

2
 

∂

∂θ1
D23(θ) =

a11 sin(θ2 + θ3) 

2
                                  (2.98) 

C1
31 =  

∂

∂θ3
 D11(θ) − 

1

2
 

∂

∂θ1
D31(θ)    

= Izz3 sin(2θ2 + 2θ3) +
a1 sin(2θ2 + 2θ3)

4
+

 a8 sin θ3

2
+

 a8 sin(2θ2 + θ3)

2
 (2.99) 

C1
32 =  

∂

∂θ3
 D12(θ) − 

1

2
 

∂

∂θ1
D32(θ) =  

a11 sin(θ2 + θ3)

2
                                (2.100) 

C1
33 =  

∂

∂θ3
 D13(θ) − 

1

2
 

∂

∂θ1
D33(θ) =

a11 sin(θ2 + θ3) 

2
                                (2.101) 

The velocity coupling matrix of the first link may be given in equation (2.102). 

C1 = [

C1
11 C1

12 C1
13

C1
21 C1

22 C1
23

C1
31 C1

32 C1
33

]                                                                                          (2.102) 
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The elements of the velocity coupling matrix of the second link, are calculated as 

follows: 

C2
11 =

∂

∂θ1
 D21(θ) −

1

2
 

∂

∂θ2
 D11(θ) 

= −
Izz2 sin(2θ2)

2
− 

Izz3 sin(2θ2 + 2θ3)

2
− 

a2 sin(2θ2)

8
   

−
a4 sin(2θ2)

2
−

a1 sin(2θ2 + 2θ3)

8
−

 a8 sin(2θ2 + θ3) 

2
                                   (2.103) 

C2
12 = 

∂

∂θ1
 D22(θ) −

1

2
 

∂

∂θ2
 D12(θ) 

=
−a11 sin(θ2 + θ3) − a9 sin θ2 − 2a10 sin θ2 

4
                                                     (2.104) 

C2
13 = 

∂

∂θ1
 D22(θ) −

1

2
 

∂

∂θ2
 D12(θ) =

−a11 sin(θ2 + θ3) 

4
                              (2.105) 

C2
21 =  

1

2

∂

∂θ2
 D21(θ) =   

1

4
(a11 sin(θ2 + θ3) + a9 sin θ2 + 2 a10 sin θ2 )  (2.106) 

C2
22 =   

1

2
 

∂

∂θ2
D22(θ) =  0                                                                                        (2.107) 

C2
23 =   

1

2
 

∂

∂θ2
D23(θ) =  0                                                                                        (2.108) 

C2
31 =  

∂

∂θ3
 D21(θ) − 

1

2
 

∂

∂θ2
D31(θ) =  

a11 sin(θ2 + θ3)

4
                                (2.109) 

C2
32 =  

∂

∂θ3
 D22(θ) − 

1

2
 

∂

∂θ2
D32(θ) =  − a8 sin θ3                                           (2.110) 

C2
33 =  

∂

∂θ3
 D23(θ) − 

1

2
 

∂

∂θ2
D33(θ) =

− a8 sin θ3

2
                                           (2.111) 

The velocity coupling matrix of the second link can be given in equation (2.112) 
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C2 = [

C2
11 C2

12 C2
13

C2
21 C2

22 C2
23

C2
31 C2

32 C2
33

]                                                                                         (2.112) 

The elements of the velocity coupling matrix of the third link are calculated as follows: 

C3
11 =

∂

∂θ1
 D31(θ) −

1

2
 

∂

∂θ3
 D11(θ) =

a15 sin θ3

4
− 

a1 sin(2θ2 + 2θ3 )

8
 

− 
Izz3 sin(2θ2 + 2θ3 )

2
− 

a8 sin(2θ2 + θ3)

4
                                                          (2.113) 

C3
12 = 

∂

∂θ1
 D32(θ) −

1

2
 

∂

∂θ3
 D12(θ) = −

a11  sin(θ2 + θ3 )

4
                            (2.114) 

C3
13 = 

∂

∂θ1
 D33(θ) −

1

2
 

∂

∂θ3
 D13(θ) =

−a11 sin(θ2 + θ3) 

4
                              (2.115) 

C3
21 =  

∂

∂θ2
 D31(θ) − 

1

2
 

∂

∂θ3
D21(θ) =  

a11  sin(θ2 + θ3 )

4
                              (2.116) 

C3
22 =  

∂

∂θ2
 D32(θ) − 

1

2
 

∂

∂θ3
D22(θ) =  

a8  sin θ3

2
                                             (2.117) 

C3
23 =  

∂

∂θ2
 D33(θ) − 

1

2
 

∂

∂θ3
D23(θ) =

a8  sin θ3

2
                                              (2.118) 

C3
31 =  

1

2

∂

∂θ3
 D31(θ) =   

a11  sin(θ2 + θ3 )

4
                                                         (2.119) 

C3
32 =   

1

2
 

∂

∂θ3
D32(θ) =  

−a8  sin θ3

4
                                                                     (2.120) 

C3
33 =   

1

2
 

∂

∂θ3
D33(θ) =  0                                                                                        (2.121) 

The velocity coupling matrix of the third link may be given in equation (2.122) 

C3 = [

C3
11 C3

12 C3
13

C3
21 C3

22 C3
23

C3
31 C3

32 C3
33

]                                                                                         (2.122) 
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In order to find the Coriolis and Centripetal force vector of the DLRIP, each element 

of the velocity coupling matrices (C1, C2 and C3) need to verify the equality of the 

elements of the following matrices. 

[

C1
11 C1

12 C1
13

C1
21 C1

22 C1
23

C1
31 C1

32 C1
33

] = [

θ1̇
2

θ1̇θ2̇ θ1̇θ3̇

θ1̇θ2̇

θ3̇θ1̇

θ2

θ3̇θ2̇

̇ 2
θ2̇θ3̇

θ3̇
2

]                                                     (2.123) 

[

C2
11 C2

12 C2
13

C2
21 C2

22 C2
23

C2
31 C2

32 C2
33

] = [

θ1̇
2

θ1̇θ2̇ θ1̇θ3̇

θ1̇θ2̇

θ3̇θ1̇

θ2

θ3̇θ2̇

̇ 2
θ2̇θ3̇

θ3̇
2

]                                                     (2.124) 

[

C3
11 C3

12 C3
13

C3
21 C3

22 C3
23

C3
31 C3

32 C3
33

] = [

θ1̇
2

θ1̇θ2̇ θ1̇θ3̇

θ1̇θ2̇

θ3̇θ1̇

θ2

θ3̇θ2̇

̇ 2
θ2̇θ3̇

θ3̇
2

]                                                     (2.125) 

The elements of the Coriolis and Centripetal force vector are given as follows: 

C11 = Izz2 θ1̇θ2̇ sin 2θ2 + Izz3 θ1̇θ2̇ sin(2θ2 + 2θ3) + Izz3 θ1̇θ3̇ sin(2θ2 + 2θ3) 

+ a10 θ2̇
2
sin θ2 +

a2θ1̇θ2̇ sin 2θ2

4
+   a4 θ1̇θ2̇ sin 2θ2 +

a7θ1̇θ2̇ sin(2θ2 + 2θ3)

4
 

+
a7θ1̇θ3̇ sin(2θ2 + 2θ3)

4
−

a11θ2̇
2
sin(θ2 + θ3)

2
+

a11θ3̇
2
sin(θ2 + θ3)

2
 

+
a9θ2̇

2
sin θ2 

2
+ a11 θ2̇θ3̇sin(θ2 + θ3) +  a8 θ1̇θ2̇ sin(2θ2 + 2θ3) 

+
a8θ1̇θ3̇ sin(2θ2 + θ3)

2
 −

a8θ1̇θ3̇ sin θ3

2
                                                               (2.126) 

C21 = 
−Izz2θ1̇

2
sin 2θ2

2
−

Izz3θ1̇
2
sin(2θ2 + 2θ3)

2
−

a2θ1̇
2
sin 2θ2

8
 

−
a1θ1̇

2
sin(2θ2 + 2θ3)

8
−

a4θ1̇
2
sin 2θ2

2
 −

a8θ3̇
2
sin θ3

2
  

−
a8θ1̇

2
sin(2θ2 + θ3)

2
− a8θ3̇θ2̇ sin θ3                                                                    (2.127) 

C31 = 
a8 θ1̇

2
sin θ3

4
−

a1θ1̇
2
sin(2θ2 + 2θ3)

8
−

Izz3θ1̇
2
sin(2θ2 + 2θ3)

2
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+
a8θ2̇

2
sin θ3

2
−

a8θ1̇
2
sin(2θ2 + θ3)

4
                                                                     (2.128) 

 

The expression of Coriolis and Centripetal force vector is given in equation (2.129) 

C(θ, θ̇) = [
C11

C21

C31

]                                                                                                              (2.129) 

The gravity vector the DLRIP is given in equation (2.130) 

G =  [

0
− a14 sin(θ2 + θ3) −  a12 sin θ2 − 2a13 sin θ2

2
−  a14sin(θ2 + θ3)

] = [
0

G21

G31

   ]                     (2.130) 

 

The DLRIP has some complex non-linear dynamic equations which can be written in 

a matrix form given in equation (2.131): 

[
D11 D12 D13

D21 D22 D23

D31 D32 D33

] [

θ1̈

θ2̈

θ3̈

] + [
C11

C21

C31

] + [
0

G21

G31

   ]  =  [
τ1

0
0

]                                               (2.131) 

2.2.3. Jacobian matrix of the DLRIP 

The linear and angular velocities of each link of the DLRIP are used to determine the 

Jacobian matrix. A formula to compute the Jacobian matrix of the DLRIP is given in 

equation (2.40) in section (2.1.3). Jv and Jw represents the Jacobian matrices obtained 

from the linear and angular velocities in the end-link, respectively. The linear 

velocities are given in equation (2.132). 

V4
0 = R V4

4
4
0 = [

cos θ1 sin (θ2 + θ3) cos θ1 cos(θ2 + θ3) − sin θ1

sin(θ2 + θ3) sin θ1 cos(θ2 + θ3) sin θ1 cos θ1

cos(θ2 + θ3) −sin(θ2 + θ3) 0

]  

× [

L2 sin θ3θ2̇ − L1sin(θ2 + θ3) θ1̇

L3θ2̇ +L3θ3̇ − cos (θ2 + θ3)  L1cos θ1̇

θ1̇ (sin θ2L2 + L3 sin(θ2 + θ3)  )

+ L2 cos θ3θ2̇] = [

V4
0

1

V4
0

2

V4
0

3

]                  (2.132) 

The elements of the linear velocities vector ( V4
0 ) are given as follows: 
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V4
0

1 = (−L1C1 − S1(L2S2 − L3S23))θ1̇ + (C1(L3C23 + L3C2))θ2̇ 

 +( L3C23C1) θ3̇                                                                                                              (2.133) 

V4
0

2 = (C1(L3 + L2S2 + S23) − L1S1)θ1̇ + (S1(L3C23 + L2C2))θ2̇  

+(L3C23S1)θ3̇                                                                                                                  (2.134) 

V4
0

3 = (−L3S23−L2S2) θ2̇ − (L3S23) θ3̇                                                                   (2.135) 

V4
0 = [

−L1C1 − S1(L2S2 − L3S23) C1(L3C23 + L3C2)  L3C23C1

C1(L3 + L2S2 + S23) − L1S1 S1(L3C23 + L2C2) L3C23S1

0 −L3S23−L2S2 −L3S23

] [

θ1̇

θ2̇

θ3̇

]   (2.136) 

Where  

C1 = cos θ1 , S1 = sin θ1 , C2 = cos θ2 , S2 = sin θ2                                              (2.137) 

S23 = sin(θ2 + θ3) , C23 = cos(θ2 + θ3)                                                              (2.138) 

The Jacobian matrix taken from the linear velocities is given in equation (2.139).  

Jv0
4(θ) =  [

−L1C1 − S1(L2S2 − L3S23) C1(L3C23 + L3C2)  L3C23C1

C1(L3 + L2S2 + S23) − L1S1 S1(L3C23 + L2C2) L3C23S1

0 −L3S23−L2S2 −L3S23

]    (2.140)  

The angular velocities matrix of the system is given in equation (2.141) 

w4
0 = R w = [

C1 S23 C1 C23 −S1

S23S1 S1 C23 −𝐶1

C23 −S23 0
] [

θ̇1C23

−θ̇1S23

θ̇2 + θ̇3

]4
4

4
0           

w4
0 = [

−S1(θ̇2 + θ̇3)

C1(θ̇2 + θ̇3)

θ̇1

]                                                                                                 (2.141) 

The Jacobian matrix taken from the angular velocities is given as follows: 

Jw0
4(θ) =  [

0 −sin θ1 −sin θ1

0
1

cos θ1 cos θ1

0                 0

]                                                                            (2.142) 



66 

 

The Jacobian matrix taken from the linear and angular velocities is given in equation 

(2.143). 

J0
4(θ) =  

[
 
 
 
 
 
−L1C1 − S1(L2S2 − L3S23) C1(L3C23 + L3C2)

C1(L3 + L2S2 + S23) − L1S1 S1(L3C23 + L2C2)

0
0
0
1

−L3S23−L2S2

−S1

C1

0

 L3C23C1

 L3C23S1

−L3S23

S1

C1

0 ]
 
 
 
 
 

            (2.143) 

Furthermore, using the determinant of the Jacobian matrix, w = |det (J
0

4(θ)  × J
0

4(θ)𝑇)|, 

the optimal length of each link of the DLRIP is estimated using the PSO optimization 

algorithm. The optimal lengths are given in Table 2.4. 

2.2.4 Dynamic simulation of the DLRIP 

According to the equation (2.131), the expression for the angular acceleration vector 

(θ̈) can be given in equation (2.144). The three equations of θ̈1, θ̈2 and θ̈3  are derived 

and simulated in Matlab/Simulink. The Matlab code of the mathematical expression 

of the three equations is given in the appendix. Figure 2.6 shows the non-linear 

mathematical model in Matlab/Simulink. 

 [

θ̈1 

θ̈2

θ̈3

] = [
D11 D12 D13

D21 D22 D23

D31 D32 D33

]

−1

([
τ1

0
0

] − [
C11

C21

C31

] − [
0

G21

G31

])                                        (2.144) 

In order to verify the mathematical model, a mechanical dynamic model of the DLRIP 

was developed by using the MATLAB/SimMechanics toolbox. 

MATLAB/SimMechanics model of the DLRIP is shown in Figure 2.7 (a). Different 

views from virtual reality model of the DLRIP in Matlab Simulink is shown in Figure 

2.7 (b). Furthermore, for both model, the initial conditions of pendulums' joint 

positions are chosen as follows  θ1 = 0 ° , θ2 = 20 °  and θ3 = 30 ° . The obtained 

results from both MATLAB/SimMechanics and the mathematical models match 

exactly. Figure 2.8 illustrates a comparison of the three joint positions obtained from 

simulation mathematical and the SimMechanics models without frictions. The 

simulations are performed by the sampling time 1ms and 5s simulation time. A 

numerical method Bogacki-Shampine solver is selected with fixed-step. 
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Figure 2.6. Mathematical model of the DLRIP in Matlab/Simulink 

 

(a) 

Figure 2.7. (a) MATLAB/SimMechanics model of the DLRIP, (b) Different views 

from virtual reality model of the DLRIP in Matlab Simulink 
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(b) 

Figure 2.7.(Cont.) (a) MATLAB/SimMechanics model of the DLRIP, (b) 

Different views from virtual reality model of the DLRIP in Matlab Simulink 

 

Figure 2.8. Comparison of the pendulum joint positions obtained from the analytic 

mathematical model and SimMechanics numerical model of the DLRIP 



69 

 

2.3. Modeling of the TLRIP 

2.3.1. Kinematic model of the TLRIP 

Solid 3D model and kinematics parameters of the TLRIP are shown in Figure 2.9. 

TLRIP comprises a horizontal rotary link and three pendulum links. A direct drive 

brushless DC torque motor servo system is mounted to provide torque to the horizontal 

arm to control the system. The rotary arm rotates in the horizontal plane. Three 

pendulum links are attached in serial mounted in the extremity of the horizontal arm. 

Three pendulum links move as an inverted pendulum in a plane perpendicular to the 

rotary link. A balance mass is attached to the other extremity of the horizontal arm to 

maintain the balance inertia of the system. The angle of the rotary link (θ1) and the 

angles of the three pendulum links (θ2 ,θ3  and θ4) of the TLRIP are illustrated in 

Figure 2.9. The kinematic model of the system is derived based on the DH convention. 

Rotation and homogeneous transformation matrices between coordinates the TLRIP 

are calculated. The parameters and variables of the model are given in Table 2.1 (in 

section 2.1.1). The physical parameters of the TLRIP are given in Table 2.7.  DH 

parameters of the TLRIP are given in Table 2.8. 

 

Figure 2.9. Solid 3D model and 

kinematic parameters of the TLRIP 
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Table 2.7. Physical parameters of the TLRIP 

Parameters  Values Parameters  Values Parameters  Values 

m1 
3.1129 

[kg] 
L1 

0.4202 

[m] 
Izz1 

0.25 

[kg · m2] 

m2 
0.7268 

[kg] 
L2 

0.2675 

[m] 
Izz2 

0.04 

[kg · m2] 

m3 
0.6789 

[kg] 
L3 

0.3650 

[m] 
Izz3 

0.05 

[kg · m2] 

m4 
0.4500 

[kg] 
L4 

0.4240 

[m] 
Izz4 

0.05 

[kg · m2] 

mB 
3.1469 

[kg] 
b1 ,2 ,3,4 

0.0024 

 [N-m-s/Rad] 
g 

9.81  

[N kg−1] 

 

Table 2.8.  DH-Parameters of the TLRIP 

Coordinate αi−1 ai−1 di θi 

1 0 0 0 θ1 

2 −
𝜋

2
 0 L1 θ2 −

𝜋

2
 

3 0 L2 0 0 

4 0 L3 0 0 

5 0 L4 0 0 

 

The expression of the homogeneous transformation matrix from a coordinate attached 

to an i-th link to a coordinate attached to i-1-th link, 𝑖 = 1,2,3,4,5. The expression of 

Ti
i−1   is given in equation (2.1). The homogeneous transformation matrix of the TLRIP 

is derived in equation (2.145) using the DH-parameters in Table 2.8. 

T5
0 = T1

0  T 2
1 T3

2  T T5
4                                                                                                      4

3 (2.145) 

Where  

T1
0 = [

cos θ1 −sin θ1 0 0
sin θ1 cos θ1 0 0

0
0

0
0

1
0

0
1

] T2
1 = [

sin θ2 cos θ2 0 0
0 0 1 L1

cos θ2

0
− sin θ2

0
0
0

0
1

]                (2.146)  

T3
2 = [

cos θ3 −sin θ3 0 L2

sin θ3 cos θ3 0 0
0
0

0
0

1
0

0
1

] T4
3 = [

cos θ4 −sin θ4 0 L3

sin θ4 cos θ4 0 0
0
0

0
0

1
0

0
1

]                   (2.147)  
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T5
4 = [

1 0 0 L4

0 1 0 0
0
0

0
0

1
0

0
1

]                                                                                                          (2.148) 

T5
0 = 

[
 
 
 
 
 
1

2
S1234 +

1

2
S2134

1

2
C1234 +

1

2
C2134 −S1 Px 

1

2
C2134 −

1

2
C1234

1

2
S1234 −

1

2
S2134 Cθ1 Py

C234

0
−S234

0
0 
0 

    Py

    1 ]
 
 
 
 
 

                                  (2.149) 

Where  

S1 = sin θ1 , C1 = cos θ1 , S2 = sin θ2, C2 = cos θ2, S3 = sin θ3                        (2.150) 

C3 = cos θ3, Sθ4 = sin θ4 , Cθ4 = cos θ4 , S234 = sin(θ2 + θ3 + θ4)              (2.151) 

C234 = cos(θ2 + θ3 + θ4), S1234 = sin(θ1 + θ2 + θ3 + θ4)                              (2.152) 

C1234 = cos(θ1 + θ2 + θ3 + θ4) , C2134 = cos(θ2 − θ1 + θ3 + θ4)                (2.153) 

S2134 = sin(θ2 − θ1 + θ3 + θ4)                                                                                (2.154) 

 

The elements of the position vector are given from the calculated homogeneous 

transformation matrix  T5
0  as follows: 

Px = C1S2(L2 + L3C3 + L4C3C4 − L4S3S4) + C1C2(L3S3 + L4C3S4 + L4C4S3) 

−L1S1                                                                                                                                (2.155) 

Py = S1S2(L2 + L3C3 + L4C3C4 − L4S3S4) 

+S1C2(L3S3 + L4C3S4 + L4C4S3)                                                                              (2.155) 

Pz = L3 C 23 + L2C2 + L4C234                                                                                    (2.156) 

The expression of the position vector is given in equation (2.157). 

  Pv = [

Px

Py

Pz

]                                                                                                                       (2.157) 

2.3.2. Dynamic model of the TLRIP 

The non-linear motion equations of this TLRIP are derived based on the DH 

convention and can be given in a matrix form, given in equation (2.7). The dynamic 
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equations of TLRIP system are derived using the "Euler-Lagrangian" method. The 

terms of each matrix of equation (2.7) are calculated using the equations (2.8-2.11). 

The elements of each matrix calculated are calculated as follows: 

∆h1
 , ∆h2

, ∆h3
 and ∆h4

 are center of gravity vectors of the first, second, third and 

fourth links respectively. The four vectors are given according to the coordinate system 

of each link. 

∆h1
= [0

L1

2
0 1] T  ∆h2

= [
L2

2
0 0 1]

T

                                                   (2.158) 

∆h3
= [

L3

2
0 0 1]

T

 ∆h4
= [

L4

2
0 0 1]

T

                                                     (2.159) 

I1 , I2 , I3  and I4  are the inertia tensors of the first, second, third and fourth links, 

respectively. 

I1 = [

0 0 0
0 0 0
0 0 Izz1

] I2 = [

0 0 0
0 0 0
0 0 Izz2

] I3 = [

0 0 0
0 0 0
0 0 Izz3

] I4 = [

0 0 0
0 0 0
0 0 Izz4

] (2.160) 

The coordinates of the mass center of each link are calculated and given as follows:  

h1 = T1
0  ∆h1

= 

[
 
 
 
 
 −

L1 sin θ1

2
L1 cos θ1

2
0
1 ]

 
 
 
 
 

   h2 = T2
0  ∆h2

= 

[
 
 
 
 
 
 
L2 cos θ1 sin θ2 

2
 − L1 sin θ1

L2 sin θ1 sin θ2 

2
+ L1 cos θ1

L2 cos θ2

2
1 ]

 
 
 
 
 
 

(2.161) 

h3 = T3
0  ∆h3

 

=

[
 
 
 
 
 
 
L3 cos θ1 cos θ2 sin θ3 

2
+

L3 cosθ1 cos θ3 sin θ2 

2
+ L2 cosθ1  sin θ2 − L1 sin θ1

L3 cos θ2 sin θ1 sin θ3 

2
+

L3 cosθ3 sin θ1 sin θ2 

2
+ L2 sin θ1  sin θ2 + L1 cosθ1

L3 cos(θ2 + θ3)

2
+ L2 cos θ2

1 ]
 
 
 
 
 
 

(2.162)  

h4 = T4
0  ∆h4
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= 

[
 
 
 
 
 
 C1S2 (L2 + L3C3 +

L4C3C4

2
−

L4S3S4

2
)+ C1C2  (L3S3 +

L4C3S4

2
+

L4S3C4

2
) − L1S1

S1S2 (L2 + L3C3 +
L4C3C4

2
−

L4S3S4

2
)+ C2S1  (L3S3 +

L4C3S4

2
+

L4S3C4

2
) + L1C1

L3 C23 + L2 C2 + 
1

2
 L4C234

1 ]
 
 
 
 
 
 

 (2.163) 

To calculate the Jacobian matrix of the first link, the derivative of the vector h1 is taken 

according to θ1 , θ2 , θ3 and θ4. The first link is a rotational link, so ξ1 = 1, z1 =

 R1
0  i4 = [0 0 1]T and b1 =  ξ1z

1 = [0 0 1]T. The Jacobian matrix of the first 

link is given as follows: 

J1 =

[
 
 
 
 
 
 
 
 

∂

∂θ1
(−

L1 sin θ1

2
)

∂

∂θ2
(−

L1 sin θ1

2
)

∂

∂θ3
(−

L1 sin θ1

2
)

∂

∂θ4
(−

L1 sin θ1

2
)

∂

∂θ1
(
L1 cos θ1

2
)

∂

∂θ2
(
L1 cosθ1

2
)

∂

∂θ3
(
L1 cosθ1

2
)

∂

∂θ4
(
L1 cos θ1

2
)

0
0
0
1

0                     0                                     0
0                     0                                     0
0                     0                                     0
0                     0                                     0 ]

 
 
 
 
 
 
 
 

  

=

[
 
 
 
 
 
 
 −

L1 cos θ1  

2
0 0 0

−
L1 sin θ1  

2
0

0 0 0
0 0 0

     0
     0
    1

                0 0 0
                 0 0 0
                 0 0 0

 
]
 
 
 
 
 
 
 

                                                                                       (2.164) 

Th Jacobian matrix of the first link can be written in two matrices A1and B1. 

A1 =

[
 
 
 
 −

L1 cos θ1  

2
0 0 0

−
L1 sinθ1  

2
0

0 0 0
0 0 0]

 
 
 
 

 and  B1 = [
0
0
1

0 0 0
0 0 0
0 0 0

]                                     (2.165) 

To calculate the Jacobian matrix of the second link, the derivative of the vector h2 is 

taken according to θ1 , θ2 , θ3 and θ4. The second link is a rotational link, so ξ2 = 1, 

z2 = R2
0  i4 = [0 0 1]T and b2 =  ξ2z

2 = [0 0 1]T. The Jacobian matrix of the 

second link is given as follows: 
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J2 = 

[
 
 
 
 
 
 
 
 
 

∂

∂θ1

(
L2 C1 𝑆2  

2
 − L1S1)

∂

∂θ1

(
L2 S1 S2  

2
+ L1C1)

∂

∂θ1

(
L2C2

2
)

0
0
1

∂

∂θ2

(
L2 C1 𝑆2  

2
 − L1S1)

∂

∂θ3

(
L2 C1 𝑆2  

2
 − L1S1)

∂

∂θ4

(
L2 C1 𝑆2  

2
 − L1S1)

∂

∂θ2

(
L2 S1 S2  

2
+ L1C1)

∂

∂θ3

(
L2 S1 S2  

2
+ L1C1)

∂

∂θ4

(
L2 S1 S2  

2
+ L1C1)

∂

∂θ2

(
L2C2

2
)              

∂

∂θ3

(
L2C2

2
)                                  

∂

∂θ3

(
L2C2

2
)

− sin θ1                            0                                           0
cos θ1                              0                                           0
0                                        0                                           0 ]

 
 
 
 
 
 
 
 
 

 

=

[
 
 
 
 
 
 
 
 
−

L2 sin θ1 sin θ2 

2
 − L1 cos θ1

L2 cos θ1 sin θ2 

2
 − L1 sin θ1

0
0
0
1

L2 cos θ1 cos θ2 

2
  0 0 0 

L2 cos θ2 cos θ1 

2
  0 0 0

−L2 sin θ2

2
            0 0 0

− sin θ1                  0 0 0
 cos θ1                    0 0 0
0                               0 0 0]

 
 
 
 
 
 
 
 

                  (2.166) 

The Jacobian matrix of the second link can be written in two matrices A2 and B2. 

A2 = 

[
 
 
 
 
 
−

L2 sin θ1 sin θ2 

2
 − L1 cos θ1

L2 cos θ1 sin θ2 

2
 − L1 sin θ1

0

L2 cos θ1 cos θ2 

2
0 0 

L2 cos θ2 cos θ1 

2
0 0

−L2 sin θ2

2
          0 0 ]

 
 
 
 
 

                  (2.167) 

B2 = [
0
0
1

− sin θ1 0 0
cos θ1  0 0
0            0 0

]                                                                                        (2.168) 

To calculate the Jacobian matrix of the third link, the derivative of the vector h3 is 

taken according to θ1 , θ2 , θ3 and θ4.  

The third link is a rotational link, so ξ3 = 1, z3 = R3
0  i4 = [− sin θ1 cos θ1 1]T 

and b3 =  ξ3z
3 = [0 0 1]T . The Jacobian matrix of the third link is given as 

follows: 
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J3 = 

[
 
 
 
 
 
 
 
 
 

∂

∂θ1
(
L3 C1  C2 S3 

2
+

L3C1  C3 S2 

2
+ L2 C1 S2 −L1S1)

∂

∂θ2
(
L3 C1  C2 S3 

2
+

L3C1  C3 S2 

2
+ L2 C1 S2 −L1S1)

∂

∂θ1
(
L3 C2 S1 S3 

2
+

L3 C3  S1 S2 

2
+ L2S1 S2 +L1C1)

∂

∂θ2
(
L3 C2 S1 S3 

2
+

L3 C3  S1 S2 

2
+ L2S1 S2 +L1C1)

∂

∂θ1
(
L3C23

2
+ L2C2)

∂

∂θ2
(
L3C23

2
+ L2C2)

0 −S1

0   C1

1    0

 

∂

∂θ3
(
L3 C1  C2 S3 

2
+

L3C1  C3 S2 

2
+ L2 C1 S2 −L1S1)

∂

∂θ4
(
L3 C1  C2 S3 

2
+

L3C1  C3 S2 

2
+ L2 C1 S2 −L1S1)

∂

∂θ3
(
L3 C2 S1 S3 

2
+

L3 C3  S1 S2 

2
+ L2S1 S2 +L1C1)

∂

∂θ4
(
L3 C2 S1 S3 

2
+

L3 C3  S1 S2 

2
+ L2S1 S2 +L1C1)

∂

∂θ3
(
L3C23

2
+ L2C2)

∂

∂θ4
(
L3C23

2
+ L2C2)

−S1 0
C1   0

1     0 ]
 
 
 
 
 
 
 
 
 

 

=

[
 
 
 
 
 
 
 
 
L3 C3  C1 S2 

2
−

L3C2  S1 S3 

2
− L2 S1  S2 −L1C1

C1(L3C23 + 2L2C2)

2

C1L3C23

2
0

L3C1  C2 S3 

2
+

L3C1  C3 S2 

2
+ L2 C1 S2 − L1S1

S1(L3C23 + 2L2C2)

2

S1L3C23

2
0

0
0
0
1

−L3S23

2
− L2S2

−S1

C1

0

−
L3C23

2
0

−S1     0
C1

0
       0
       0 ]

 
 
 
 
 
 
 
 

(2.169) 

The Jacobian matrix of the third link can be written in two matrices A3 and B3. 

A3 = 

 

[
 
 
 
 
 
 
L3 C3  C1 S2 

2
−

L3C2  S1 S3 

2
− L2 S1  S2 −L1C1

C1(L3C23 + 2L2C2)

2

C1L3C23

2
0

L3C1  C2 S3 

2
+

L3C1  C3 S2 

2
+ L2 C1 S2 − L1S1

S1(L3C23 + 2L2C2)

2

S1L3C23

2
0

0
−L3S23

2
− L2S2 −

L3C23

2
0]
 
 
 
 
 
 

  

(2.170) 

B3 = [
0 −S1 −S1 0

0 C1 C1    0
1 0 0      0

]                                                                                          (2.171) 

To calculate the Jacobian matrix of the fourth link, the derivative of the vector h4 is 

taken according to θ1 , θ2 , θ3 and θ4. The fourth link is a rotational link, so ξ4 = 1, 

z4 = R4
0  i4 = [− sin θ1 cos θ1 1]T and b4 =  ξ4z

4 = [0 0 1]T . The Jacobian 

matrix of the fourth link is given as follows: 
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J4 = 

[
 
 
 
 
 
 
 
 
 

∂

∂θ1
(h411

)
∂

∂θ2
(h411

)
∂

∂θ3
(h411

)
∂

∂θ4
(h411

)

∂

∂θ1
(h421

)
∂

∂θ2
(h421

)
∂

∂θ3
(h421

)
∂

∂θ4
(h421

)

∂

∂θ1
(h431

)

0
0
1

∂

∂θ2
(h431

)

−S1

C1

0

∂

∂θ3
(h431

)
∂

∂θ4
(h431

)

−S1            −S1

C1          C1

0           0 ]
 
 
 
 
 
 
 
 
 

 

= 

[
 
 
 
 
 
 
J411

J412
J413

J414

J421
J422

J423
J424

J431

0
0
1

J432

−S1

C1

0

J433
J434

−S1 −S1

C1

0
      C1

       0 ]
 
 
 
 
 
 

                                                                                        (2.172) 

Where: 

 h411
, h421

 and h431
 are the elments of the vector h4. 

J411
= S1 S2 (

L4 S3S4

2
− L2 − L3 C3 −

L4 C3C4

2
)  

+ C2 S1 (L3 S3 −
L4 C3 S4

2
−

L4 C4 S3

2
) − L1 C1                                                   (2.173) 

J412
= C1 (

2L3 C23 + 2L2 C2 + L4 C234 

2
)                                                                (2.174) 

J413
= 

L4 C2134

4
+ 

L3 C123

2
+ 

L4 C1234

4
+ 

L3 C213

2
                                                 (2.175) 

J414
= 

L4(C1234 + C2134)

4
                                                                                            (2.176) 

J421
= C1S2 (L2 + L3 C3 +

L4 C3C4

2
−

L4 S3S4

2
) 

+ C2 C1 (L3 S3 +
L4 C3 S4

2
+

L4 C4 S3

2
) − L1 S1                                                   (2.177) 

J422
= S1 (

2L3 C23 + 2L2 C2 + L4 C234 

2
)                                                                (2.178) 

J423
= 

L3 C123

2
− 

L4 S2134

4
+ 

L4 S1234

4
− 

L3 S213

2
                                                  (2.179) 

J424
= 

L4 S1234 − S2134

4
                                                                                                 (2.180) 

J431
= 0                                                                                                                            (2.181) 
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J432
= −L3 S23 − L2S2 −

L4 S234

2
                                                                              (2.182) 

J433
= −L3 S23 −

L4 S234

2
                                                                                             (2.183) 

J434
= −

L4 S234

2
                                                                                                             (2.184) 

The Jacobian matrix of the fourd link is written in two matrices A4 and B4. 

A4 = [

J411
J412

J413
J414

J421
J422

J423
J424

J431
J432

J433
J434

] , B4 = [
0 −S1 −S1 −S1

0 C1 C1    C1

1 0 0      0

]                         (2.185) 

The expressions of the mass matrix of the first, second, third and fourth links are given 

in equations (2.186), (2.187), (2.188) and (2.189), respectively. The inertia tensor of 

each link is calculated according to the main coordinate system. 

I1 = R Im1 R1
0 T , I2 = R Im2 R2

0 T , I3 = R Im3 R3
0 T , I4 = R Im4 R4

0 T   4
0       3

0    2
0  (2.186)1

0  

 D(θ1) =  m1 A1
TA1 + B1

T I1B1 = 

[
 
 
 
m1L1

2

4
+ Izz1

0 0 0

0
0
0

0 0 0
0
0

0
0

0
0]
 
 
 

                          (2.187) 

D(θ2) = m2 A2
TA2 + B2

T I2B2  

=

[
 
 
 
 
 
 m2 (

L2
2 sin2θ2

4
+L1

2) −(
L1 L2 m2 cos θ2

2
) 0 0

− (
L1 L2 m2 cos θ2

2
) (

 L2 
2m2 

4
+ Izz2

) 0 0

0
0

0
0

0
0

0
0]
 
 
 
 
 
 

                                 (2.188) 

D(θ3) =  m3 A3
TA3 + B3

T I3B3                                                                                (2.189) 

D(θ4) =  m4 A4
TA4 + B4

T I4B4                                                                                (2.190) 

To simplify the equations of TLRIP, Table 2.9 gives the employed parameters used in 

this section. 
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Table 2.9.  Simplified parameters description of the TLRIP 

Parameters Description Parameters Description 

a1 L3
2m3 a16 L1

2m4  

a2 L2
2m2 a17 L2

2m4  

a3 L1
2m1 a18 L3

2m4  

  a4 L2
2m3 a19 L4

2m4  

a5 L1
2m2 a20 L2L3m4  

a6 L1
2m3 a21 L2L4m4  

a7 L3
2m3 a22 L3L4m4  

a8 L2L3m3 a23 L1L3m4  

a9 L1L2m2 a24 L1L2m4  

a10 L1L2m3 a25 L1L4m4  

a11 L1L3m3 a26 L3gm4 

a12 L2gm2 a27 L4gm4 

a13 L2gm3 a28 L3gm4 

a14 L3gm3  a29 L2gm4 

The elements of  D(θ3) matrix are given as follows: 

D3
11 = 

Izz3
2

+ a6 +
a4

2
+

a7

8
−

Izz3 cos(2θ2 + 2θ3 )

2
−

a4 cos(2θ2 )

2
 

−
a7 cos(2θ2 + 2θ3)

8
+

a8 cos(θ3 )

2
−

 a8 cos(2θ2 + θ3 )

2
                                  (2.191) 

D3
12 = −

 a11 cos(θ2 + θ3 ) + 2 a10 cos θ2

2
                                                           (2.192) 

D3
13 = −

 a11 cos(θ2 + θ3 )

2
                                                                                      (2.193) 

D3
22 =   a4 +  a8 cos θ3 +

a1

4
+ Izz3                                                                          (2.194) 

D3
23 = 

a1

4
+

 a8 cos θ3

2
+ Izz3                                                                                     (2.195) 

D3
33 = 

a7

4
+ Izz3                                                                                                            (2.196) 
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D3
21 = D3

12 , D
3
31 = D3

13                                                                                         (2.197) 

D3
14 = D3

24 =  D3
34 = D3

41 = D3
42 = D3

43  = D3
44 = 0                               (2.198) 

The matrix D(θ3) maybe given as follows: 

D(θ3) =

[
 
 
 
 
D3

11 D3
12 D3

13 D3
14

D3
21 D3

22 D3
23 D3

24

D3
31

D3
41

D3
32

D3
42

D3
33 D3

34

D3
43 D3

44]
 
 
 
 

                                                                      (2.199) 

The elements of  matrix D(θ4) are given as follows : 

D4
11 =

Izz4
2

+ a16 +
a17

2
+

a18

2
+

a19

8
−

Izz4 cos(2θ2 + 2θ3 + 2θ4)

2
 

−
a17 cos(2θ2)

2
−

a18 cos(2θ2 + 2θ3)

2
+  a20 cos(θ3) +

 a22 cos(θ4 )

2
     

−
a19 cos(2θ2 + 2θ3 + 2θ4)

8
+

a21 cos(θ3 + θ4)

2
 −  a20 cos(2θ2 + θ3) 

−
a21 cos(2θ2 + θ3 + θ4)

2
−

a22 cos(2θ2+2θ3 + θ4)

2
                                         (2.200) 

D4
12 = 

− 2 a23 cos(θ3 + θ4) − 2 a24 cos θ2 −  a25 cos(θ2 + θ3 + θ4)

2
         (2.201) 

D4
13 = 

− 2 a23 cos(θ2 + θ3) −  a25 cos(θ2 + θ3 + θ4)

2
                                    (2.202) 

D4
14 = 

− a25 cos(θ2 + θ3 + θ4)

2
                                                                              (2.203) 

D4
22 =  a17 + 2 a20 cos θ3 + a21 cos(θ3 + θ4) 

 a18 +  a22 cos θ4 +
 a19

4
+ Izz4                                                                                   (2.204) 

D4
23 =  a18 +  a22 cos θ4 +  a20 cos θ3 +

 a19

4
+

 a21 cos(θ3 + θ4)

2
+ Izz4      (2.205) 

D4
24 = Izz4  +

 a19

4
+

 a22 cos θ4

2
+

 a21 cos(θ3 + θ4)

2
                                         (2.206) 

D4
33 = Izz4  +  a18 +

 a22 cos θ4

2
+

 a19

2
                                                                   (2.207) 
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D4
34 = Izz4  +  a19 +

 a22 cos θ4

2
                                                                               (2.208) 

D4
44 = Izz4  +

 a19

2
                                                                                                        (2.209) 

D4
21 = D4

12 , D
4
31 = D4

13 , D
4
41 = D4

14, D
4
42 = D4

24 , D
4
43 = D4

34       (2.210) 

The matrix D(θ4) maybe given as follows: 

D(θ4) =

[
 
 
 
 
D4

11 D4
12 D4

13 D4
14

D4
21 D4

22 D4
23 D4

24

D4
31

D4
41

D4
32

D4
42

D4
33 D4

34

D4
43 D4

44]
 
 
 
 

                                                                      (2.211) 

The mass matrix of the TLRIP is given as follows : 

D(θ) =  D(θ1) + D(θ2) + D(θ3) + D(θ4)                                                               (2.212) 

The elments of the mass matrix are given as follows 

D11 = 
a3

4
+ Izz1

+ 
a2 sin

2θ2

4
+ a5 +

Izz3
2

+ a6 +
a4

2
+

a7

8
−

Izz3 cos(2θ2 + 2θ3 )

2
 

−
a4 cos(2θ2 )

2
−

a7 cos(2θ2 + 2θ3)

8
+

a8 cos(θ3 )

2
−

 a8 cos(2θ2 + θ3 )

2
+

a17

2
 

−
Izz4 cos(2θ2 + 2θ3 + 2θ4)

2
−

a19 cos(2θ2 + 2θ3 + 2θ4)

8
−

a17 cos(2θ2)

2
+

Izz4
2

 

+ a16 +
a18

2
+

a19

8
−

a18 cos(2θ2 + 2θ3)

2
 

+ a20 cos(θ3) +
 a22 cos(θ4 )

2
−  a20 cos(2θ2 + θ3)                                            (2.213) 

D12 =
−a9 cos θ2

2
+

− 2 a23 cos(θ3 + θ4) − 2 a24 cos θ2 −  a25 cos(θ2 + θ3 + θ4)

2
 

−
 a11 cos(θ2 + θ3 ) + 2 a10 cos θ2

2
                                                                           (2.214) 

D13 = −
 a11 cos(θ2 + θ3 )

2
 

+ 
− 2 a23 cos(θ2 + θ3) −  a25 cos(θ2 + θ3 + θ4)

2
                                               (2.215) 
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D14 = 
− a25 cos(θ2 + θ3 + θ4)

2
                                                                                (2.216) 

D22 =
 a2 

4
+ Izz2

+   a4 +  a8 cos θ3 +
a1

4
+ Izz3 +  a17 + 2 a20 cos θ3 + a18 

+
 a19

4
+ Izz4+ a21 cos(θ3 + θ4) +  a22 cos θ4                                                        (2.217) 

D23 =  a18 +  a22 cos θ4 +  a20 cos θ3 +
 a19

4
+

 a21 cos(θ3 + θ4)

2
+ Izz4 + 

a1

4
  

+
 a8 cos θ3

2
+ Izz3                                                                                                          (2.218) 

D24 = Izz4  +
 a19

4
+

 a22 cos θ4

2
+

 a21 cos(θ3 + θ4)

2
                                           (2.219) 

D33 =
a7

4
+ Izz3 + Izz4  +  a18 +

 a22 cos θ4

2
+

 a19

2
     

+Izz4  +  a19 +
 a22 cos θ4

2
                                                                                           (2.220) 

D44 = Izz4  +
 a19

2
                                                                                                          (2.221) 

D21 = D12 , D31 = D13 , D41 = D14, D42 = D24 , D43 = D34                           (2.222) 

The matrix D(θ)can be given as follows: 

D(θ) = [

D11 D12 D13 D14

D21 D22 D23 D24

D31

D41

D32

D42

D33 D34

D43 D44

]                                                                               (2.223) 

The elements of the velocity coupling matrix of the first link are calculated as follows: 

C1
11 = 

1

2
 

∂

∂θ1
 D11(θ) = 0                                                                                            (2.224) 

C1
12 = 

1

2
 

∂

∂θ1
 D12(θ) = 0                                                                                            (2.225) 

C1
13 = 

1

2
 

∂

∂θ1
 D13(θ) = 0                                                                                            (2.226) 
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C1
14 = 

1

2
 

∂

∂θ1
 D14(θ) = 0                                                                                          (2.227) 

C1
21 =  

∂

∂θ2
 D11(θ) − 

1

2
 

∂

∂θ1
D21(θ)  

= Izz2 sin(2θ2 + 2θ3 + 2θ4) + Izz2 sin 2θ2 + Izz3  sin(2θ2 + 2θ3) 

+
  a19 sin(2θ2 + 2θ3 + 2θ4)

4
+

a2 sin 2θ2

4
+ a4+a19 sin 2θ2 

+
  a7 sin(2θ2 + 2θ3)

4
+   a18 sin(2θ2 + 2θ3)  + a22 sin(2θ2 + 2θ3 + 2θ4)      

+ a8 sin(2θ2 + 2θ3) +  2 a20 sin(2θ2 + 2θ3) + a21 sin(2θ2 + 2θ3 + 2θ4) (2.228) 

C1
22 =  

∂

∂θ2
 D12(θ) − 

1

2
 

∂

∂θ1
D22(θ) 

= 
a11 sin(θ2 + θ3) +  2a23 sin(θ2 + θ3) + a9 sin θ2

2
          

+
2a10 sin θ2 +  2a24 sin θ2 + a25 sin(θ2 + θ3 + θ4)

2
                                        (2.229) 

C1
23 =  

∂

∂θ2
 D13(θ) − 

1

2
 

∂

∂θ1
D23(θ) =

a25 sin(θ2 + θ3 + θ4) + a11 sin(θ2 + θ3) 

2
 

+ a23 sin(θ2 + θ3)                                                                                                        (2.230) 

C1
24 =  

∂

∂θ2
 D14(θ) − 

1

2
 

∂

∂θ1
D24(θ) =

 a25 sin(θ2 + θ3 + θ4) 

2
                        (2.231) 

C1
31 =  

∂

∂θ3
 D11(θ) − 

1

2
 

∂

∂θ1
D31(θ) =  Izz4 sin(2θ2 + 2θ3 + 2θ4)   

−
 a20 sin θ3

2
+

 a8 sin(2θ2 + θ3)

2
+ a20 sin(2θ2 + θ3) +

a21 sin(2θ2 + θ3 + θ4)

2
 

+
 a19 sin(2θ2 + 2θ3 + 2θ4)

4
+ 

 a1 sin(2θ2 + 2θ3)

4
 

+ Izz3 sin(2θ2 + 2θ3) + a18 sin(2θ2 + 2θ3) −
 a8 sin θ3

2
                                   (2.232) 

C1
32 =  

∂

∂θ3
 D12(θ) − 

1

2
 

∂

∂θ1
D32(θ) =  

a25 sin(θ2 + θ3 + θ4)

2
  

+ 
a11 sin(θ2 + θ3)

2
+ a23 sin(θ2 + θ3)                                                                  (2.233) 
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C1
33 =  

∂

∂θ3
 D13(θ) − 

1

2
 

∂

∂θ1
D33(θ) =

 a25 sin(θ2 + θ3 + θ4) 

2
   

+ 
a23 sin(θ2 + θ3) 

2
− a23sin(θ2 + θ3)                                                                   (2.234) 

C1
34 =  

∂

∂θ3
 D14(θ) − 

1

2
 

∂

∂θ1
D34(θ) =

 a25 sin(θ2 + θ3 + θ4) 

2
                        (2.235) 

C1
41 =  

∂

∂θ4
 D11(θ) − 

1

2
 

∂

∂θ1
D41(θ) = Izz4 sin(2θ2 + 2θ3 + 2θ4)  

+
 a21 sin(2θ2 + θ3 + θ4) −  a21 sin(θ3 + θ4) +  a22 sin(2θ2 + θ3 + θ4) 

2
  

+
a19 sin (2θ2 + 2θ3 + 2θ4)

4
−

 a22 sin θ4

4
                                                                   (2.236) 

C1
42 =  

∂

∂θ4
 D12(θ) − 

1

2
 

∂

∂θ1
D42(θ) = 

a25 sin(θ2 + θ3 + θ4)

2
                         (2.237) 

C1
43 =  

∂

∂θ4
 D13(θ) − 

1

2
 

∂

∂θ1
D43(θ) = 

a25 sin(θ2 + θ3 + θ4)

2
                         (2.238) 

C1
44 =  

∂

∂θ4
 D14(θ) − 

1

2
 

∂

∂θ1
D44(θ) =  

a25 sin(θ2 + θ3 + θ4)

2
                      (2.239) 

The velocity coupling matrix of the first link is given in equation (2.240) 

C1 = 

[
 
 
 
 
C1

11 C1
12 C1

13 C1
14

C1
21 C1

22 C1
23 C1

24

C1
31

C1
41

C1
32

C1
42

C1
33 C1

34

C1
43 C1

44]
 
 
 
 

                                                                             (2.240) 

The elements of the velocity coupling matrix of the second link are calculated as 

follows: 

C2
11 =

∂

∂θ1
 D21(θ) −

1

2
 

∂

∂θ2
 D11(θ) = −

Izz4 sin(2θ2 + 2θ3 + 2θ4)

2
− 

Izz2 sin 2θ2

2
 

−
Izz3 sin(2θ2 + 2θ3)

2
 −

a19 sin(2θ2 + 2θ3 + 2θ4)

8
−

a2 sin 2θ2

8
−

a4 sin 2θ2

2
 

−
a1 sin(2θ2 + 2θ3)

8
−

a18 sin(2θ2 + 2θ3)

2
 −

a8 sin(2θ2 + 2θ3)

2
−

a17 sin 2θ2

2
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− 
a21 sin(2θ2 + θ3 + θ4)

2
−  

a22 sin(2θ2 + 2θ3 + θ4)

2
                                      (2.241) 

C2
12 = 

∂

∂θ1
 D22(θ) −

1

2
 

∂

∂θ2
 D12(θ) 

= 
−a11 sin(θ2 + θ3) − 2a23 sin(θ2 + θ3) − a9 sin θ2 

4
 

−(
2a10 sin θ2 + 2a24 sin θ2 + a25 sin(θ2 + θ3 + θ4) 

4
)                                    (2.242) 

C2
13 = 

∂

∂θ1
 D23(θ) −

1

2
 

∂

∂θ2
 D13(θ) =

−a25 sin(θ2 + θ3)  − a11 sin(θ2 + θ3)

4
 

−
 a23 sin(θ2 + θ3)

2
                                                                                                        (2.243) 

C2
14 = 

∂

∂θ1
 D24(θ) −

1

2
 

∂

∂θ2
 D14(θ) =

−a25 sin(θ2 + θ3)

4
                              (2.244) 

C2
21 =  

1

2

∂

∂θ2
 D21(θ) =

1

4
a11 sin(θ2 + θ3) + 

1

2
 a23 sin(θ2 + θ3) +

1

2
 a24 sin θ2 

+
1

2
 a9 sin θ2 +

1

2
 a10  sin θ2 +

1

4
 a25 sin(θ2 + θ3 + θ4)                                    (2.245) 

C2
22 =   

1

2
 

∂

∂θ2
D22(θ) =  0                                                                                        (2.246) 

C2
23 =   

1

2
 

∂

∂θ2
D23(θ) =  0                                                                                        (2.247) 

C2
24 =   

1

2
 

∂

∂θ2
D24(θ) =  0                                                                                        (2.248) 

C2
31 =  

∂

∂θ3
 D21(θ) − 

1

2
 

∂

∂θ2
D31(θ) =  

a25 sin(θ2 + θ3 + θ4)

4
+

 a11 sin(θ2 + θ3)

4
 

+
 a23 sin(θ2 + θ3)

2
                                                                                                        (2.249) 

C2
32 =  

∂

∂θ3
 D22(θ) − 

1

2
 

∂

∂θ2
D32(θ) 

= −a21 sin(θ3 + θ4) −  a8 sin θ3 −  2a20 sin θ3                                                  (2.250) 
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C2
33 =  

∂

∂θ3
 D23(θ) − 

1

2
 

∂

∂θ2
D33(θ) 

=
−a21 sin(θ3 + θ4) −  a8 sin θ3 −  2a20 sin θ3  

2
                                                 (2.251) 

C2
34 =  

∂

∂θ3
 D23(θ) − 

1

2
 

∂

∂θ2
D33(θ) =

−a21 sin(θ3 + θ4)

2
                             (2.252) 

C2
41 =  

∂

∂θ4
 D21(θ) − 

1

2
 

∂

∂θ2
D41(θ) =

 a25sin(θ2 + θ3 + θ4)

4
                      (2.253) 

C2
42 =  

∂

∂θ4
 D22(θ) − 

1

2
 

∂

∂θ2
D42(θ) =  −a21sin(θ3 + θ4) −  a22 sin θ4     (2.254) 

C2
43 =  

∂

∂θ4
 D23(θ) − 

1

2
 

∂

∂θ2
D43(θ) = 

−a21sin(θ3 + θ4)

2
−  a22 sin θ4         (2.255) 

C2
44 =  

∂

∂θ4
 D24(θ) − 

1

2
 

∂

∂θ2
D44(θ) = 

−a21sin(θ3 + θ4) −  a22 sin θ4

2
        (2.256) 

The velocity coupling matrix of the second link is given in equation (2.257) 

C2 = 

[
 
 
 
 
C2

11 C2
12 C2

13 C2
14

C2
21 C2

22 C2
23 C2

24

C2
31

C2
41

C2
32

C2
42

C2
33 C2

34

C2
43 C2

44]
 
 
 
 

                                                                             (2.257) 

The elements of the velocity coupling matrix of the third link are calculated as follows: 

C3
11 =

∂

∂θ1
 D31(θ) −

1

2
 

∂

∂θ3
 D11(θ)  

= 
a8 sin θ3

4
−

Izz3 sin(2θ2 + 2θ3 )

2
−

a19 sin(2θ2 + 2θ3 + 2θ4)

8
 

−
a7 sin(2θ2 +  2θ3)

8
− 

a18 sin(2θ2 +  2θ3)

2
−

 Izz4 sin(2θ2 +  2θ3 +  2θ4)

2
 

−
a8 sin(2θ2 + θ3)

4
−

a20 sin(2θ2 + θ3)

2
−

a21 sin(2θ2 + θ3 + θ4)

4
 

−
a22 sin(2θ2 + 2θ3 + θ4)

2
 +

a20 sin θ3

2
+

a21 sin(θ3 + θ4)

4
                           (2.258) 
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C3
12 = 

∂

∂θ1
 D32(θ) −

1

2
 

∂

∂θ3
 D12(θ) 

= −
a25  sin(θ2 + θ3 + θ4 )

4
−   

a11  sin(θ2 + θ3 )

4
−   

a23  sin(θ2 + θ3 )

2
  (2.259) 

C3
13 = 

∂

∂θ1
 D33(θ) −

1

2
 

∂

∂θ3
 D13(θ) 

= −
a25  sin(θ2 + θ3 + θ4 )

4
−   

a11  sin(θ2 + θ3 )

4
−   

a23  sin(θ2 + θ3 )

2
    (2.260) 

C3
14 = 

∂

∂θ1
 D34(θ) −

1

2
 

∂

∂θ3
 D14(θ) = −

a25  sin(θ2 + θ3 + θ4 )

4
                  (2.261) 

C3
21 =  

∂

∂θ2
 D31(θ) − 

1

2
 

∂

∂θ3
D21(θ) = 

a25  sin(θ2 + θ3 + θ4 )

4
+  

a11  sin(θ2 + θ3 )

4
 

+  
a23  sin(θ2 + θ3)

2
                                                                                                      (2.262) 

C3
22 =  

∂

∂θ2
 D32(θ) − 

1

2
 

∂

∂θ3
D22(θ) 

=
a21  sin(θ3 + θ4 )

2
+  

a8  sin θ3

2
+ a20  sin θ3                                                      (2.263) 

C3
23 =  

∂

∂θ2
 D33(θ) − 

1

2
 

∂

∂θ3
D23(θ) 

=
a21  sin(θ3 + θ4 )

4
+  

a8  sin θ3

4
+

a20  sin θ3

2
                                                     (2.264) 

C3
24 =  

∂

∂θ2
 D34(θ) − 

1

2
 

∂

∂θ3
D24(θ) =

a21  sin(θ3 + θ4 )

4
                                  (2.265) 

C3
31 =

1

2

∂

∂θ3
 D31(θ) 

= 
a25 sin(θ2 + θ3 + θ4)

4
+ 

a11 sin(θ2 + θ3)

4
+

a23 sin(θ2 + θ3)

2
                   (2.266) 

C3
32 =   

1

2
 

∂

∂θ3
D32(θ) 

= −
a21  sin(θ3 + θ4)

4
−

a8  sin θ3

4
 −

a20  sin θ3

2
                                                   (2.267) 
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C3
33 =   

1

2
 

∂

∂θ3
D33(θ) =  0                                                                                        (2.268) 

C3
34 =   

1

2
 

∂

∂θ3
D34(θ) =  0                                                                                        (2.269) 

C3
41 =  

∂

∂θ4
 D31(θ) − 

1

2
 

∂

∂θ3
D41(θ) =  

a25  sin(θ2 + θ3 + θ4 )

4
                    (2.270) 

C3
42 =  

∂

∂θ4
 D32(θ) − 

1

2
 

∂

∂θ3
D42(θ) =

−a21  sin(θ3 + θ4)

2
− a22  sin θ4    (2.271) 

C3
43 =  

∂

∂θ4
 D33(θ) − 

1

2
 

∂

∂θ3
D43(θ) = −a22  sin θ4                                          (2.272) 

C3
44 =  

∂

∂θ4
 D34(θ) − 

1

2
 

∂

∂θ3
D44(θ) =

−a22  sin θ4

2
                                         (2.273) 

The velocity coupling matrix of the third link is given in equation (2.274) 

C3 = 

[
 
 
 
 
C3

11 C3
12 C3

13 C3
14

C3
21 C3

22 C3
23 C3

24

C3
31

C3
41

C3
32

C3
42

C3
33 C3

34

C3
43 C3

44]
 
 
 
 

                                                                             (2.274) 

The elements of the velocity coupling matrix of the fourth link are calculated as 

follows: 

C4
11 =

∂

∂θ1
 D41(θ) −

1

2
 

∂

∂θ4
 D11(θ)  

= −
Izz4 sin(2θ2 + 2θ3  + 2θ4)

2
−

a19 sin(2θ2 + 2θ3 + 2θ4)

8
 

a22 sin θ4

4
−

a21 sin(2θ2 + θ3 + θ4)

4
+

a21 sin(θ3 + θ4)

4
 

−
a22 sin(2θ2 + 2θ3 + 2θ4)

4
                                                                                       (2.275) 

C4
12 = 

∂

∂θ1
 D42(θ) −

1

2
 

∂

∂θ4
 D12(θ) = −

a25  sin(θ2 + θ3 + θ4 )

4
                  (2.276) 
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C4
13 = 

∂

∂θ1
 D43(θ) −

1

2
 

∂

∂θ4
 D13(θ) = −

a25  sin(θ2 + θ3 + θ4 )

4
                  (2.277) 

C4
14 = 

∂

∂θ1
 D44(θ) −

1

2
 

∂

∂θ4
 D14(θ) = −

a25  sin(θ2 + θ3 + θ4 )

4
                  (2.278) 

C4
31 =  

∂

∂θ3
 D41(θ) − 

1

2
 

∂

∂θ4
D31(θ) = 

a25  sin(θ2 + θ3 + θ4 )

4
                       (2.279) 

C4
32 =  

∂

∂θ3
 D42(θ) − 

1

2
 

∂

∂θ4
D32(θ) =

−a21  sin(θ3 + θ4)

4
− 

a22  sin θ4 

2
      (2.280) 

C4
33 =  

∂

∂θ3
 D43(θ) − 

1

2
 

∂

∂θ4
D34(θ) =

a22  sin θ4   

2
                                            (2.281) 

C4
34 =  

∂

∂θ3
 D44(θ) − 

1

2
 

∂

∂θ3
D34(θ) =

−a22  sin θ4

4
                                            (2.282) 

C4
41 =

1

2

∂

∂θ4

 D41(θ) =  
a25 sin(θ2 + θ3 + θ4)

4
                                                           (2.283) 

C4
42 =   

1

2
 

∂

∂θ4
D42(θ) = −

a22  sin(θ3 + θ4)

4
−

a22  sin θ4

4
                                  (2.284) 

C4
43 =   

1

2
 

∂

∂θ4
D43(θ) = −

a22  sinθ4

4
                                                                     (2.285) 

C4
44 =   

1

2
 

∂

∂θ4
D44(θ) =  0                                                                                          (2.286) 

The velocity coupling matrix of the fourth link is given in equation (2.287). 

C4 = 

[
 
 
 
 
C4

11 C4
12 C4

13 C4
14

C4
21 C4

22 C4
23 C4

24

C4
31

C4
41

C4
32

C4
42

C4
33 C4

34

C4
43 C4

44]
 
 
 
 

                                                                           (2.287) 

In ordre to find the Coriolis and Centripetal force vector of the TLRIP, each element 

of the velocity coupling matrices (C1, C2 , C3 and C4 ) need to verified the equality of 

the elements of the following matrices. 
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[
 
 
 
 
C1

11 C1
12 C1

13 C1
14

C1
21 C1

22 C1
23 C1

24

C1
31

C1
41

C1
32

C1
42

C1
33 C1

34

C1
43 C1

44]
 
 
 
 

=

[
 
 
 
 
 θ1̇

2
θ1̇θ2̇ θ1̇θ3̇ θ1̇θ4̇

θ1̇θ2̇

θ3̇θ1̇

θ4̇θ1̇

θ2

θ3̇θ2̇

θ4̇θ2̇

̇ 2
θ2̇θ3̇ θ2̇θ4̇

θ3̇

θ4̇θ3̇

2
θ3̇θ4̇

θ4̇
2

]
 
 
 
 
 

                         (2.288) 

[
 
 
 
 
C2

11 C2
12 C2

13 C2
14

C2
21 C2

22 C2
23 C2

24

C2
31

C2
41

C2
32

C2
42

C2
33 C2

34

C2
43 C2

44]
 
 
 
 

=

[
 
 
 
 
 θ1̇

2
θ1̇θ2̇ θ1̇θ3̇ θ1̇θ4̇

θ1̇θ2̇

θ3̇θ1̇

θ4̇θ1̇

θ2

θ3̇θ2̇

θ4̇θ2̇

̇ 2
θ2̇θ3̇ θ2̇θ4̇

θ3̇

θ4̇θ3̇

2
θ3̇θ4̇

θ4̇
2

]
 
 
 
 
 

                         (2.289) 

[
 
 
 
 
C3

11 C3
12 C3

13 C3
14

C3
21 C3

22 C3
23 C3

24

C3
31

C3
41

C3
32

C3
42

C3
33 C3

34

C3
43 C3

44]
 
 
 
 

=

[
 
 
 
 
 θ1̇

2
θ1̇θ2̇ θ1̇θ3̇ θ1̇θ4̇

θ1̇θ2̇

θ3̇θ1̇

θ4̇θ1̇

θ2

θ3̇θ2̇

θ4̇θ2̇

̇ 2
θ2̇θ3̇ θ2̇θ4̇

θ3̇

θ4̇θ3̇

2
θ3̇θ4̇

θ4̇
2

]
 
 
 
 
 

                         (2.290) 

[
 
 
 
 
C4

11 C4
12 C4

13 C4
14

C4
21 C4

22 C4
23 C4

24

C4
31

C4
41

C4
32

C4
42

C4
33 C4

34

C4
43 C4

44]
 
 
 
 

=

[
 
 
 
 
 θ1̇

2
θ1̇θ2̇ θ1̇θ3̇ θ1̇θ4̇

θ1̇θ2̇

θ3̇θ1̇

θ4̇θ1̇

θ2

θ3̇θ2̇

θ4̇θ2̇

̇ 2
θ2̇θ3̇ θ2̇θ4̇

θ3̇

θ4̇θ3̇

2
θ3̇θ4̇

θ4̇
2

]
 
 
 
 
 

                         (2.291) 

The elements of Coriolis and Centripetal force vector of the TLRIP are given as 

follows: 

C11 = Izz4 θ1̇θ2̇ sin(2θ2 + 2θ3 + 2θ4)+Izz4 θ1̇θ3̇ sin(2θ2 + 2θ3 + 2θ4)   

Izz4 θ1̇θ4̇ sin(2θ2 + 2θ3 + 2θ4) + Izz2 θ1̇θ2̇ sin 2θ2 + a25 θ3̇θ4̇ sin(θ3 + θ3 + θ4) 

+Izz3 θ1̇θ3̇ sin (2θ2 + 2θ3)+ 
a19θ1̇θ2̇ sin(2θ2 + 2θ3 + 2θ4)   

4
 −

 a22 θ1̇θ4̇ sin θ4

2
 

+
a25θ2̇

2
sin(θ2 + θ3 + θ4)

2
+ 

a25θ3̇
2
sin(θ2 + θ3 + θ4)

2
 + a8θ1̇θ2̇ sin(2θ2 + θ3) 

+
a21 θ1̇θ4̇ sin(2θ2 + θ3 + θ4)

2
+ a11 θ2̇θ3̇ sin(θ2 + θ3) + 2 a23 θ2̇θ3̇ sin(θ2 + θ3)  

−
 a21 θ1̇θ3̇ sin(θ2 + θ3)

2
− 

a21 θ1̇θ4̇ sin(θ3 + θ4)

2
+

 a22 θ1̇θ2̇ sin(2θ3 + 2θ3 + θ4)

2
 

+
 a22 θ1̇θ3̇ sin(2θ3 + 2θ3 + θ4)

2
− 

a8 θ1̇θ3̇ sin θ3

2
 + 

a21 θ1̇θ3̇ sin(2θ2 + θ3 + θ4)

2
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+a20 θ1̇θ3̇ sin(2θ2 + θ3) +  a21θ1̇θ2̇ sin(2θ2 + θ3 + θ4) +
a9θ2̇

2
sin θ2

2
+ a10  

+
a7θ1̇θ3̇ sin(2θ2 + 2θ3)

4
+ a18θ1̇θ3̇ sin(2θ2 + 2θ3) +

a11θ2̇
2
sin(2θ2 + 2θ3)

2
+ 

a8θ1̇θ2̇ sin(2θ2 + θ3) +  2 a20 θ1̇θ2̇ sin(2θ2 + θ3) + 
a8 θ1̇θ3̇ sin(2θ2 + θ3)

2
+ 

+a18θ1̇θ2̇ sin(2θ2 + 2θ3) +  a25 θ2̇θ4̇ sin(θ3 + θ3 + θ4) −
 a22 θ1̇θ3̇ sin θ4

2
 

+
a25θ4̇

2
sin(θ2 + θ3 + θ4)

2
+ 2 a20θ1̇θ2̇ sin(2θ2 + θ3) −  a20 θ1̇θ3̇ sin θ3 

+ 
a11θ3̇

2
sin(θ2 + θ3)

2
+ a23θ3̇

2
sin(θ2 + θ3) θ2̇

2
sin θ2 +a21θ2̇

2
sin θ2 

+
a19θ1̇θ3̇ sin(2θ2 + 2θ3 + 2θ4)   

4
+

a19θ1̇θ4̇ sin(2θ2 + 2θ3 + 2θ4)   

4
 

+a23θ2̇
2
sin(θ2 + θ3) +

a2θ1̇θ4̇ sin 2θ2   

4
+Izz3 θ1̇θ2̇ sin(2θ2 + 2θ3)  

+a4θ1̇θ2̇ sin 2θ2 +a17θ1̇θ2̇ sin 2θ2 +
a1θ1̇θ2̇ sin(2θ2 + 2θ3)   

4
 

 + a25 θ2̇θ3̇ sin(2θ3 + 2θ3 + θ4)                                                                              (2.292) 

C21 =
−Izz4 θ1̇

2
sin(2θ2 + 2θ3 + 2θ4) 

2
−

Izz2 θ1̇
2
sin 2θ2 

2
− 

a17 θ1̇
2
sin 2θ2 

2
 

− 
a1 θ1̇

2
sin ( 2θ2 + 2θ3) 

8
− 

a18 θ1̇
2
sin ( 2θ2 + 2θ3) 

2
− 

a21 θ1̇
2
sin ( 2θ2 + 2θ3) 

2
 

− 
a21 θ3̇

2
sin ( θ3 + θ4) 

2
−

a21 θ4̇
2
sin ( θ3 + θ4) 

2
−

a22 θ1̇
2
sin (2θ2 + 2θ3 + θ4) 

2
 

−a21 θ4̇θ3̇ sin(θ3 + θ4) − a8 θ2̇θ3̇ sin θ3 − 2a20 θ2̇θ3̇ sin θ3 − a22 θ2̇θ4̇ sin θ4 

−
a8 θ3̇

2
sin θ3

2
− a20 θ3̇

2
sin θ3 −

a22 θ4̇
2
sin θ4

2
− 

a8 θ1̇
2
sin(2θ2 + θ3)

2
 

−a20 θ1̇
2
sin(2θ2 + θ3) − a20 θ2̇θ3̇ sin(θ3 + θ4) − a21 θ4̇θ2̇ sin(θ3 + θ4) 

 

−
a19 θ1̇

2
sin(2θ2 + 2θ3 + 2θ4) 

8
−

a2 θ1̇
2
sin 2θ2 

8
−

a4 θ1̇
2
sin 2θ2 

2
 

−
Izz3 θ1̇

2
sin(2θ2 + 2θ3) 

2
− a22 θ3̇θ4̇ sin θ4                                                          (2.293) 
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C31 =
a21 θ1̇

2
sin(θ3 + θ4) 

4
−

Izz3 θ1̇
2
sin(2θ2 + 2θ3) 

2
− 

a22 θ4̇
2
sin θ4 

2
 

−
a1 θ1̇

2
sin(2θ2 + 2θ3) 

8
 −

a18 θ1̇
2
sin(2θ2 + 2θ3) 

2
−

a21 θ1̇
2
sin(2θ2 + θ3 + θ4) 

2
 

−
Izz4 θ1̇

2
sin(2θ2 + 2θ3 + 2θ4) 

2
+

a21 θ1̇
2
sin(θ2 + θ4) 

2
+

a20 θ2̇
2
sin θ3 

2
 

− 
a8 θ1̇

2
sin(2θ2 +θ4) 

4
−

a20 θ1̇
2
sin(2θ2 +θ3) 

2
− a22 θ2̇θ4̇ sin(2θ2 +θ3)  

−
a19 θ1̇

2
sin(2θ2 + 2θ3 + 2θ4) 

8
−

a22 θ1̇
2
sin(2θ2 + 2θ3 + 2θ4) 

2
 

+
a8 θ1̇

2
sin θ3 

4
+

a20 θ1̇
2
sin θ3 

2
+

a8 θ2̇
2
sin θ3 

2
− a22θ3̇θ4̇ sinθ4                 (2.294) 

C41 =
a21 θ1̇

2
sin(θ3 + θ4) 

4
−

a19 θ1̇
2
sin(2θ2 + 2θ3 + 2θ4) 

8
+ a22 θ3̇θ2̇ sin θ4 

−
a21 θ1̇

2
sin(2θ2 + θ3 + θ4) 

4
−

a22 θ1̇
2
sin(2θ2 + 2θ3 + 2θ4) 

4
 

−
Izz4 θ1̇

2
sin(2θ2 + 2θ3 + 2θ4) 

2
+

a21 θ2̇
2
sin(θ3 + θ4) 

2
 

+
a22 θ1̇

2
sin θ4

4
 +

a22 θ2̇
2
sin θ4

2
 +

a22 θ3̇
2
sin θ4

2
                                              (2.295) 

The Coriolis and Centripetal force vector of the TLRIP can be given in equation 

(2.296) 

C(θ, θ̇) = [

C11

C21

C31

C41

]                                                                                                              (2.296) 

The elements of the gravity vector are given as follows:  

G11 = 0                                                                                                                            (2.297) 

G21 = −
a14

2
sin(θ2 + θ3) − a26 sin(θ2 + θ3) −

a12

2
sin θ2 

−a13 sin θ2 −a29 sin θ2  −  
a27 sin(θ2 + θ3 + θ4)

2
                                               (2.298) 



92 

 

G31 = −
a27 sin(θ2 + θ3 + θ4)

2
−

a14 sin(θ2 + θ3)

2
− a28 sin(θ2 + θ3)         (2.299) 

G41 = −
a27 sin(θ2 + θ3 + θ4)

2
                                                                                  (2.300) 

The gravity vector of  the TLRIP is given in equation (2.301) 

G = [

0
G21

G31

G41

  ]                                                                                                                      (2.301) 

The TLRIP has some complex non-linear dynamic equations which can be written in 

a matrix form given in equation (2.302): 

[

D11 D12 D13 D14

D21 D22 D23 D24

D31

D41

D32

D42

D33 D34

D43 D44

]

[
 
 
 
 
θ1̈

θ2̈

θ3̈

θ4̈]
 
 
 
 

+ [

C11

C21

C31

C41

]   + [

0
G21

G31

G41

   ]  =  [

τ1

0
0
0

]                                  (2.302) 

2.3.3. Jacobian matrix of the TLRIP 

The linear and angular velocities of the links of the TLRIP are used to determine the 

Jacobian matrix. A formula to compute the Jacobian matrix of the TLRIP is given in 

equation (2.40) in section (2.1.3). Jv and Jw represents the Jacobian matrices obtained 

from the linear and angular velocities in the end-link, respectively. The linear 

velocities are given in equation (2.303). 

V5
0 = R V5

5
5

0
=

[
 
 
 
 
S1234

2
+

S2134

2

C1234

2
+

C2134

2
−S1

C2134

2
−

C1234

2

S1234

2
−

S2134

2
C1

C234 −S234 0 ]
 
 
 
 

 × 

[

L2θ2̇S34 + L3θ2̇S4 + L3θ3̇S4 − L1θ1̇S234 

L4(θ2̇ + θ3̇ + θ4̇) + L2θ2̇C34 + L3θ2̇C4 + L3θ3̇C4 − L1θ1̇C234

θ1̇ (L3 S23 + L2S2 + L4S234)

] = [

V5
0

1

V5
0

2

V5
0

3

]      (2.303) 

The elements of the linear velocities vector ( V5
0 ) can be given as follows: 
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V5
0 = [

V115
0 V125

0 V135
0 V145

0

V215
0 V225

0 V235
0 V245

0

V315
0 V325

0 V335
0 V345

0

] 

[
 
 
 
 
θ1̇

θ2̇

θ3̇

θ4]
 
 
 
 

                                                                    (2.304)  

V11 =5
0  S

1
S2(L4S3S4 − L2 − L3C3 − L4C3C4)  

−C2S1(L3S3 + L4C3S4 + L4C4S3) − L1C1                                                                (2.305) 

V12 =5
0  C

1
(L3S23 + L2C2 + L4C234)                                                                           (2.306) 

V13 = 5
0 L4 C2134

2
+

L3 C123

2
+

L4 C1234

2
 +

L3 C213

2
                                                   (2.307) 

V14 =
L4 C1234

2
+

L4 C2134

2
                                                                                          (2.308)

5

0

 

V21 =5
0  C

1
S2(L2 + L3C3 + L4C3C4 − L4S3S4) 

+C2C1(L3S3 + L4C3S4 + L4C4S3) − L1S1                                                                (2.309) 

V22 =5
0  S

1
(L3C23 + L2C2 + L4C234)                                                                           (2.310) 

V23 = 5
0 L3 S123

2
−

L4 S2134

2
+

L4 S1234

2
 +

L3 S213

2
                                                    (2.311) 

V24 =
L4 S1234

2
−

L4 S2134

2
 

5

0

                                                                                          (2.312) 

V31 = 0                                                                                                                            (2.313)5
0  

V32 =5
0 L3S23 − L2S2 − L4S234                                                                                     (2.314) 

V33 =5
0  − L

3
S23 − L4 S234                                                                                              (2.315) 

V34 = 5
0 −L4 S234                                                                                                              (2.316) 

Where  

C123 = cos(θ1 + θ2 + θ3) , C213 = cos(θ2 − θ1 + θ3) , C12 = cos(θ1 + θ2), 

S1234 = sin(θ1 + θ2 + θ3 + θ4) , C1234 = cos(θ1 + θ2 + θ3 + θ4),         

C1 = cos θ1,  S1 = sin θ1 S2134 = sin(θ2 − θ1 + θ3 + θ4), C3 = cos θ3  
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S234 = sin (θ2 + θ3 + θ4), C2 = cos θ2, S2 = sin θ2 , S3 = sin θ3 

S1_2 = sin(θ1 − θ2), C1_2 = cos(θ1 − θ2), S23 = sin(θ2 + θ3)  

C2134 = cos (θ2 − θ1 + θ3 + θ4), C234 = cos(θ2 + θ3 + θ4)   

C4 = cos θ4,  S4 = sin θ4                                                                                             (2.317) 

The Jacobian matrix taken from the linear velocities is given in equation (2.318). 

 Jv0
5(θ) =  [

V115
0 V125

0 V135
0 V145

0

V215
0 V225

0 V235
0 V245

0

V315
0 V325

0 V335
0 V345

0

]                                                                     (2.318)    

The angular velocities matrix of the TLRIP is given in equation (2.319) 

w5
0 = R w =  [

−S1(θ̇2 + θ̇3 + θ̇4)

C1(θ̇2 + θ̇3 + θ̇4)

θ̇1

]                                                                   (2.319)  5
5

5
0  

The Jacobian matrix taken from the angular velocities is given as follows: 

Jw0
5(θ) =  [

0 −sin θ1 −sin θ1 −sin θ1

0
1

cos θ1 cos θ1 cos θ1

0                 0            0

]                                                        (2.320)  

The Jacobian matrix taken from the linear and angular velocities is given in equation 

(2.321). 

J0
5(θ) =  

[
 
 
 
 
 
 

V115
0 V125

0 V135
0 V145

0

V215
0 V225

0 V235
0 V245

0

V315
0

0
0
1

V325
0

−S1

C1

0

V335
0

−S1

C1

0

V345
0

−S1

C1

0 ]
 
 
 
 
 
 

                                                                         (2.321) 

Furthermore, using the determinant of the Jacobian matrix, w = |det (J
0

5(θ) × J
0

5(θ)𝑇)|, 

the optimal length of each link of the TLRIP is estimated using the PSO optimization 

algorithm. The optimal lengths are given in Table 2.7. 
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2.3.4. Dynamic simulation of the TLRIP 

According to the equation (2.302), the expression for the angular acceleration vector 

(θ̈) can be given in equation (2.322). The three equations of θ̈1, θ̈2 , θ̈3 and θ̈4  are 

derived and simulated in Matlab/Simulink. The Matlab code of the mathematical 

expression of the three equations is given in the appendix. Figure 2.10 show the non-

linear mathematical model in Matlab/Simulink. 

 

[
 
 
 
 
θ̈1 

θ̈2

θ̈3

θ̈4 ]
 
 
 
 

= [

D11 D12 D13 D14

D21 D22 D23 D24

D31

D41

D32

D42

D33 D34

D43 D44

]

−1

[(

τ1

0
0

0

) − (

C11

C21

C31

C41

) − (

0
G21

G31

G41

 )]                      (2.322) 

In order to verify the mathematical model, a mechanical dynamic model of the TLRIP 

was developed by using the MATLAB/SimMechanics toolbox. 

MATLAB/SimMechanics model of the TLRIP is shown in Figure 2.11 (a). Different 

views from virtual reality model of the TLRIP in Matlab Simulink is shown in Figure 

2.11 (b). Furthermore, for both model, the initial conditions of pendulums' joint 

positions are chosen as follows  θ1 = 0 °, θ2 = 20 °, θ3 = 30 ° and θ4 = 40 °. The 

obtained results from both MATLAB/SimMechanics and the mathematical models 

match exactly. Figure 2.12 illustrates a comparison of the three joint positions obtained 

from simulation mathematical and the SimMechanics models without frictions. The 

simulations are performed by the sampling time 1ms and 5s simulation time. A 

numerical method Bogacki-Shampine solver is selected with fixed-step. 

2.4. Inertia Analysis of the Three Link Rotary Pendulum  

In order to examine the effects of the inertia of the vertical arms in the TLRIP, the 

dynamic equations of the TLRIP were solved in different inertia cases. In the first case, 

the inertia tensor of the links is neglected in the dynamic model. In the second case, 

only the component  Izz of the inertia tensor is considered for each link.  In the last 

case, full inertia tensor Ii
i   is taken into consideration in the dynamic model. Figure 

2.13 shows the joints’ positions of the TLRIP obtained by the three different dynamic 

simulation models for the initial condition of,  θ1 = 0 ° , θ2 = 20 ° , θ3 = 30°  and 

θ4 = 40°  The simulation results of the dynamic equations with only the component 
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Izz  of the inertia tensor and the full inertia tensor Ii
i  are almost the same in low 

velocities of the arms. 

 

Figure 2.10. Mathematical model of TLRIP in Matlab/Simulink 

 

(a) 

Figure 2.11. (a) MATLAB/SimMechanics model of the TLRIP, (b) Different views 

from virtual reality model of the TLRIP in Matlab Simulink 
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(b) 

Figure 2.11.(Cont.) (a) MATLAB/SimMechanics model of the TLRIP, (b) 

Different views from virtual reality model of the TLRIP in Matlab Simulink 

 

Figure 2.12. Comparison of the pendulum joint positions obtained from the 

analytic mathematical model and SimMechanics numerical model of the TLRIP 
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On the other hand, the dynamic model where the inertia is neglected is not acceptable. 

In order to have a more simplified dynamic model in the equilibrium control of the 

TLRIP, only the component Izz of the inertia tensor can be employed. On the other 

hand, the accurate dynamic model in swing-up control of the TLRIP is very important 

to compute the total energy of the pendulum. Therefore, the full inertia tensor Ii
i   should 

be taken into consideration in the dynamic model of the pendulum with a complex 

structure. [92] 

 

 

Figure 2.13. Comparison of the joint positions of the TLRIP under different usages 

of the inertia 
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Figure 2.13.(Cont.)  Comparison of the joint positions of the TLRIP under 

different usages of the inertia 

Figure 2.14 illustrates a comparison of the three joint positions obtained from 

simulation (mathematical model and the SimMechanics model without frictions) and 

experimental results. As can be seen from the figure, position errors of the joints in 

TLRIP occurred highly since joint friction dynamics are ignored. Therefore, the 

friction models should be determined explicitly to obtain the most accurate dynamic 

model of the pendulums. The friction estimation models in the literature will be 

described in the next chapter. 
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Figure 2.14. Comparison of the joint positions obtained from the mathematical model 

without frictions, SimMechanics model without frictions and the real experimental 

setup 
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3. JOINTS FRICTION ESTIMATION OF THE TLRIP 

3.1. Introduction 

Frictions are very important in ACE, such as in pneumatic-hydraulic systems, anti-

lock brakes for cars and robotic systems. Frictions are highly nonlinear, and they can 

result in steady-state errors, limit cycles, and poor performance in different systems 

[93]. It is, therefore, important for control engineers to understand friction phenomena 

and to estimate the ideal frictions for each system. Today, using the computational 

power available, it is possible to deal effectively with frictions. Frictions estimation 

has the potential to ameliorate the quality, economy, and safety of any system. 

Moreover, due to the gravitational forces and the coupling arising from the Coriolis 

and centripetal forces, the RIPS is underactuated, unstable and extremely nonlinear. 

The RIPS include a nonlinearity due to the frictions in the joints. RIPS is the most 

convenient example to understand the influence of the joint frictions on the design and 

performance of feedback controllers that aim to stabilize the pendulum in the upright 

position. The frictions have an influence on the system's response that should be 

considered seriously [94]. Therefore, friction estimation has the potential to ameliorate 

the quality and dynamic behavior of the system [95]. In this chapter, friction estimation 

models are developed to estimate the frictions in the joints of TLRIP. The parameters 

of frictions models are described with details. The following approach was used to 

estimate the joint friction of pendulum: 

- Comparison of Friction Estimation Models (FEMs) for TLRIP based on three 

friction models existing in the literature: NCFM, LFM, and NLFM. 

- AFEMs were developed to estimate the friction coefficients for TLRIP system. In 

this approach, the joint accelerations of the TLRIP were classified into three groups: 

low, medium and high. The adaptive friction coefficients were optimized 

according to this acceleration classification. 

- NFFEMs were developed using the NF system. The joint velocities and 

accelerations of the TLRIP as the input variables were applied to NF. 
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3.2. Friction Estimation Models (FEMs) 

The joint frictions are dependent on many physical parameters, such as position, velocity 

and acceleration of the joints [96]. The changes in the positions, velocities and the 

accelerations of the pendulums can change the friction’s characteristics in a complex 

manner [97]. The dynamic behavior of the joints’ frictions is simulated with the different 

models in the existing literature. Most of these models are defined by friction 

coefficients. Therefore, it is necessary to develop an accurate friction model to estimate 

the friction’s coefficients in the joints in accordance with the dynamic behavior of 

positions, velocities and accelerations. NCFM, LFM, and NLFM estimation models 

were given in this chapter [98], [99], [100-104]. To estimate the constant friction 

coefficients in the pendulum’s joints of the TLRIP, different friction estimation models 

(NCFM, LFM, and NLFM) were examined. These friction models consist of different 

important components.  Each component takes care of certain aspects of the friction 

force in the joints [105-106]. Mostly used friction model in the literature is the 

generalized static friction model which depends only on the velocity (𝑣). It describes 

only the steady-state behavior of the friction force 𝐹𝑓 in the sliding regime, and it is given 

the equation below [107]: 

Ff = σ2v + sign(v) (Fc + (Fs − Fc) exp (− |
v

Vs
|
δ

))                                               (3.1)

The first term represents the viscous friction force, and the second term equals the 

Stribeck effect. Fs  , Fc  , Vs  , δ and σ2  are the static force, the Coulomb force, the 

Stribeck force, the shape factor and the viscous friction coefficient, respectively. this 

model has the discontinuity at velocity reversal which causes errors or even instability 

during friction compensation. 

3.2.1. Non-conservative friction model 

NCFM is a classical friction model. It has been used in the first works related to the 

control of pendulums to estimate the friction in the joints, which based only on one 

type of friction coefficient [99]. The non-conservative torques due to natural damping 

of the pendulums called viscous friction torque, and it is introduced through Rayleigh’s 

dissipation function Đ(θi)  [98]. The non-conservative friction torque is given in 
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equation (3.1).  

Fv =
d Đ(θi)

dθi
=  

d

dθi
(
1

2
Cp
̅̅ ̅θi

̇ 2) = Cp
̅̅ ̅θi

̇                                                                           (3.2)

where Cp
̅̅ ̅ is the viscous friction coefficient and θi

̇  is the angular velocity of the i-th 

pendulum. 

3.2.2. Linear friction model 

LFM is a combination of the Viscous friction presented in the non-conservative model 

and another type of friction called Coulomb friction [101], the LFM, which is 

presented by equation (3.3). 

F𝑙 = Fv + Fc                                                                                                                        (3.3) 

Where Fc  is the Coulomb frictions and Fv  is the viscous friction torque which is 

proportional to the angular velocity  θ̇i, and given by equation (3.4). [102] 

Fv = Bi θ̇i                                                                                                                              (3.4) 

where Bi are the constant viscous coefficients. The Coulomb friction is proportional to 

the normal load force Nf which is derived as follows: 

Nf = mω2l + mg cos(θ)                                                                                                   (3.5) 

𝑙 is the distance from the pendulum rotation center to the mass center. The pendulum 

parameters are given in Figure 3.1. The Coulomb frictions Fc  is given by equation 

(3.6). 

Fc = Ci sgn( θ̇i). (ml θ̇i
2
+ mg cos (θi))                                                                      (3.6) 

where Ci  are the dynamic friction coefficients and sgn(. )is the signum function.  

3.2.3. Non-linear friction model 

The new researches in the field of friction estimation have found that the frictions in 

the joints can be affected by several factors such as temperature, force/torque, position, 

velocity and acceleration. Since friction has a complex nonlinear nature [103], the 



104 

 

LFM becomes an oversimplified model in friction structure. The TLRIP system can 

move in trajectories which have high and suddenly changing, position speed, 

acceleration and jerk. The LFM cannot cover these characteristics, especially at sudden 

motion reversal [104]. Therefore, the NLFM reflects a better description of the joint 

friction characteristics. This model can be described in the following nonlinear 

equation (3.7). [108] 

 

Figure. 3.1. Pendulum parameters 

τ𝑓 = 𝑓𝑜 + 𝑓𝑐  sgn( θ̇i) + 𝑓𝑣 θ̇i + 𝑓𝑎atan(𝑓𝑏  θ̇i)                                                              (3.7)

where fothe zero-drift error of friction torque, fc is the Coulomb friction coefficient, fv 

is the viscous friction coefficient. faatan(fb θ̇i)  present the experimental friction in 

zero velocity behavior, which  fa and fb are the experimental friction coefficients.  θ̇i 

is the angular velocity, sgn(. ) is the signum function and atan  is the arctangent 

function. In fact, it appears that this nonlinear friction model is derived from the 

generalized friction model (equation (3.1)). The only difference between the two 

equations (3.1 and 3.7), the third term in equation (3.7) is modelled with the first and 

fourth term in equation (3.7). The reason for using the arctangent function in equation 

(3.7) is to overcome the discontinuity at zero velocity equation (3.1). 

3.3. Comparison of the Friction Estimation Models of the TLRIP 

In this section, a comparison of the three different models applied to estimate the joint 

friction of The TLRIP:  Non-Conservative, Linear and Non-linear friction estimation 
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models. A dynamic mechanical simulation without the integration of joints friction of 

links is explained in chapter 2. The friction estimation models explained in section 

(3.2) will be compared in this section. The nonlinear dynamic equations of the TLRIP 

which contain the friction vector can be written in a matrix form, as follows: 

D(θ)θ̈ + C(θ, θ̇)θ̇ + τ𝑓 (θ, θ̇) + G(θ) = τ1                                                                   (3.8) 

where θ, θ̇ and θ̈ are the vectors of joint angles, the angular velocities, and the angular 

accelerations, respectively. D(θ)  is the mass matrix, C(θ, θ̇)  is the Coriolis and 

centrifugal force vector, τ𝑓 (θ, θ̇) is the friction torque vector, G(θ) is the gravity 

vector and τ1 is the input torque vector in the first joint. The friction vector can be 

expressed in equation (3.9). 

τ𝑓 (θ, θ̇) =

[
 
 
 
τ𝑓11
τ𝑓21
τ𝑓31
τ𝑓41]

 
 
 

                                                                                                                (3.9) 

τ𝑓11
, τ𝑓21

 , τ𝑓31
and τ𝑓41

 are the components of the friction vector in each joint of the 

TLRIP. 

In the dynamic model, some parameters like body masses, inertia, and lengths of the 

pendulums can be directly measured. However, the friction coefficients should be 

determined experimentally to have the most accurate dynamic model of the TLRIP. 

The MATLAB/SimMechanics model of the TLRIP which contain the friction in joints 

is shown in Figure 3.2. In our SimMechanics model, the fixed part and the horizontal 

arm of the TLRIP are connected with one revolution joint which has one rotational 

degree of freedom. Moreover, three pendulums 1, 2 and 3 are connected by revolution 

joints 1, 2 and 3, respectively, which also have one rotational degree of freedom. For 

system simulation, friction model blocks were added to each pendulum joint; they 

contain joint sensors and joint actuators, see Figure 3.3. Furthermore, the initial 

conditions can be given directly by specifying the initial position and orientation of 

rigid bodies. The orientation position of the horizontal arm is represented by the 

angle  θ1 , and the positions of the three pendulums by the angles  θ2 ,  θ3  and θ4 

respectively. 



 

  

1
0

6
 

 

(a) (b)  

Figure. 3.2. (a) MATLAB/SimMechanics model of the TLRIP with friction blocks, (b) solid model of the TLRIP 

 
Figure. 3.3. Example of a friction model block 
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3.3.1. Data collection for the FEMs 

The horizontal arm of the TLRIP is driven by a direct drive brushless DC torque motor 

(Type: TMH-130-050-NC). In this type of motor, since there is no use of transmission 

or gearbox, the frictions in the horizontal arm can be considered negligible. During the 

collection of the experimental data, the arm joint  θ1 is fixed at zero position. The 

pendulums’ angles (  θ2 ,  θ3 and  θ4 ) are measured with three encoders having a 

resolution of 2048 pulses per revolution. The signals obtained from the encoder passes 

through the slip ring mounted in the joints. A dSPACE-DS1103 controller board treats 

the received signals from the encoders. The friction in the joints of the TLRIP depends 

on their velocities and the accelerations. In this case, the friction coefficients should 

be determined experimentally. The initial positions of the pendulums will be taken in 

cases with the value of  θ2 at 45 degrees along with  θ3 and  θ4 at an angle of 0 degrees.  

The sampling interval is 1 ms. The experimental simulation time of   θ2 , θ3  and  θ4 

is taken at t=80 seconds. The block diagram of the experimental hardware 

configuration structure is shown in Figure 3.4. 

 

Figure. 3.4. Block diagram of the experimental hardware configuration structure for 

FEMs 

3.3.2. Estimation results of the FEMs 

The estimated results of the friction coefficients for the NCFM are given in Table 3.1. 

The Gradient Descent (GD) method is selected for the current optimization case. This 

method is based on a sequential quadratic programming (SQP) algorithm to estimate 

the viscous friction coefficients Cp (i), which minimizes the value of the function 𝑒 =

‖𝜃𝑖(𝑡) − 𝜃𝑖(𝑡)‖. θi(t) is the position value of the angles obtained experimentally and 
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θî(t) is the position value of the angles obtained from the SimMechanics model of The 

TLRIP. The experiments are carried out during the 80s, however, for the graphs’ 

clarity, only the [0, 10s] intervals are shown.  Figure 3.5 shows an angular position 

comparison between experimental and NLFM simulation results.  Furthermore, to 

estimate the friction coefficients of the LFM and NLFM, the Pattern Search (PS) 

method is selected for optimization. The PS algorithm starts by calculating a sequence 

of points that may or may not reach the optimal value. The PS proceeds by creating a 

group of points around the given initial point, called mesh. If a point in the mesh is 

found to improve the estimation of the experiment’s output at that current point, the 

algorithm sets the new point as the current point at the next iteration [109]. The friction 

coefficients obtained by the LFM and NLFM are given in Tables 3.2 and 3.3, 

respectively. Figure 3.6 shows an angular position comparison between experimental 

and LFM simulation results. Figure 3.7 shows an angular position comparison between 

experimental and NLFM simulation results.  

Table 3.1.  Friction coefficients obtained by the NCFM 

Friction coefficients 
Joints 

Joint (2) Joint (3) Joint (4) 

Cp [Nm.s/rad] 5.6178e-04 2.9319e-10 9.0673e-04 

 

 

Figure 3.5. Angular position comparison between experimental and 

NCFM simulation results 
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Table 3.2. Friction coefficients obtained by the LFM 

Friction coefficients 
Joints 

Joint (2) Joint (3) Joint (4) 

Bi [Nm.s/rad] 6.1865e-04 3.1009e-07 2.2292e-04 

Ci [Nm] 2.7550e-05 4.9864e-09 0.0168 

 

 

Figure 3.6. Angular position comparison between experimental and LFM 

simulation results 

Table 3.3. Friction coefficients obtained by the NLFM 

Friction coefficients 
Joints 

Joint (2) Joint (3) Joint (4) 

fo [Nm] 0.0038 1.5280e-06 0.001 

fc [Nm] 9.5940e-04 8.8846e-04 0.0165 

fv [Nm.s/rad] 0.0011 0.0315 0.0577 

fa [Nm] 0.0869 0.1876 7.2715e-04 

fb [Nm] 0.0159 0.1876 0.0456 
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Figure 3.7. Angular position comparison between experimental and NLFM 

simulation results 

To evaluate the performance of the LFM, NLFM and NCFM, the position RMSEs 

between these simulation and experimental results were calculated based on equation 

(3.10). The RMSEs are given in Table 3.4. 

RMSE = √
1

N
∑(θi − θ̂𝑖

N

i=1

)2                                                                                             (3.10) 

Where θi  are modelled signals, θ̂i are measured signals, and N is the 

number of sampling. 

Table 3.4.  Position RMSEs obtained by the NCFM, LFM and NLFM 

Joints 
RMSE 

NCFM LFM NLFM 

Joint (2) 0.0052 0.0049 0.0025 

Joint (3) 0.0071 0.0065 0.0047 

Joint (4) 0.0085 0.0079 0.0035 
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In order to understand the dynamic friction behaviors in the TLRIP, the friction forces 

and velocities in each joint are given in Figure 3.8. The nonlinear relationship between 

the calculated friction forces and the joint velocities may be observed in this figure. This 

relationship should be explained with more complex models for an accurate friction 

estimation. 

 

Figure 3.8. Friction forces and the velocity in each joint of the TLRIP 

In this study, the performances of three different friction estimation models (NCFM, 

LFM and NLFM) are compared in terms of RMSEs of joints of the TLRIP. Based on 

the performance comparison, the NLFM produces the least RMSE in the results for all 

joints of the TLRIP. The RMSE of LFM becomes less than that of the NCFM. In next 

section, a better friction estimation model needs to be enhanced in the control of the 
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complex robotic systems such as an adaptive friction estimation model, which is 

developed using the joint velocities and accelerations of the TLRIP. 

3.4. Adaptive  Friction Coefficients for the TLRIP 

In this section, AFEMs are developed to estimate the friction coefficients in three 

pendulums’ joints of a TLRIP. The position signals of the joints obtained 

experimentally from a dSPACE controller board were classified based on their: low, 

medium and high accelerations. The adaptive friction coefficients’ estimation method 

was studied in four initial angle positions of the second joint (θ2) as follows: 45, 90, 

135 and 180 degrees along with third joint (θ3) and fourth joint  (θ4) at an angular 

position of 0 degrees. The adaptive friction coefficients were studied and compared 

with the existing friction estimation models: NCFM, LFM and NLFM. A Mechanical 

simulation carried out with estimated friction coefficients is compared with respect to 

the real experimental position signals [96]. 

3.4.1. Data collection for the AFEMs 

The horizontal arm of the TLRIP is driven by a direct drive brushless DC torque motor 

(Type: TMH-130-050-NC). In this type of motor, since there is no use of transmission 

or gearbox, the frictions in the horizontal arm can be considered negligible. During the 

collection of the experimental data, the arm joint  θ1 is fixed at zero position. The 

pendulums’ angles (  θ2 ,  θ3 and  θ4 ) are measured with three encoders having a 

resolution of 2048 pulses per revolution.  The signals obtained from the encoder passes 

through the slip ring mounted in the joints. A dSPACE -DS1103 controller board treats 

the received signals from the encoders. The friction in the joints depends on the 

positions and the accelerations of the pendulums. In this case, an adaptive friction 

coefficients estimation should be determined experimentally. The initial positions of 

the system will be taken in four cases with the value of  θ2  as follows: 45, 90, 135 and 

180 degrees along with  θ3 and  θ4 at an angle of 0 degrees.  For each case, joints 

acceleration was classified into three groups such as low, medium and high. The 

adaptive friction coefficients were optimized based on this acceleration classification. 

The experimental hardware configuration is shown in Figure 3.9.  
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Figure 3.9. Block diagram of the experimental hardware configuration structure of the 

AFEMs. 

3.4.2. Estimation results of the AFEMs 

For each optimization simulation, the Pattern Search (PS) method was used to optimize 

the adaptive frictions coefficients. The PS method allows the optimization of a number 

of parameters at the same time. The adaptive friction coefficients were optimized and 

compared with the existing friction estimation models such as NCFM, LFM and 

NLFM based on the RMSEs.  

- Initial positions for:  θ2 = 45°, θ3 = 0°, θ4 = 0° 

Table 3.5 gives the classification of joints accelerations and their values into three 

groups: High [0-4s], Medium [4-30s] and low [30-70s]. Table 3.6 gives adaptive 

friction coefficients using the NCFM, LFM, and NLFM.  

The RMSEs between the modelled signals and the measured signals were calculated 

using the adaptive friction coefficients. It was compared by the RMSEs obtained with 

existing friction estimation models given in Table 3.7. 

 



 

  

1
1

4
 

Table 3.5. Classification of joints accelerations for the initial positions  θ2 = 45°, θ3 = 0° and θ4 = 0° 

Time  [s] 
[0-4] [4-30] [30-80] 

Max values Min values Max values Max values Max values Min values 

Positions [Deg] 

Joint (2) 44.2539 31.4648 25.0488 24.9609 10.5029 10.3271 

Joint (3) 24.0820 20.9180 16.9629 14.1943 5.6250 5.5371 

Joint (4) 48.2080 35.7715 20.6982 17.0508 4.1309 3.7793 

Accelerations  [Deg/s^2] 

Joint (2) 1.0236 ∙ 103 0.8620 ∙ 103 458.2001 438.3131 223.9769 219.7110 

Joint (3) 2.0793 ∙ 103 2.0663 ∙ 103 525.8127 492.9399 199.7988 194.0725 

Joint (4) 3.0302 ∙ 103 2.1231∙ 103 1.0578 ∙ 103 0.9651 ∙ 103 146.9310 134.2073 

 

Table 3.6. Adaptive friction coefficients for the initial positions θ1 = 45°, θ2 = 0° and θ3 = 0° 

Time  [s] [0-4] [4-30] [30-80] 

Joints (2) (3) (4) (2) (3) (4) (2) (3) (4) 

NCFM 
Cp 

[Nm.s/rad] 
3.1791 ∙ 10−4 

1.9256 ∙

10−1 

4.7143 ∙

10−5 

1.3760 ∙

10−4 

6.8645 ∙

10−4 
6.9828 ∙ 10−5 0.0001 0.0019 0.0021 

LFM 

Bi 

[Nm.s/rad] 
9.5160∙ 10−5 

5.8693 ∙

10−5 

1.8693 ∙

10−8 
5.053110−5 

5.7791 ∙

10−4 
37055 ∙ 10−4 6.8060 ∙ 10−7 0.0010 5.7407 ∙ 10−4 

Ci [Nm] 0.0258 1.3539 10−6 0.0074 
6.1448 ∙

10−6 
0.0094 0.00120 1.2805 ∙ 10−5 0.0060 0.0091 
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Table 3.6.(Cont.) Adaptive friction coefficients for the initial positions θ1 = 45°, θ2 = 0° and θ3 = 0° 

NLFM fo [Nm] 0.0023 0.0037 
5.8992 ∙

10−4 
0.0044 0.0024 3.3741∙ 10−4 0.0062 0.0033 1.9146∙ 10−4 

 

fc [Nm] 0.0082 0.0118 0.0097 0.0054 0.0085 0.0232 2.4567 10−4 0.0070 0.0176 

fv 

[Nm.s/rad] 
0.1188 0.0012 

5.6466 ∙

10−4 
0.0159 0.0362 0.0133 0.0141 0.0384 0.0287 

fa [Nm] 0.2314 0.3456 
5.1595 ∙

10−4 
0.0585 0.0341 0.0042 0.0460 0.1139 0.0045 

fb [Nm] 0.0039 0.0047 
1.4124 ∙

10−5 
0.1396 0.0526 3.1141 ∙ 10−5 0.4062 0.2119 9.5165∙ 10−5 

 

Table 3.7. RMSEs obtained using existing friction estimation models, and the RMSEs obtained with adaptive friction coefficients  for initial 

position  θ2 = 45°, θ3 = 0° and θ4 = 0° 

Joints 
RMSEs obtained with existing FEMs RMSEs obtained with AFEMs 

NCFM LFM NLFM ANCFM ALFM ANLFM 

Joint (2) 0.0052 0.0049 0.0025 0.0045 0.0041 0.0020 

Joint (3) 0.0071 0.0065 0.0047 0.0068 0.0055 0.0037 

Joint (4) 0.0085 0.0079 0.0035 0.0083 0.0076 0.0032 
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- Initial positions for:  θ2 = 90°, θ3 = 0°, θ4 = 0° 

Table 3.8 gives presents the classification of joints accelerations and their values into 

three groups: High [0-10s], Medium [10-30s] and low [30-90s]. Table 3.9 gives 

adaptive friction coefficients using the NCFM, LFM, and NLFM. The RMSEs 

between the modeled signals and the measured signals were calculated using the 

adaptive friction coefficients. It was compared by the RMSEs obtained with existing 

friction estimation models see Table 3.10. 

- Initial positions for:  θ2 = 135°, θ3 = 0°, θ4 = 0° 

Table 3.11 presents the classification of joints accelerations and their values into 

different groups as follows: High [0-12s], medium [12-20s] and low [20-30s] for joint 

of the first pendulum; high [0-6s], medium [6- 16s] and low [16-40s] for joint of the 

second pendulum 2; low [0-1.3s], high [1.3- 4.5s], medium [4.5-13s] and low [13-30s] 

for joint of the third pendulum 3. Tables 3.12, 3.13, and 3.14 present the adaptive 

friction coefficients using the NCFM, LFM, and NLFM, respectively. The RMSEs 

between the modeled signals and the measured signals were calculated using the 

adaptive friction coefficients. It was compared by the RMSEs obtained with existing 

friction estimation models see Table 3.15. 

- Initial positions for:  θ2 = 180°, θ3 = 0°, θ4 = 0° 

Table 3.16 presents the classification of joints accelerations and their values into 

different groups as follows: High [0-7s], medium [7-14s] and low [14-40s] for joint of 

the first pendulum; high [0-6s], medium [6- 16s] and low [16-40s] for joint of the 

second pendulum 2; low [0-1.3s], high [1.3-4.5s], medium [4.5-13s] and low [13-30s] 

for joint of the Third pendulum 3. Tables 3.17, 3.18, and 3.19 present the adaptive 

friction coefficients using the NCFM, LFM, and NLFM, respectively. The RMSEs 

between the modeled signals and the measured signals were calculated using the 

adaptive friction coefficients. It was compared by the RMSEs obtained with existing 

friction estimation models see Table 3.20.
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Table 3.8. Classification of joints accelerations for the initial positions  θ2 = 90°, θ3 = 0° and θ4 = 0° 

Time  [s] 
[0-10] [10-30] [30-90] 

Max values Min values Max values Max values Max values Min values 

Positions 

[Deg] 

Joint (2) 90.0 70.0488 29.3994 20.8740 12.1729 12.0850 

Joint (3) 82.4414 75.2783 19.6436 14.0186 6.9873 6.8115 

Joint (4) 851.0889 124.4971 750.2344 689.0186 725.3613 714.3311 

Accelerations  

[Deg/s^2] 

Joint (2) 4.7139 ∙ 103 3.8975  ∙ 103 720.6739 679.7878 255.7555 245.4379 

Joint (3) 9.30571 ∙ 103 6.9768 ∙ 103 0.9210 ∙ 103 1.0719 ∙ 103 263.0684 258.5020 

Joint (4) 1.1358 ∙ 104 0.9275 ∙ 104 1.5944 ∙ 103 2.1159 ∙ 103 194.7493 179.8465 

 

Table 3.9. Adaptive friction coefficients for the initial positions θ2 = 90°, θ3 = 0° and θ4 = 0° 

Time  [s] [0-10] [10-30] [30-90] 

Joints (2) (3) (4) (2) (3) (4) (2) (3) (4) 

NCFM 
𝐶𝑝 

[Nm.s/rad] 

4.7380 ∙

10−4 

7.4014 ∙

10−5 

1.7182 ∙

10−5 
5.7604 ∙ 10−4 0.0088 

4.0350 ∙

10−5 

3.5793 ∙

10−6 
0.0011 8.117 ∙ 10−4 

LFM 

Bi 

[Nm.s/rad] 
0.0016 

2.0847 ∙

10−4 
0.0011 3.1140 ∙ 10−4 

3.7497 ∙

10−4 
0.1114 

1.2252 ∙

10−4 
6.9792 e-04 1.1903∙ 10−4 

Ci [Nm] 0.0238 0.0843 0.0798 0.0028 0.0299 0.7761 0.0024 0.0029 0.0066 
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Table 3.9.(Cont.) Adaptive friction coefficients for the initial positions θ2 = 90°, θ3 = 0° and θ4 = 0° 

NLFM 

𝑓𝑜 [Nm] 0.0023 0.0037 
5.8992 ∙

10−4 
0.0044 0.0024 

3.3741∙

10−4 
0.0062 0.0033 1.9146∙ 10−4 

𝑓𝑐 [Nm] 0.0082 0.0118 0.0097 0.0054 0.0085 0.0232 
2.4567 ∙

10−4 
0.0070 0.0176 

𝑓𝑣 

[Nm.s/rad] 
0.1188 0.0012 

5.6466 ∙

10−4 
0.0159 0.0362 0.0133 0.0141 0.0384 0.0287 

𝑓𝑎 [Nm] 0.2314 0.3456 
5.1595

10−4 
0.0585 0.0341 0.0042 0.0460 0.1139 0.0045 

𝑓𝑏 [Nm] 0.0039 0.0047 
1.4124 ∙

10−5 
0.1396 0.0526 

3.1141 ∙

10−5 
0.4062 0.2119 9.5165 ∙ 10−5 

 

Table 3.10. RMSEs obtained using existing friction estimation models, and the RMSEs obtained with adaptive friction coefficients  for initial 

position  θ2 = 90°, θ3 = 0° and θ4 = 0° 

Joints 
RMSEs obtained with existing FEMs RMSEs obtained with AFEMs 

NCFM LFM NLFM ANCFM ALFM ANLFM 

Joint (2) 0.0274 0.0245 0.0227 0.0232 0.0216 0.0188 

Joint (3) 0.0242 0.0211 0.0201 0.0225 0.0209 0.0186 

Joint (4) 0.2087 0.1474 0.1275 0.1978 0.1425 0.1093 
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Table 3.11. Classification of joints accelerations for the initial positions  θ2 = 135°, θ3 = 0° and θ4 = 0° 

Joint 2  

Time [s] 
Positions value [Deg] Accelerations value [Deg/s^2] 

Max values Min values Max values Min values 

[0-12] 134.2969 91.9775 6.911 ∙ 103 4.2371 ∙ 103 

[12 -20] 14.3701 8.7451 1.115 ∙ 103 0.9755 ∙ 103 

[20 -30] 3.7793 3.6914 59.0392 56.8847 

Joint 3 

[0-6] 159.5215 128.6279 1.242 ∙ 104 1.1017 ∙ 104 

[6-16] 77.1680 53.7891 6.160 ∙ 103 4.9842 ∙ 103 

[16-30] 2.3730 2.1094 63.8500 52.9298 

Joint 4 

[0-1.9] 489.6387 120.1465 1.709 ∙ 104 1.5173 ∙ 104 

[1.9-4.3] 877.2803 489.6387 1.468 ∙ 104 0.8899 ∙ 104 

[4.3-9] 1.2357 0.8773 8.633 ∙ 103 6.2568 ∙ 103 

[9-25] 1.13∙ 103 1.01∙ 103 3.488 ∙ 103 3.3282 ∙ 103 
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Table 3.12. Adaptive friction coefficients obtained by NCFM for the initial positions  θ2 = 135°, θ3 = 0° and θ4 = 0° 

Time of Joint 2 [s] [0-12] [12-20] [20-30] 

Cp [Nm.s/rad] 2.794 ∙ 10−4 4.075 ∙ 10−4 9.145∙ 10−4 

Time of Joint 3 [s] [0-6] [6-16] [16-30] 

Cp [Nm.s/rad] 9.6129 ∙ 10−5 1.2685∙ 10−4 0.0012 

Time of Joint 4 [s] [0-1.9] [1.9-4.3] [4.3-9] [9-25] 

Cp [Nm.s/rad] 5.7581 ∙ 10−6 5.9433∙ 10−5 1.2119 ∙ 10−4 0.0032 

 

Table 3.13. Adaptive friction coefficients obtained by LFM for the initial positions  θ2 = 135°, θ3 = 0° and θ4 = 0° 

Time of Joint 2 [s] [0-12] [12-20] [20-30] 

Bi [Nm.s/rad] 8.2357 ∙ 10−5 0.0011 9.0762 ∙ 10−4 

Ci [Nm] 3.0576 10−5 0.0232 2.9533 ∙ 10−7 

Time of Joint 3 [s] [0-6] [6-16] [16-30] 

Bi [Nm.s/rad] 2.1210 ∙ 10−5 6.8167 ∙ 10−4 0.0147 

Ci [Nm] 9.6368 ∙ 10−5 0.0389 0.0037 

Time of Joint 4 [s] [0-1.9] [1.9-4.3] [4.3-9] [9-25] 

Bi [Nm.s/rad] 5.9536 ∙ 10−6 1.2175 ∙ 10−5 1.1514 ∙ 10−4 1.587 ∙ 10−5 

Ci [Nm] 0.0042 1.3634 ∙ 10−4 0.0045 0.0047 
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Table 3.14. Adaptive friction coefficients obtained by NLFM for the initial positions  θ2 = 135°, θ3 = 0° and θ4 = 0° 

Time of Joint 2 [s] [0-12] [12-20] [20-30] 

fo [Nm] 0.0017 0.0734 1.787 ∙ 10−4 

fc [Nm] 0.0506 0.1146 1.1557 ∙ 10−4 

fv [Nm.s/rad] 0.1147 0.3952 1.9678 ∙ 10−4 

fa [Nm] 0.2035 0.0012 0.6379 

fb [Nm] 0.0448 0.0478 2.2041∙ 10−4 

Time of Joint 3 [s] [0-6] [6-16] [16-30] 

fo [Nm] 0.0645 0.0275 0.0030 

fc [Nm] 3.5524 ∙ 10−4 0.0026 0.0157 

fv [Nm.s/rad] 0.0001 0.0066 7.4236 ∙ 10−4 

fa [Nm] 1.3782 ∙ 10−4 1.3036 ∙ 10−4 1.0042 ∙ 10−4 

fb [Nm] 1.8377 ∙ 10−4 1.5460 ∙ 10−5 1.0042 ∙ 10−4 

Time of Joint 4 [s] [0-1.9] [1.9-4.3] [4.3-9] [9-25] 

fo [Nm] 0.00205 9.0605 ∙ 10−4 8.3410 ∙ 10−4 0.0042 

fc [Nm] 4.7384 ∙ 10−6 9.2100 ∙ 10−6 1.1303 ∙ 10−5 0.0382 

fv [Nm.s/rad] 0.0162 0.0047 0.0040 0.0246 

fa [Nm] 0.1575 0.1187 0.2343 0.0012 

fb [Nm] 3.7107 ∙ 10−4 5.5206 ∙ 10−6 1.5688 ∙ 10−6 0.0535 
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Table 3.15. RMSEs obtained using existing friction estimation models, and the RMSEs obtained with adaptive friction coefficients  for initial 

position  θ2 = 135°, θ3 = 0° and θ4 = 0° 

 

Table 3.16. Classification of joints accelerations for the initial positions  θ2 = 180°, θ3 = 0° and θ4 = 0° 

Joint 2  

Time [s] 
Positions value [Deg] Accelerations value [Deg/s^2] 

Max  Min  Max Min 

[0-7] 134.2969 91.9775 6.911 ∙ 103 4.2371 ∙ 103 

[7 -14] 14.3701 8.7451 1.115 ∙ 103 0.9755 ∙ 103 

[14 -40] 3.7793 3.6914 59.0392 56.8847 

Joint 3 

[0-6] 159.5215 128.6279 1.242 ∙ 104 1.1017 ∙ 104 

[6-16] 77.1680 53.7891 6.160 ∙ 103 4.9842 ∙ 103 

[16 -40] 2.3730 2.1094 63.8500 52.9298 

Joint 4 

Joints 
RMSEs obtained with existing FEMs RMSEs obtained with AFEMs 

NCFM LFM NLFM ANCFM ALFM ANLFM 

Joint (2) 0.1686 0.1149 0.1116 0.1645 0.1105 0.1096 

Joint (3) 0.2102 0.2004 0.1892 0.2008 0.1894 0.1852 

Joint (4) 0.6217 0.5606 0.4079 0.5007 0.4852 0.4032 
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Table 3.16.(Cont.)  Classification of joints accelerations for the initial positions  θ2 = 180°, θ3 = 0° and θ4 = 0° 

[0-1.3] 489.6387 120.1465 1.709 ∙ 104 1.5173 ∙ 104 

[1.3-4.5] 877.2803 489.6387 1.468 ∙ 104 0.8899 ∙ 104 

[4.5 -13] 1.2357 0.8773 8.633 ∙ 103 6.2568 ∙ 103 

[13-30] 1.13∙ 103 1.01∙ 103 3.488 ∙ 103 3.3282 ∙ 103 

Table 3.17. Adaptive friction coefficients obtained by NCFM for the initial positions  θ2 = 180°, θ3 = 0° and θ4 = 0° 

Time of Joint 2 [s] [0-7] [7-14] [14-40] 

Cp [Nm.s/rad] 0.0040 0.0033 0.0335 

Time of Joint 3 [s] [0- 6] [6 -16] [16 - 40] 

Cp [Nm.s/rad] 2.4410−4 0.0015 0.001514 

Time of Joint 4 [s] [0 -1.3] [1.3-4.5] [4.5-13] [13 - 40] 

Cp [Nm.s/rad] 0.00100 7.4710−5 1.10−4 7.3 10−6 

Table 3.18. Adaptive friction coefficients obtained by LFM for the initial positions  θ2 = 180°, θ3 = 0° and θ4 = 0° 

Time of Joint 2 [s] [0-7] [7-14] [14-40] 

Bi [Nm.s/rad] 0.0015 0.0037 0.0314 

Ci [Nm] 0.0209 0.0429 0.0174 

Time of Joint 3 [s] [0 to 6] [6 to 16] [16 - 40] 

Bi [Nm.s/rad] 0.0030 0.0018 0.001497 

Ci [Nm] 2.4 10−4 0.00277 1.000 10−4 

Time of Joint 4 [s] [0 - 1.3] [1.3- 4.5] [4.5 - 13] [13 - 30] 

Bi [Nm.s/rad] 5.4910−5 7.4 10−5 8.6 10−5 8. 7 10−5 

Ci [Nm] 0.0050 6.3 10−4 1.5 10−4 1.5 10−4 
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Table 3.19. Adaptive friction coefficients obtained by NLFM for the initial positions θ2 = 180°, θ3 = 0° and θ4 = 0° 

Time of Joint 2 [s] [0- 7] [7-14] [14 - 40] 

fo [Nm] 9.03 10−5 0.0040 1.11 10−4 

fc [Nm] 2.3530 10−4 0.2421 0.01534 

fv [Nm.s/rad] 3.91191 10−6 3.60 10−6 3.51961∙ 10−5 

fa [Nm] 2.8946 10−6 1.43 10−2 9.1137 ∙ 10−5 

fb [Nm] 6.4761 10−5 8.8510−5 2.9317 ∙ 10−7 

Time of Joint 3 [s] [0- 6] [6- 16] [16 - 40] 

fo [Nm] 6.5109 10−5 1.61 10−4 0.00843 

fc [Nm] 9.7363 10−5 8.1410−5 0.01538 

fv [Nm.s/rad] 1.1790 10−5 1.54 10−6 0.00585 

fa [Nm] 2.3295 10−4 2.7210−4 2.23 10−5 

fb [Nm] 7.7406 10−5 3.58 10−5 1.49 10−4 

Time of Joint 4 [s] [0-1.3] [1.3 - 4.5] [4.5-13] [13-30] 

fo [Nm] 0.0454 0.0468 0.0085 1.3362∙ 10−5 

fc [Nm] 0.2768 0.2541 4.32 10−5 9.7910−5 

fv [Nm.s/rad] 8.08 10−4 0.0028 4.6348 ∙ 10−5 2.1810−4 

fa [Nm] 0.7500 0.36377 1.2 ∙ 10−5 1.09 10−4 

fb [Nm] 3.55 10−4 7.9510−4 0.0077 1.85∙ 10−4 
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Table 3.20. RMSEs obtained using existing friction estimation models, and the 

RMSEs obtained with adaptive friction coefficients  for initial position  θ2 =
180°, θ3 = 0° and θ4 = 0° 

 

According to the calculated RMSEs, the Adaptive Non-Conservative Friction 

Estimation Model (ANCFM), the Adaptive Linear Friction Estimation Model (ALFM) 

and the Adaptive Non-Linear Friction Estimation Model (ANLFM) returned more 

accurately than the existing friction models (NCFM, LFM, and NLFM).  Comparison 

in term of improvement of RMSE percentage between existing friction models and 

AFEMs are given in Tables 3.21, 3.22 and 3.23. 

Table 3.21. Comparison in term of improvement of RMSE percentage between NCFM 

and ANCFM 

                            NCFM-ANCFM 

 

Cases 

Improvement of RMSE percentages between NCFM 

and ANCFM 

Joint 2 Joint 3 Joint 4 

 θ2 = 45°, θ3 = 0°, θ4 = 0° 13.45%  4.2 % 2.3 % 

 θ2 = 90°, θ3 = 0°, θ4 = 0° 15.3 % 7.02% 5.22% 

 θ2 = 135°, θ3 = 0°, θ4 = 0° 2.43% 4.47% 19.46% 

 θ2 = 180°, θ3 = 0°, θ4 = 0° 4.9% 0.08% 3% 

 

Table 3.22. Comparison in term of improvement of RMSE Percentage between LFM 

and ALFM 

                                  LFM-ALFM 

 

Cases 

Improvement of RMSE percentages between LFM 

and ALFM 

Joint 2 Joint 3 Joint 4 

 θ2 = 45°, θ3 = 0°, θ4 = 0° 16.32%  15.38 % 3.79 % 

 θ2 = 90°, θ3 = 0°, θ4 = 0° 11.83 % 0.9 % 3.39% 

 θ2 = 135°, θ3 = 0°, θ4 = 0° 3.8 % 5.48 % 13.44% 

 θ2 = 180°, θ3 = 0°, θ4 = 0° 8.44% 0.13% 2.9% 

Joints 
RMSEs obtained with existing FEMs RMSEs obtained with AFEMs 

NCFM LFM NLFM ANCFM ALFM ANLFM 

Joint (2) 0.1467 0.1231 0.1003 0.1397 0.1127 0.0983 

Joint (3) 1.8120 1.8056 0.1341 1.8105 1.8032 0.1115 

Joint (4) 0.7212 0.6945 0.6390 0.6995 0.6743 0.6248 
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Table 3.23. Comparison in term of improvement of RMSE Percentage between NLFM 

and ANLFM. 

                           NLFM-ANLFM 

 

Cases 

Improvement of RMSE percentages between NCFM 

and ANLFM 

Joint 2 Joint 3 Joint 4 

 θ2 = 45°, θ3 = 0°, θ4 = 0° 20%  21.27 % 8.57 % 

 θ2 = 90°, θ3 = 0°, θ4 = 0° 17.18 % 7.46 % 14.27% 

 θ2 = 135°, θ3 = 0°, θ4 = 0° 2.1 % 2.11 % 1.14% 

 θ2 = 180°, θ3 = 0°, θ4 = 0° 1.9% 16.85% 2.22% 

Figure 3.10 illustrates the experiment’s position signals obtained from the dSPACE 

controller for the cases :  θ2 = 180°, θ3 = 0°, θ4 = 0° ,  the signals with the adaptive 

non-linear friction coefficients estimation model and the signals with the existing non-

linear friction coefficients estimation model.  

 

Figure 3.10. Experimental position signals, the NLFM simulation and the 

ANLFM simulation for initial position  θ2 = 180°, θ3 = 0°,  θ4 = 0° 
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In this section, novel AFEMs have been developed based on the classification of joints 

accelerations of the TLRIP into three groups such as low, medium and high. The 

adaptive friction coefficients estimation was compared with the existing friction 

estimation models (NCFM, LFM, and NLFM) based on the RMSEs of joints of the 

TLRIP. According to the comparison performance, the ANLFM has given the best 

results for all joints of the TLRIP.  A better AFEM needs to be applied to the inverse 

dynamic model to control the system. In the next section, an NFFEMs based on 

velocities, accelerations will be developed and applied to the system in order to 

observe more accurate results. 

3.5. Neuro-Fuzzy Friction Models for the TLRIP 

In the last section, the AFEMs were developed to estimate the friction coefficients for 

TLRIP system. In the AFEM approach, the joint accelerations of the TLRIP were 

classified into three groups: low, medium and high. The adaptive friction coefficients 

were optimized according to this acceleration classification. In this study, the NFFEMs 

were developed using the NF system. The joint velocities and accelerations of the 

TLRIP as the input variables were applied to NF. Membership functions of input and 

output variables and fuzzy rules in the fuzzy estimation system were trained using an 

RBANN. The variable friction coefficients of NFFEMs were estimated and verified 

through several simulation and experimental results. These proposed friction 

estimation models are compared with AFEMs. This work has three important 

contributions to the literature. Firstly, all friction models in the literature depend only 

on velocity. However, the friction model developed here depends on both velocity and 

acceleration. This approach has enabled us to obtain a two-dimensional friction model. 

Secondly, the coefficients of all friction models in the literature were constant when 

the physical quantities change. On the other hand, the coefficients of the friction 

models in this work vary depending on the state of the velocity and acceleration. Hence, 

this friction model allows for better estimation of the effects of friction in different 

velocity and acceleration conditions. Thirdly, much of existing papers in the literature 

have studied only the frictions of the linear motion which depends on linear velocity 

and force. This section examines frictions on the joints which have hard rotational 

motions. 
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3.5.1. Implementation of the neuro-fuzzy friction estimation model 

A fuzzy logic inference system is developed to estimate the friction coefficients in the 

pendulum joints of the TLRIP. For each joint, an FLC (Fuzzy Logic Controller) 

implemented to estimate the friction coefficients. Figure 3.11 depicts the 

implementation of the FLC in the joints of the TLRIP. Two inputs of FLC are the joints 

velocities and accelerations. The typical steps in developing the FLC system involve 

fuzzification, rule formation and defuzzification is explained briefly in this section.  

The input variables such as velocities and accelerations are suitably partitioned and 

converted into linguistic variables, as following (NL-negative medium, Z-zero, PM-

positive medium, PH- positive high, VS-very slow, S-slow, F-fast, VF-very fast, M-

medium). The output variables (friction coefficients of the models) are partitioned and 

represented as fuzzy sets with linguistic terms as following (M-medium, L-large, VL-

very large, H-high and VH-very high). The maximal absolute experimental velocities 

and acceleration of the pendulums' joints are 1000 deg/s and 8000 deg/s2, respectively. 

The membership functions and ranges of the input variables are obtained based on the 

experimental velocities and accelerations classification. Also, the membership 

functions and ranges of the output variables is obtained relatively from friction 

coefficients of the AFEM of the case ( θ2 = 180°,  θ3 = 0°, θ4 = 0°)  are given in 

Tables 3.17, 3.18, and 3.19 in section (3.4.2). The fuzzy rules are the most important 

part of the entire method, which affect the output results crucially. They are set based 

on the experimental velocities and acceleration classification knowledge and results 

obtained theoretically by the AFEM for each class. An example of the range selections 

for the input and output variables in LFM are shown in Table 3.24. Gaussian 

membership functions were used for graphical inference of the input and the output 

variables. As an example of many membership functions of the joints in the friction 

models used here, the membership functions of the first joint in LFM are illustrated in 

Figure 3.12. A fuzzy rule is a standard form of expressing knowledge based on the 

logic of IF and Then functions. A set of rules have been constructed based on the input 

variables (velocities and accelerations) and output variables (friction coefficients) for 

the three joints of TLRIP. The fuzzy rules used here are given in Table 3.25. The FLC 

rules for each of pendulum joint were obtained based on the experimental results from 

velocities and accelerations in AFEM. The defuzzification is the conversion of a fuzzy 
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quantity to a crisp value. The centroid method was applied for defuzzification. Figure 

3.13 shows the FLC surface relationship between velocities, accelerations and friction 

coefficients of the three joints in LFM. 

 

Figure 3.11. Simulink implementation of FLC in each joint of the TLRIP 

Table 3.24. FLC Rules For Pendulums’ Joints 

                    Velocities 

Accelerations 
VS S M F VF 

F.Cof B1 C1 B1 C1 B1 C1 B1 C1 B1 C1 

NH VH H VH VH H VH M H L M 

NM VH H H VH H H M M VL L 

ZE VH VH H H M H L M VL L 

PM VH VH H H M H L L VL VL 

PH H H M M L H VL L VL VL 

 

(a) 

Figure 3.12. FLC membership functions of the first joint in LFM. (a) Velocity 

membership functions. (b) Acceleration membership functions. (c) Friction 

coefficient (B) membership functions. (d) Friction coefficient (C) membership 

functions. 
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(b) 

 

(c) 

 

(d) 

Figure 3.12.(Cont.)  FLC membership functions of the first joint in LFM. (a) 

Velocity membership functions. (b) Acceleration membership functions. (c) 

Friction coefficient (B) membership functions. (d) Friction coefficient (C) 

membership functions. 

The friction coefficients obtained by the fuzzy logic inference system was trained by 

using a RBNN. The sampling rate is chosen as 1khz (sampling time) for the 40s 

(experiment test time) the velocities and accelerations inputs data are 40000 simples, 

respectively. The RBFNN method produces better training for a big number of data. 
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RBFNN have the advantages of an easy design (just three-layer architecture), good 

generalization, and high tolerance of input noises and the ability of online learning.  

RBFNNs are simpler than other networks existing in the literature [110-111]. This 

network uses the Bayesian Regularization (BR) algorithm [112] to treat the joint 

velocities and accelerations as inputs and the resultant frictions coefficients of fuzzy 

logic as targets. The BR algorithm performance is dependent by the minimal Means 

Squared Error (MSE).  The RBNN model expressed by two neurons in the input layer, 

ten neurons in the hidden layer, and two neurons in the output layer. The RBANN 

model is developed in each pendulum’s joint of the TLRIP. Figure 3.14 illustrates the 

block diagram of the NFFEM architecture for the TLRIP. The filter seen in Figures 

3.14 and 3.15 is an IIR (Infinite Impulse Response) filter. θ𝑖, θ̇𝑖 and θ̈𝑖 are the joints’ 

angles positions, the angular velocities and the angular accelerations of the i-th 

pendulums. 

 

(a) 

 

(b) 

Figure 3.13. FLC surface in LFM for i-th joints (a) Joint 2 (b) Joint 3 (c) Joint 4 



132 

 

 

(c) 

Figure 3.13.(Cont.)  FLC surface in LFM for i-th joints (a) Joint 2 (b) Joint 3 (c) Joint 

4 

 

Figure 3.14. Block diagram of the NFFEM architecture for the TLRIP 

3.5.2. Data collection for the NFFEMs 

The horizontal arm of the TLRIP is driven by a direct drive brushless DC torque motor 

(Type: TMH-130-050-NC). In this type of motor, since there is no use of transmission 

or gearbox, the frictions in the horizontal arm can be considered negligible. During the 

collection of the experimental data, the arm joint θ1  is fixed at zero position. The 

pendulums’ angles (θ2 , θ3  and θ4 ) are measured with three encoders having a 

resolution of 2048 pulses per revolution. 



 

  

1
3

3
 

Table 3.25. Selection of range for the input and output variables 

 İnput variables Output variables 

Joints Velocity Ranges Acceleration Ranges B and C B-Ranges C- Ranges 

Joint 2 

VS [0 95] NH [-6000 -2300] VH [0  2,53.10−4] [0 2,601.10−4] 

S [85 280] NM [-5000 -200] H [1,263. 10−4  4,778. 10−4] [1,073 .10−4   5,121.10−4] 

M [200 600] ZE [-1000 1000] M [4,086. 10−4  5,916. 10−4] [4,087.10−4  6,139.10−4] 

F [450 920] PM [-200 6500] L [5,396. 10−4  8,837. 10−4] [5,449.10−4   9,378.10−4] 

VF [690 1000] PH [3800 8000] VL [7,457 . 10−4  10 . 10−4 ] [7,624.10−4 10 . 10−4] 

Joint 3 

VS [0 110] NH [-14000 -8177] VH [1. 10−6  3.236. 10−6] [1. 10−6 2.516. 10−6] 

S [69 400] NM [-10880-2483] H [1.757. 10−6 5.254. 10−6] [1.59. 10−6 4.043. 10−6] 

M [280 800] ZE [-3546 375.9] M [4.624. 10−6 6.288. 10−6] [3.416. 10−6  4.66. 10−6] 

F [590 1200] PM [-611.2 10610] L [5.814. 10−6   9.344. 10−6] [4.23. 10−6  6.61. 10−6] 

VF [900 1300] PH [7793 22330] VL [7.688. 10−6 1.002. 10−5] [5.56. 10−6   7. 10−6  ] 

Joint 4 

VS [0 355] NH [-2.3. 104  -1.457. 104] VH [0   3.232. 10−6] [0  2.769. 10−6] 

S [138  669] NM [-1.84. 104 -6242] H [2.057. 10−6  5.252. 10−6] [1.688. 10−6 4.55. 10−6] 

M [510 1337] ZE [-7860  -2180] M [4.624. 10−6  6.287. 10−6] [3.782. 10−6 5.233. 10−6] 

F [1075 2043] PM [-3610  1.264. 104] L [5.815. 10−6  8.942. 10−6] [4.781. 10−6 7.561. 10−6] 

VF [1608  3026] PH [8566 1.909. 104] VL [7.687. 10−6  1.002. 10−5  ] [6.32. 10−6 8. 10−6] 
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The signals obtained from the encoder passes through the slip ring mounted in the 

joints. A dSPACE-DS1103 controller board treats the received signals from the 

encoders. The friction in the joints of the TLRIP depends on their velocities and the 

accelerations. In this case, NFFEM should be determined experimentally. The initial 

positions of the pendulums will be taken in cases with the value of θ2 at 180 degrees 

along with θ3  and θ4  at an angle of 0 degrees. The experimental hardware 

configuration is shown in Figure 3.15.  In this work, the frequency counting [113] 

technique was used to obtain velocity and acceleration from an incremental encoder. 

This technique is useful for medium and high speeds but degrades in performance at 

low speed since the relative error increases at low speed.  For this reason, a second-

order IIR filter was used to smooth the signal. 

 

Figure 3.15. Block diagram of the experimental hardware configuration structure for 

the NFFEMs 

3.5.3. Estimation results of the NFFEMs 

The simulation results obtained from the AFEMs and NFFEMs based on NCFM, LFM 

and NLFM were compared with the experimental results. For each joint, position 

RMSEs between these simulation and experimental results were calculated. Figure 

3.16, 3.17 and 3.18 illustrate the friction coefficients obtained by the: Neuro-Fuzzy 

Non-Conservative Friction Model (NFNCFM), Neuro-Fuzzy Linear Friction Model 

(NFLFM) and Neuro-Fuzzy Non-Linear Friction Model (NFNLFM) for the joints of 

the TLRIP, respectively. Figure 3.19 illustrates the angular position comparison 

between experimental and NFNLFM simulation results. As can be seen from the 
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figure, a high estimation performance is produced with the use of NFNLFM for each 

joint. 

 

Figure 3.16. Friction coefficients obtained by NFNCFM for 

pendulums’ joints 

 

Figure 3.17. Friction coefficients in NFLFM for pendulums’ joints 
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(a) 

 

(b) 

Figure 3.18. Friction coefficients in NFNLFM: (a) Joint 2, (b) 

Joint 3 and (c) Joint 4. 
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(c) 

Figure 3.18.(Cont.)  Friction coefficients in NFNLFM: (a) Joint 2, (b) 

Joint 3 and (c) Joint 4 

The joint position RMSEs between the simulation and experimental results of the 

AFEM and NFFEM were calculated. For comparison purpose, these position RMSEs 

are given in Table 3.26. According to the calculated position RMSEs, the NFNLFM 

produces more accurate results than the ANCFM, ALFM, ANLFM, NFNCFM, and 

NFLFM. In order to see the NFNLFM performance compared with other friction 

models, percentages of position RMSEs were computed for each joint, and they are 

given in Table 3.27. Considering the RMSEs of position in all joints, NFNLFM 

between 11.56 of percentage and 94.55 of percentage yields better results. 

Table 3.26.  Position RMSES in AFEMS and NFFEMS 

                                         Joints 

Friction Models 
Joint 2 Joint 3 Joint 4 

Adaptive friction 

coefficients 

ANCFM 0.1397 1.8105 0.6995 

ALFM 0.1127 1.8032 0.6743 
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Table 3.26.(Cont.) Position RMSES in AFEMS and NFFEMS 

 ANLFM 0.0983 0.1115 0.6248 

Neuro-Fuzzy 

coefficients 

NFNCFM 0.1259 0.8105 0.5480 

NFLFM 0.0987 0.1794 0.4372 

NFNLFM 0.0829 0.0986 0.3304 

 

Table 3.27.  Comparison in TERMS of RMSE Percentage between NFNLFM and 

other friction models 

Friction Models 
RMSE Percentages between NFNLFM and other friction models 

Joint 2 Joint 3 Joint 4 

ANCFM 40.65 % 94.55% 52.76% 

ALFM 26.44% 94.53% 51.00% 

ANLFM 15.66% 11.56% 47.11% 

NFNCFM 34,15% 87,83% 39,70% 

NFLFM 16,00% 45,03% 24,42% 

 

 

Figure 3.19. Angular position comparison between experimental and 

NFNLFM simulation results 
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In this study, novel NFFEMs are developed based on NCFM, LFM and NLFM to 

estimate the joint friction coefficients in the TLRIP system. The simulation results 

obtained from NFFEMs were compared with AFEMs.  For wide ranges of velocity and 

acceleration of joints, the variable friction coefficients were estimated with the NFFEMs 

and AFEMs. All of the friction models were verified and compared using the calculated 

position RMSEs.  According to the performance comparison, the NFNLFM in NFFEMs 

produced the best results for all joints of the TLRIP. In other future works, the 

fuzzification ranges and rules of the NF system can be tuned with evolutionary 

algorithms to enhance the estimation performance of the NFFEMs. Furthermore, more 

inputs such as jerks and snaps of the joints can be applied to the NF system, and the 

TLRIP system will be controlled using the proposed friction models. 
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4. SYSTEM CONTROL AND SIMULATION RESULTS 

4.1. Introduction 

IPS are widely used in Non-Linear Control Theory (NLCT) education. Many control 

problems in the field of NLCT have been studied with the IPS which was installed in 

a research laboratory. A vast range of contributions in the literature exists for the 

stabilization of different types of IPS. Besides the stabilization problem aspect, the 

anti-swing problem, especially of the classical SLRIP has gained increasing attention 

in the recent studies. Therefore, the DLRIP and TLRIP are more complex than SLRIP 

in terms of dynamic control problem. DLRIP and TLRIP systems have a three and four 

DOFs, respectively. The RIP systems have two stable points, such as downward (stable 

equilibrium point) and upward positions (unstable equilibrium point). According to 

the complicated nonlinearity and the high coupling effect between the pendulum links, 

the control problem of the DLRIP and TLRIP is still considered as a challenging 

research topic. Underactuation structure of the systems (driven by a single actuator) 

makes the control actions more difficult and hence it needs a more complicated 

controller design. Furthermore, the classical controllers may not control this type of 

systems effectively. A robust nonlinear controller should be applied to control the 

system. The development of effective controllers for the highly nonlinear and complex 

coupled dynamic behaviour systems is needed. One solution widely used in literature 

to alleviate this control problem is to linearize the complex nonlinear system and 

applied classical linear control methods to stabilize the system. Moreover, the control 

performance of the real system can be degraded depending on the differences between 

the linearized and the real nonlinear systems [114]. Recently, the fuzzy controllers 

seem to be a good alternative to simplify the control of a nonlinear complex system 

such as IPS for desired control performance. By using the fuzzy control, the nonlinear 

systems are approximated by the combination of several linear subsystems in the 

corresponding fuzzy state-space regions.  For this reason, the linear subsystems are 

fuzzily combined. The fuzzy control of the IPS is shown that robust under internal and 

external disturbances [115-116]. In the first works existing in the literature [117-118], 
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the fuzzy controller was used for swing up and stabilization control of a SLRIP.  The 

rules for the swing-up of the pendulum were chosen to each swing results in order to 

have greater energy build up. The stabilization of the pendulum was achieved by 

switching at an LQR control law to the fuzzy inference to make the stability in the 

unstable equilibrium point. The objective of the new studies in the literature [119-120] 

is to determine a non-linear control strategy to obtain better performance applied to 

SLLIP. An LQR based fuzzy controller was designed, and its performance was 

compared with LQR controller. The results in this new control technique show that 

LQR based fuzzy controller produced better response as compared to LQR control 

strategy. In this section, a non-linear FLQR and FLQG controllers are developed to 

stabilize the pendulum links of the DLRIP and TLRIP systems in the upward vertical 

position. In order to obtain the desired angular position of pendulums with a better 

dynamic response, compared to the classical LQR and LQG controllers, the fuzzy 

controllers were combined with the LQR and LQG in objective to adjust the closed-

loop controller feedback gains. respectively. This paper examines the control 

performance of the controllers in terms of  Ts, PO, Ess and the RMSE position errors 

of the joints (position error between the equilibrium point and the dynamic responses 

obtained from each joint). Moreover, several simulations were conducted to study the 

effectiveness of the FLQR and FLQG controllers under the internal and external 

disturbances. ANNs have been presented good solutions for the anti-swing control 

problem of IPS [121]. Recently, both approaches, Fuzzy and ANN are combined with 

the NF model. NF control has become a popular research topic for the IPS control 

problem. Takagi-Sugeno Fuzzy model called the ANFIS is used for the nonlinear anti-

swing control of IPS [122-124]. In recent works, the use of LQR based NF model has 

been suggested to improve the performance of the controller [125]. In this section, a 

novel RBNF-LQR controller is developed for an anti-swing control of a DLRIP and 

TLRIP systems. The objective of this work is to study the RBNF-LQR controller and 

to compare it with FLQR and the classical LQR controllers. In the proposed RBNF-

LQR controllers, the positions and velocities of state variables multiplied by their LQR 

gains trained by using two RBNNs architecture. The output of the two RBNNs are 

used as the input variables of the fuzzy controller. The novel architecture of the RBNF 

controller is developed in order to obtain better control performance than the classical 

ANFIS. To determine the control performance of the anti-swing controllers, different 



142 

 

control parameters are computed such as Ess , Ts , MP, RMSEs. Moreover, the 

performance of controllers was compared based on robustness analysis under external 

disturbance. Figure 4.1 shows the applied controllers to the SLRIP, DLRIP and TLRIP 

systems. 

 

Figure 4.1. Control methods applied for the SLRIP, DLRIP and TLRIP 
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4.2. Design of Controllers for the RIPS 

In this section, the controller methods applied to control our RIPS are explained with 

details. 

4.2.1. PID controller 

To stabilize the inverted pendulum of the SLRIP in the upright position and to control 

the horizontal link at the desired position using the PID control approach, two PID 

controllers: Angle PID controller and horizontal link PID controller have been 

designed for the two control loops of the system. The equations of the PID control are 

given as follows: [126] 

up = Kpp eθ2
(t) + Kip ∫eθ2

(t) dt + Kdp  
d eθ2

(t)

dt
                                                 (4.1) 

ul = Kpl eθ1
(t) + Kil ∫eθ1

(t) dt + Kdl  
d eθ1

(t)

dt
                                                     (4.2) 

where eθ2
(t)and eθ1

(t)are the angle error of the pendulum link and the angle error of 

the horizontal link, respectively. Kpp , Kip, Kdp are the PID controller parameters of 

the proportional, integral and derivative terms of the pendulum link respectively. 

Moreover, Kpl , Kil, Kdl are the PID controller parameters of the proportional, integral 

and derivative terms of the horizontal link respectively. Since the dynamics of the 

angle of pendulum link and horizontal link dynamics are coupled to each other, the 

change in any controller parameters affects both the pendulum angle and horizontal 

arm position, which makes the tuning tedious. The tuning of controller parameters is 

done by using trial and error methods and observing the responses of the Simulink 

model to be optimal. The tuning of controller parameters is done by minimizing the 

error methods using an optimization algorithm such as PSO. 

4.2.2. Linear quadratic regulator 

The State Feedback Control (SFC) technique is based on the placement of the system 

poles. A gain matrix (K) and the state variables are used for the pole placement of the 

system. In SFC the poles of the closed-loop system may be placed at any chosen 
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position. Nevertheless, for the methods of output feedback control, the poles of 

systems may be given to a definite point [127]. In this technique, the state variables 

are implemented by a state feedback controller. The state variables of the system are 

feedback. All feedbacks multiplied by a state feedback gain matrix are compared to 

the reference input. The important point in the SFC design is to calculate a gain matrix 

(K). In this purpose, the LQR controller is one of the most used methods. In the LQR 

controller, the optimal feedback parameters of K matrix are taken by the cost function 

(J), which optimize states, x(t) and the control signal u(t) of the system. u(t) and J are 

given in equations (4.3) and (4.4), respectively. [128] 

u(t) =  −K x(t)                                                                                                                    (4.3) 

J =  
1

2
∫ (xTQx + uT Ru)

∞

0

dt                                                                                           (4.4) 

J depends on the matrix Q and R. Q and R are defined as a positive semi-defined 

matrix. Furthermore, the K gain matrix is determined based on Q and R. The control 

signal is shown below. [129] 

u(t) = − R−1BTP(t)x (t)  = −Kx (t)                                                                             (4.5) 

where P is obtained by the differential equation of Riccati: 

PA + AT − PBR−1P + Q = 0                                                                                            (4.6) 

K matrix is determined with P. It is the solution of the Riccati equation given in (4.7). 

K = R−1 BTP = [k1 K2 K3 … . . Kn]                                                                          (4.7) 

n is the number of state variables. LQR controller performance is dependent on the 

choice of weight matrices. In the literature, there exist many different approaches for 

the choice of Q and R, for example, the Bryson’s Rule. A simple choice approach can 

be Q=I and R=ρ I. Also, several optimization algorithms can be used to obtain the 

optimal value of Q and R. [130] 

4.2.3. Fuzzy linear quadratic regulator 

This controller is a combination of the optimal control approach (LQR) and fuzzy 
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control method [131]. The FLQR controller transform the variables into error (e) and 

derivation of the error ( ė), which simplified the fuzzy controller. e  and ė  are the 

summings of positions and velocities of state variables multiplied by their LQR gains, 

respectively. An example of the block diagram of FLQR controller applied to DLRIP 

is shown in Figure 4.2. e and ė can be calculated as follows: 

 [
e
ė
] = KxT = [

Kθ1 θ1 + Kθ2 θ2 + Kθ3 θ3 + ⋯Kθi 
θi 

Kθ1̇
θ1̇ + Kθ2̇

θ2̇ + Kθ3̇
θ3̇ + ⋯Kθi

̇ θi
̇ ]                                             (4.8) 

K =  [
Kθ1

Kθ2
Kθ3

…Kθi 
0 0 0…

0 0 0… Kθ1̇
Kθ2̇

Kθ3̇
…Kθi

̇
 ]                                                       (4.9) 

Where i is the number of state variables and xT is the state vector. 

e =  Kθ1 θ1 + Kθ2 θ2 + Kθ3 θ3  + ⋯Kθi 
θi                                                                (4.10) 

ė =  Kθ1̇
θ1̇ + Kθ2̇

θ2̇ + Kθ3̇
θ3̇  + ⋯Kθi

̇ θi
̇                                                                    (4.11) 

 

Figure 4.2. Example of the block diagram of FLQR controller applied to DLRIP 

Mamdani type fuzzy model was developed in objective to adjust the closed-loop 



146 

 

controller feedback gains of our system. The input variables (e and ė) and the output 

variable (Control signal-U) are converted into linguistic variables, as follows: (NB-

negative big, NM-negative medium, NM-negative small, Z-zero, PS-positive small, 

PM-positive medium, PB- positive big) [132]. The range of the input variables are [-

15 15 (degree)], [-6 6 (degree/s)] for e and ė, respectively. Also, the range of the output 

variable is [-10 10 (v)]. Triangular membership functions are used for the graphical 

inference of the input and the output variables [133-134]. Table 4.1 present the fuzzy 

rules applied to the controller of the system. Tables 4.2 show the range of the input 

and output variables. Figure 4.3 shows the relationship between inputs and output of 

the FLC (FLC surface). The membership of the input and output variables are 

presented in Figure 4.4. 

Table 4.1. Fuzzy rules 

    ė 

e 
NB NM NS ZE PS PM PB 

NB NB NB NB NM NM NS ZE 

NM NB NB NM NM NS ZE PS 

NS NB NM NM NS ZE PS PM 

ZE NM NM NS ZE PS PM PM 

PS NM NS ZE PS PM PM PB 

PM NS ZE PS PM PM PB PB 

PB ZE PS PM PB PB PB PB 

 

Table 4.2.  Range of the input and output variables 

Ranges 

 

Symbols 

Input variables Output variables 

Ranges of input (e) Ranges of input (ė) Ranges  of output (U) 

NB [-15 -12 -7.5] [-6 -5 -3.5] [-10 -8 -5] 

NM [-9 -6 -2] [-4 -3 -1.5] [-6 -4 -1.8] 

NS [-3 -1.5 0] [-2 -1 0] [-2 -1 0] 

ZE [-0.75 0 0.75] [-0.5 0 0.5] [-1 0 1] 

PS [0 -1.5 3] [0 1 2] [0 1 2] 

PM [2 6 9] [1.5 3  4] [1.8 4 6] 

PB [7.5 12 15] [3.5 5 6] [5  8  10] 
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Figure 4.3. FLC surface 

 

(a) 

 

(b) 

Figure 4.4. The membership functions of (a) the input e, (b) the input ė and (c) 

the output U 
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(c) 

Figure 4.4.(Cont.) The membership functions of (a) the input e, (b) the input ė 

and (c) the output U 

4.2.4. Linear quadratic gaussian 

In a linear dynamic system, Kalman Filter (KF) estimates the system states from the 

information of input and output. Figure 4.5 (a) shows the block diagram of the KF. 

Noised signals (Wd, Wn) are combined with the linear dynamic system to get more 

increased system construction necessary to the KF algorithm [135]. According to the 

add noised signal, the state-space model of RIPS can be the system given as follows: 

{
ẋ = Ax + Bu + Wd

y = Cx + Du + Wn 
                                                                                                       (4.12)  

The dynamic equation of KF is added to the state space and it is given by the equation: 

{x⏞
.

= Ax̂ + Bu + Kf(y − ŷ)    
ŷ = Cx̂                                       

                                                                                        (4.13)  

The KF gain Kf is calculated as follows: 

Kf = PCTR−1                                                                                                                      (4.14) 

P and R are an algebraic constant calculated with the Riccati equation and the output 

covariance matrix, respectively. x̂ and ŷ  are the estimated state variables and outputs, 

respectively. The error can be given in equation (4.15).  

e = x̂ − x                                                                                                                             (4.15) 
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By using equations (4.12) and (4.15) equation (4.16) is obtained. 

ė = (A − Kf C)e                                                                                                                (4.16) 

An optimal Kf the gain matrix must be determined to the KF design. The structure of 

LQG is taken by the added KF to the LQR, as can be seen in Figure 4.5 (b). The KF is 

obligatory if the state variables of the LQR needed to be estimated.  LQG is an optimal 

controller method for some systems which have uncertainty. the KF is used to estimate 

the state variables according to the system input and the measured output variables. 

The state variables will be multiplied by the K matrix to generate the control signal 

(u), given in equation  (4.17). [136-137] 

u = −Kx̂                                                                                                                              (4.17) 

If the control signal is applied to the state-space model and the noise signals added to 

the system, the closed-loop model is given as follows: 

ẋ = Ax − BKx + BK(x − x̂) + Wd                                                                                (4.18) 

The KF state-space model is  

ε̇ = (A − Kf C)ε + Wd − KfWn                                                                                    (4.19) 

The new space model can be defined in equation (4.20)  

[
ẋ
ε̇
] = [

(A −  BK) BK
0 (A − Kf C)

] [
x
ε
] + [

1 0
1 − Kf

] [
Wd

Wn
]                                          (4.20) 

 

(a) 

Figure 4.5. (a) Block diagram of the KF, (b) Block diagram of the LQG 
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(b) 

Figure 4.5.(Cont.)  (a) Block diagram of the KF, (b) Block diagram of the 

LQG 

4.2.5. Fuzzy linear quadratic gaussian controller 

This FLQG controller structure is based on the combination of the LQG controller 

given in section (4.2.4) and FLQR controller given in section (4.2.3). However, for 

certain cases, the state variables are not measured for real experimental systems. But 

it is possible to estimate the non-measurable state by using the measurement data if 

the system is observable. Furthermore, the estimation of state variables can be 

preferred because of the noisy measurement data.  

The structure of FLQG is obtained by adding the KF to the FLQR, as can be seen in 

Figure 4.6. However, the KF is obligatory if some state variables needed for the FLQR 

are estimated. KF estimates the state variables according to the RIPS input and the 

measured output variables. The estimated state variables are the input of the FLQR 

controller. The Block diagram of FLQG controller is shown in Figure 4.6. [138-139] 
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Figure 4.6. Block diagram of FLQG controller for the RIPS 

4.2.6. ANFIS based LQR controller 

In this section, the design aspect of ANFIS based LQR (ANFIS-LQR) controller is 

explained in details. The procedure of ANFIS is considered into three steps, given in 

Figure 4.7. 

 

 

 

 

 

 

Figure 4.7. Procedure to design 

ANFIS-LQR controller 

In the step of data collection, the data must be in the form of multiple-inputs and single-

output column vector [140]. For the data collection, the inputs and output data of the 

non-linear FLQR controller are used. The FLQR controller transforms the variables 

into error (e) and derivation of the error (ė), e and ė are the summing of positions and 

Data collection 

Selection of ANFIS 

Parameters 

ANFIS Training 
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velocities of state variables multiplied by their LQR gains, respectively. U is the output 

control signal of the FLQR controller. The input data vectors are obtained from e and 

ė. The output data vector is obtained from U. An example of a block diagram of 

ANFIS-LQR controller applied to DLRIP is shown in Figure 4.8. In the second step, 

ANFIS parameters such as the number and type of membership functions, error 

tolerance, epochs number and learning method must be chosen. In the last step, a fuzzy 

inference system is trained by the ANFIS [141]. ANFIS training is easily obtained in 

MATLAB using the pre-defined function “anfisedit”. The obtained fuzzy inference 

system can be exported in a .fis file is created, which acts as a non-linear controller for 

the system. 

 

Figure 4.8. Example of a block diagram of the ANFIS-LQR controller in a DLRIP 

4.2.7. Radial-basis neuro-fuzzy based LQR controller 

In this section, RBNF-LQR controller is explained in details. The RBNF-LQR is 

developed in order to obtain better control performance than the classical ANFIS-LQR 

controller. Two RBNNs are used to train the positions and velocities of state variables 

multiplied by their LQR gains, respectively. The inputs and output (u) data obtained 

from the non-linear FLQR controller are used for the training of both RBNNs. RBNN 

is a universal approximator based on the simple and fixed three-layer architecture. 
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RBNNs are easier to be developed and trained compared to other ANNs. RBNNs have 

a very strong tolerance to the noised inputs, which improve the stability control of the 

systems. RBNN can be used as a method of nonlinear controller design [142-143]. An 

example of the block diagram of RBNF-LQR controller applied to DLRIP is shown in 

Figure 4.9. 

 

Figure 4.9. Example of a block diagram of the RBNF-LQR controller in a DLRIP 

The two output of both RBNNs (e, ė) are used as the input of a Mamdani type fuzzy 

model explained in 4.2.3. 

4.3. Stabilisation Control of the SLRIP 

4.3.1. Model linearization of the SLRIP 

The nonlinear state-space form of RIPS is as follows:  

ẋ =  f(x, u)                                                                                                                          (4.21) 

x is the state vector of SLRIP,  xT = [θ1 θ2 θ1̇ θ2̇] .  𝑢 is the control input u =

 𝜏  ( 𝜏 is the applied input vector), it is a scalar because there is only one actuator that 
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provides torque input to the system. The expression for the angular acceleration, θ̈  =

 [θ̈1  ; θ̈2 ]
T , was obtained by solving for θ̈ in equation (4.22). 

θ̈ = M−1[τ − C(θ, θ̇) − G(θ)]                                                                                        (4.22) 

Equation (4.21) is of the form ẋ =  f(x, u) . The term ẋ  is a  2 × 1  matrix, which 

contains nonlinear elements. In this forms the first two elements of ẋ are just the last 

two elements of x. To linearize the last two elements about an operating point vector 

(OP), Taylor's expansion is used: [144] 

δẋ(t) = (
∂f(x, u)

∂x
)

x=OP,u=0

δx(t) + (
∂f(x, u)

∂u
)

x=OP,u=0

δu(t)                              (4.23) 

x is the state vector, ẋ(t) is a small deviation of the states from the operating point. 

The coefficients of δx(t) and δu(t), termed A and B, respectively, are evaluated at the 

operating point. Thus, the linear state-space model of the system is given in the 

equation system becomes: 

{
ẋ = Ax + Bu
y = Cx + Du 

                                                                                                                     (4.24) 

A, B, C and D are matrices for the state-space representation. The aim is to design a 

robust controller for stabilizing the pendulum links in the upright position with 

minimum deflection. The stable equilibrium point corresponds to a state in each 

pendulum is downward position (θ1 = 0°  and  θ2  = 180°). The unstable equilibrium 

corresponds to the state in each pendulum points vertically upwards which is against 

gravity (θ1  =θ2  = 0°). Substituting system parameters and constants for respective 

terms, A, B, C and D state-space matrices of the SLRIP become:  

A = [ 

0 0 1 0
0 0 0 1
0
0

2.6358
35.4759

−0.4215
−0.6253

−0.0064
0.0865

] B = [

0
0

1.0095
1.7227

]                                    (4.25) 

C = [

1 0 0 0
0 1 0 0
0
0

0
0

1
0

0
1

] D = [0]                                                                                            (4.26) 
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Bryson's method is used to determine the initial weighting matrices (Q and R). 

According to the Bryson's Rule, Q and R are diagonal matrices. The diagonal elements 

are expressed as the reciprocals of the squares of the maximum acceptable values of 

the state variable (x) and the input control variable (u). The diagonal elements Qii of 

matrix Q, can be given as: 

Qii = 
1

maximum acceptable value of xi
2
                                                                  (4.28) 

Where i = 1,2, . . n. The diagonal elements Rjj of matrix R, also can be given as: 

Rjj = 
1

maximum acceptable value of ui
2
                                                                  (4.29) 

The initial choice of Q and R matrix are:  

Q = [ 

1 0 0 0
0 1 0  0
0
0

0
0

1
0

0
1

]  and R = 0.01                                                                              (4.30) 

The characteristic roots of the open-loop system are of the SLRIP are located at  5.9914,  

-6.0246 and -0.3749. therefore, the open-loop system is unstable, since 1 pole of the 

SLRIP system lies in the right half of s plane. the LQR gain vector of the SLRIP is 

obtained as follows: 

K = [−13.5047 221.4027 −261.7301 160.1331]                                      (4.31) 

In the next parts, PID, LQR, and swing-up based LQR controllers are developed and 

simulated in the MATLAB/Simulink environment for the stabilization of the SLRIP. 

The simulation is performed by the sampling time 1ms and 5s simulation time. A 

numerical method Bogacki-Shampine solver is selected with fixed-step. According to 

simulation results, a comparative study of all controllers is given. The controllers are 

tested for robustness under external disturbances. The simulation results can provide a 

good background and feasibility for a real experimental implementation to the 

stabilization control problem of the SLRIP. 
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4.3.2. PID controller of the SLRIP 

The turned PID parameters are optimized using PSO algorithm in order to obtain more 

robust PID gains. The optimized PID controller parameters are given in Table 4.3. To 

test the performance of the PID controller, an external disturbance is given to the 

system at t=3s. The SimMechanics model of the SLRIP using PID controller is shown 

in Figure 4.10. Figure 4.11 shows the responses of the pendulum angle (θ2), the angle 

of horizontal link (θ1) and the control signal (U) of SLRIP with PID controller under 

external disturbance.   

Table 4.3.  Optimal PID controller parameters of the SLRIP 

Parameters of PID controller of the 

pendulum link  

Kpp Kip Kdp 

4.0698 0.605 0.176 

Parameters of PID controller of the 

horizontal link 

Kpl Kil Kdl 

−1.25  0.02 3.6 

 

 

Figure 4.10. SimMechanics model of the SLRIP with PID controller 

4.3.3. LQR controller of the SLRIP 

The simulation of the LQR controller is performed with a calculated gain matrix (K) 

given in equation (4.31) and an initial condition vector which is xT =

 [0 10 0 0 ]°. The output variables of LQR controllers are stabilized at the reference 
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points. To test the performance of the LQR controller, an external disturbance is given 

to the system at t=3s. The SimMechanics model for control of SLRIP using LQR 

controller method with disturbance input is shown in Figure 4.12. Figure 4.13 show 

the responses of the pendulum angle (θ2), the angle of the horizontal link (θ1) and 

control force (U) of the SLRIP with LQR controller under external disturbance.  

 

Figure 4.11. Responses of pendulum angle ( θ2 ), the angle of the 

horizontal link (θ1 ) and control force (U) of  the SLRIP with PID 

controller under external disturbance 

 

Figure 4.12. SimMechanics model of the SLRIP with LQR controller 
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Figure 4.13. Responses of pendulum angle (θ2), the angle of the horizontal 

link (θ1) and control force (U) of  the SLRIP with LQR controller under 

external disturbance 

4.3.4. Performance evaluation of PID and LQR controllers 

According to the obtained results, the PID is robust, and it has successfully maintained 

the control of the SLRIP. The LQR controller is developed to give us better Ts, PO,  

Ess and the RMSEs than the classical PID controllers. The two controllers are under 

external disturbance. Table 4.4 shows the comparison of PID and LQR controllers in 

terms of Ts, PO,  Ess and the RMSEs under external disturbance. Furthermore, the 

performance of the two controllers' effort is determined by the RMSEs between the 

control signal and zero voltage. The calculated RMSEs are given in Table 4.5. 

According to the obtained signals results, the system controlled with LQR needs more 

effort to control the system. 
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Table 4.4.  Quantitative comparison of the performance of the PID and LQR 

controllers under external disturbance 

Controllers under 

external disturbance   
Parameters 

Joints 

First Link (θ1) Second Link (θ2) 

PID 

Ts (s) 1.3009  0.7289  

PO % 1.51 47  

Ess (°) 0.2 0.035 

RMSE (°) 0.0229 0.0159 

LQR 

Ts (s) 1.2007 0.5295 

PO % 0.8 23 

Ess (°) 0.0365 0.03 

RMSE (°) 0.0057 0.0210 

 

Table 4.5.  RMSEs of the control signals of the PID and LQR controllers 

Controllers under external  disturbances RMSE (°) 

LQR 0.0447 

PID 0.0255 

 

According to the calculated Ts , PO, Ess  and position RMSEs, the LQR controller 

produces more accurate results than the PID controller. In order to see the performance 

of the LQR compared with PID; The improvement percentages of  Ts, PO, Ess and 

position RMSEs were computed, and they are given in Table 4.6 Considering the  Ts, 

PO, Ess  and position RMSEs in all joints, the percentage obtained by the  LQR 

controller yields better results. 

Table 4.6.  Comparison of the performance parameters in terms of percentage between 

LQR and PID under external disturbance 

Controllers under 

external disturbance  
Parameters 

Joints 

First Link (θ1) Second Link (θ2) 

LQR versus PID 

 

Ts 7.702 % 27.39 % 

PO 47.01 % 51.06 % 

Ess 81.75 % 14.28 % 

RMSE 75,28 % 24.28 % 
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According to the calculated improvement percentages in Table 4.6, the LQR returned 

more accurately than the PID controller under external disturbance for all joints. The 

 Ts improvement percentages are 7.702% for the first link and 27.39% for the second 

link. The PO improvement percentages are 47.01% for the first link and 51.06%  for 

the second link. The Ess improvement percentages are 81.75% for the first link and 

14.28% for the second link. The RMSEs improvement percentages are 75,28% for the 

first link and 24.28% for the second link. Moreover, according to the incremental 

calculated percentages of RMSEs of the control signals in Table 4.5, the LQR returned 

more effort than PID with 42.95 % under external disturbance. 

4.3.5. Swing-up control based on LQR  

One of the most effective approaches existing in the literature is to swing-up the 

pendulum to make it controlled at the stability point. This method is based on energy 

considerations. The goal is to bring the total mechanical energy of the pendulum to 

zero, which corresponds to the upright position. The basic energy-based control law is 

given in equation (4.32).  

Usw = um|θ2
3 |sng (cos θ2θ̇2 )                                                                                    (4.32) 

Where θ2 , θ2̇  are angle and velocity of the pendulum link, respectively. um is the 

swing coefficients. The following swing-up/stabilizing control strategy is proposed for 

the torque model. For the control objective, the freely hanging pendulum had to be 

brought into the upright equilibrium, and the arm needed to be stabilized at the origin 

( θ2 must be stable at 180° ). The initial conditions of θ1 ,θ2 are zero degrees. Once 

the pendulum link was approaching the upright position, the control is switched to 

balancing the LQR controller. The SimMechanics model to control the SLRIP using 

the swing-up controller-based LQR is shown in Figure 4.14. Figure 4.15 show the 

responses of the pendulum angle θ2, horizontal link  θ1 and the torque input signal of 

SLRIP with swing-up controller-based LQR. An external disturbance is given to the 

system at 7s to see the performance controller. As can be seen from Figure 4.15, the 

swing up controller-based LQR is robust and can control the system. 
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Figure 4.14. SimMechanics model of the SLRIP using the swing-up based LQR 

controller 

 

Figure 4.15. Responses of the angle of pendulum (θ2), the 

angle of the horizontal link (θ1) and the torque input signal of 

the SLRIP with swing-up controller-based LQR under 

external disturbance 
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4.4. Anti-swing Control of the SLRIP 

PID and LQR controllers are developed for the anti-swing control of the SLRIP.  Two 

controllers are modelled and simulated in the MATLAB/SimMechanics Simulink 

environment. The initial conditions of the links are  taken with θ1 = 0 ° and θ2 = 60°. 

The optimized PID controller parameters for the anti-swing controller are given in 

Table 4.7.  

Table 4.7. Optimal PID controller parameters for the anti-swing controller of the 

SLRIP 

Parameters of PID controller of the 

pendulum link  

Kpp Kip Kdp 

2.01 0.369 0.05 

Parameters of PID controller of the 

horizontal link 

Kpl Kil Kdl 

−0.75  0.0047 1.007 

 

The anti-swing LQR controller is performed with K= [-0.2586   46.3074    1.136    

-1.9724].  All output variables of the SLRIP system must be stabilized at the reference 

zero position by the both PID and LQR anti-swing controllers. As can be seen from 

Figure 4.16, the link arm and the pendulum link were stabilized at the reference 

position with minimum vibrations.  

4.4.1. Performance evaluation of the anti-swing PID and LQR controllers 

Moreover, Figure 4.16 presents a comparison between the angle signals (θ1 and θ2) 

with PID and LQR anti-swing controllers of the SLRIP. According to the obtained 

results, the PID has successfully maintained the control of the SLRIP with minimum 

vibrations.  

The LQR controller is developed to give better Ts, MP, Ess and the RMSEs than the 

PID controller. Table 4.8 shown the comparison of PID and LQR controllers in terms 

of Ts , MP,  Ess  and RMSEs. According to the calculated Ts , MP, Ess and position 

RMSEs, the LQR produces more perfect results than the PID. To understand the LQR 

performance compared with PID; The improvement percentages of all parameters 

were calculated for each case and given in Table 4.9.  
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Figure 4.16. Angle signals (θ1  and  θ2) with PID and LQR anti-swing controllers 

for the SLRIP 

Table 4.8. Quantitative comparison of the performance of PID and LQR anti-swing 

controllers 

Anti-swing controllers Parameters 
Joints 

First Link (θ1) Second Link (θ2) 

PID 

Ts (s) 9.1903 5.6238 

MP (°) 195 20 

Ess (°) 0.0978 0.01 

RMSE (°) 0.9756 0.1067 

LQR 

Ts (s) 8.7535 3.5475 

MP (°) 128 5 

Ess (°) 0.0865 0.0029 

RMSE (°) 0.6651 0.1002 
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Table 4.9. Quantitative comparison of the performance parameters in terms of 

percentage between PID-LQR anti-swing controllers 

Anti-swing controllers Parameters 
Joints 

First Link (θ1) Second Link (θ2) 

LQR versus PID 

Ts  4.75 % 36.91%  

MP 34,35 % 75 % 

Ess 12.36 %  71 % 

RMSE 31.82 % 6.091 % 

 

According to the calculated improvement percentages in Table 4.9, the LQR returned 

more accurately than PID for all joints.  

The Ts  improvement percentages are 4.75% for the first link and 36.91 % for the 

second link. The MP improvement percentages are 34.36 % for the first link and 75 % 

for the second link. The Ess improvement percentages are 12.36 % for the first link, 

and 71% for the second link. The RMSEs improvement percentages are 31.82% for 

the first link and 6.091% for the second link. 

The developed anti-swing controllers are tested for robustness under external 

disturbances. The pendulum angles (θ2) and the link angle (θ1) are stabilized at zero 

positions. Figure 4.17 shows the angle signals (θ1 and θ2) with PID and LQR anti-

swing controllers for the SLRIP under external disturbance in zero position at T=1s. 

 Both anti-swing controllers are robust, and it has successfully maintained the control 

of the SLRIP under external disturbance. Table 4.10 shows the comparison of PID and 

LQR controllers in terms of Ts, MP, Ess and the RMSEs under external disturbance.  

According to the calculated parameters, the LQR yields perfect results than the PID 

under external disturbance. To see the performance of the PID compared with LQR; 

The improvement percentages of all parameters were calculated and given in Table 

4.11. 
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Figure 4.17. Comparison between the angle signals (θ1  and  θ2) under 

external disturbance with PID and LQR anti-swing controllers to the 

SLRIP 

Table 4.10. Quantitative comparison of the performance of the PID and LQR anti-

swing controllers under external disturbance 

Anti-swing controllers 

under external disturbance 
Parameters 

Joints 

First Link (θ1) Second Link (θ2) 

PID 

Ts (s) 0.5 0.81 

MP (°) 22 1 

Ess (°) 0.043 0.0065 

RMSE (°) 0.0535 0.0039 

LQR 

Ts (s) 0.3 0.59  

MP (°) 10 0.6 

Ess (°) 0.022 0.0041 

RMSE (°) 0.0267 0.0019 
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Table 4.11. Quantitative comparison of the performance parameters in terms of 

percentage between PID-LQR anti-swing controllers 

Anti-swing controllers 

under external disturbance 
Parameters 

Joints 

First Link (θ1) Second Link (θ2) 

LQR versus PID 

Ts  40% 27.16% 

MP 54.54 % 40% 

Ess 48.83% 36.92% 

RMSE 50.09% 51.28% 

 

According to the calculated improvement percentages in Table 4.11, the LQR returned 

more accurately than PID for all joints. The Ts improvement percentages are 40% for 

the first link and 27.16% for the second link. The PO improvement percentages are 

29.8% for the first link and 7.66% for the second link. The Ess  improvement 

percentages are 48.83 % for the first link, and 36.92%  for the second link. The RMSEs 

improvement percentages are 50.09% for the first link and 51.28% for the second link. 

4.5. Stabilisation Control of the DLRIP 

4.5.1. Model linearization of the DLRIP 

The linear state-space model of the system is given in equation (4.24). x is the state 

vector of the DLRIP, xT = [θ1 θ2 θ3    θ1̇ θ2̇ θ3̇] .  u is the control input  u =

 τ1  ( τ1 is torque input of the first link). A, B, C and D are matrices for the state-space 

representation. The aim is to design a robust controller for stabilizing the pendulum 

links in the upright position with minimum deflection. The stable equilibrium point 

corresponds to a state in each pendulum is downward position (θ1 = 0°  and θ2=θ3 = 

180°). The unstable equilibrium corresponds to the state in each pendulum points 

vertically upwards which is against gravity (θ1 = θ2 =θ3 = 0°). Substituting system 

parameters and constants for respective terms, A, B, C and D state-space matrices of 

the DLRIP become:  



167 

 

A =

[
 
 
 
 
 

 

0 0 0
0 0 0
0
0
0
0

0
2.5966
43.3634

−63.3307

0
−0.0729
−18.9777
318.9279

     

1 0 0
0 1 0
0

−0.0279
−0.0476
0.0695

0
−0.0093
−0.2172
1.3321

1
0.0136
1.3321

−20.0673]
 
 
 
 
 

           (4.33) 

B =

[
 
 
 
 
 

0
0
0

1.0095
1.7227

−2.5160]
 
 
 
 
 

 C =

[
 
 
 
 
 
1 0 0
0 1 0
0
0
0
0

0
0
0
0

1
0
0
0

     

0 0 0
0 0 0
0
1
0
0

0
0
1
0

0
0
0
1]
 
 
 
 
 

 D =  [0 0 0   0 0 0]T         (4.34) 

The initial choice of the Q and R matrices are given in equation (4.35):  

Q =

[
 
 
 
 
 

 

1 0 0 0 0 0
0 1 0 0 0 0
0
0
0
0

0
0
0
0

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1]
 
 
 
 
 

  and R = 0.01                                                                 (4.35) 

The characteristic roots of the open-loop system of the DLRIP are located at -30.6879, 

-6.3174, 10.5355, 6.1825, -0.0250. The open-loop system is unstable since two poles 

of the DLRIP system lie in the right half of s plan. 

 The LQR gain vector of the DLRIP is obtained as follows: 

K =  [0.12 − 3.24 − 37.68  0.4314  − 12.545 − 10.99]                                  (4.36) 

4.5.2. Robustness analyze of the DLRIP 

In the next part, LQR, FLQR, LQG and FLQG are modelled and simulated in the 

MATLAB/Simulink environment for the stabilization control problem of the DLRIP. 

The simulation is performed by 1ms sampling time and 25s simulation time. A 

numerical method Bogacki-Shampine solver is selected with fixed-step. According to 

simulation results, a comparative study of all controllers is given. The controllers are 

tested for robustness under internal, external disturbances and noise. The simulation 

results can provide a good background and feasibility for a real experimental 

implementation to the stabilization control problem of the DLRIP. The SimMechanics 

model of the DLRIP with the controller is shown in Figure 4.18. 
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Figure 4.18. SimMechanics model of the DLRIP with the controller 

a)  External disturbance   

The simulation of LQR and FLQR controllers is performed with the calculated gain 

matrix K given in equation (4.36) and an initial condition vector which is xT =

[0 0 − 0.05 0 0 0]. As can be seen from Figure 4.19, the output variables of two 

controllers are stabilized at the reference points, the two pendulum angles (θ2 and θ3) 

are stabilized. Similarly, the horizontal arm stabilized at a reference trajectory ±100° 

each 6.24s. Figure 4.19 shows the angle signals (θ1, θ2 and θ3) with LQR and  FLQR 

controllers for the DLRIP system. 

According to the obtained results using the LQR controller, the LQR is robust, and it 

has successfully maintained the control of the DLRIP. An FLQR controller is 

developed to give us better Ts , PO,  Ess  and the RMSEs than the classical LQR 

controllers. The two controllers are robust under external disturbance.  Table 4.12 

shows the comparison of  LQR and FLQR controllers in terms of Ts, PO,  Ess and the 

RMSEs under external disturbance. 
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Figure 4.19. The angle signals (θ1, θ2and θ3) with LQR and FLQR controllers 

Table 4.12. Quantitative comparison of the performance of LQR and FLQR controllers 

under external disturbance 

Controllers 

under external 

disturbance 

Parameters 

Joints 

First Link (θ1) Second Link (θ2) Third link (θ3) 

LQR 

Ts (s) 3.154 s 3.9 s 1.55 s 

PO % 1.51% 47 % 52.4% 

Ess (°) 0.1 0.005 0.00005 

RMSE (°) 0.2077 6.2047e-04 1.1698e-05 

FLQR 

Ts (s) 2.375 s 3.43 s 1.37 s 

PO % 0.8% 23 % 37.5 % 

Ess (°) 0.01 0.001 0.00002 

RMSE (°) 0.1938 1.5512e-04 2.9244e-06 
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b) Internal disturbance  

The robustness of two controllers LQR and FLQR is tested under external disturbance. 

To test the controllers' response under internal disturbance, the mass of the third link 

is varied from [10-20%] to the initial mass of the third link in time of 10s. Also, the 

two controllers are robust under the internal disturbance. The variation of mass of the 

third link is given in Table 4.13. Figure 4.20. shows an example of the response of 

LQR and FLQR controllers under internal disturbance. Table 4.14 shows the 

comparison of  LQR and FLQR controllers in terms of Ts, PO,  Ess and the RMSEs 

under internal disturbance. 

Table 4.13. Variation of the mass of the third link 

Variation of the mass of the third link Values 

Initial mass 0.0832 [kg] 

Initial mass + 10% of the third link 0.09152[kg] 

Initial mass + 15% of the third link 0.09568[kg] 

Initial mass + 20% of the third link 0.09984 [kg] 

 

Figure 4.20. Example of the response of LQR and FLQR controller under 

internal disturbance with a variation of mass of the third link in T=10s 

(Initial mass + 15% of the third link) 
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Table 4.14. Quantitative Comparison of Performance of LQR and FLQR controllers 

under internal disturbance 

Controllers 

under internal 

disturbance 

Parameters 

Joints 

First Link (θ1) Second Link (θ2) Third link (θ3) 

LQR 

Ts (s) 3.657 4.31 1.3 

PO % 47.82 35 37,94 

Ess (°) 0.008 0.0025 0.00216 

RMSE (°) 0.0107 3.3523e-04 5.8010e-05 

FLQR 

Ts (s) 2.441 2.46 1 

PO % 46.9 28 18,78 

Ess (°) 0.0001 0.000019 0.00006 

RMSE (°) 0.0080 2.4495e-04 2.0152e-05 

The performance of the two controllers' effort is determined by the RMSEs between 

the control signal and zero voltage. The calculated RMSEs are given in Table 4.15. 

According to the obtained signals results, the system controlled with FLQR needs 

more effort to control the system. Figure 4.21 show the control signals of LQR and 

FLQR controllers under internal and external disturbances. 

 

Figure 4.21. The control signals of LQR and FLQR controllers 

under internal and external disturbances 
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Table 4.15. RMSEs of the control signals for the controllers 

Disturbances Controller RMSE 

External disturbance 

LQR 3.1030e-04 

FLQR 5.1703e-04 

Internal disturbance 

LQR 4.4932e-04 

FLQR 6.0451e-04 

c) Noise and external disturbance 

The simulation results obtained by LQR and FLQR controllers are obtained in the case 

without noise; it is not always the same case for a real experimental system. In the 

other hand, in a real experimental implementation, the system can be affected by noise. 

However, all situations cannot be measurable. White noise with different SNR is added 

to the system in the simulation to approach to a real experimental system. The level of 

added noise to the system is a critical point in the design of the controller. The LQR 

and FLQR controllers’ performance is tested by adding white noise to the DLRIP. In 

the LQG and FLQG controllers, the KF has succeeded to estimate the states in the 

noise cases applied to the system. The reference trajectory signal (±100° each 6.24s) 

shown in Figures 4.22 and 4.23 is applied to a horizontal arm when the pendulums are 

stabilized in the equilibrium point. 

 The initial condition vector is xT = [0 − 0.05 0 0 0 0] . The LQG and FLQG 

controllers are capable of eliminating noise, and the system remains stable for the 

determined time. The most important difference point between the LQR, FLQR 

controllers and LQG, FLQG controllers results is the effect of noise. LQR and FLQR 

controllers don't contain any algorithm to ignore the noise combined to the DLRIP. As 

can be seen from Figures 4.22 and 4.23, the added noise reflect the outputs of the 

system, which is eliminated by the LQG and FLQG controllers, respectively. Table 

4.16 shows a comparison of  LQG and FLQG controllers under noise and external 

disturbance in terms  of  Ts, PO,  Ess and RMSEs. 
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Figure 4.22. The angle signals  (θ1 , θ2 and θ3) with noised LQR and LQG controllers 

 

Figure 4.23. The angle signals (θ1  , θ2  and θ3 ) with noised FLQR and FLQG 

controllers 
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Table 4.16. Quantitative Comparison of Performance of LQG and FLQG controllers 

under noise and external disturbance 

Controllers under 

noise and external 

disturbance 

Parameters 

Joints 

First Link (θ1) Second Link (θ2) Third link (θ3) 

LQG 

Ts(s) 3.26  3.01 2.15 

PO % 1.57 48 3.8 

Ess (°) 0.2 0.008 0.001 

RMSE (°) 0.1891 6.7008e-04 6.0974e-05 

FLQG 

Ts(s) 2.23 2.3 1.25 

PO % 0.76 46 3 

Ess (°) 0.001 0.003 0.0002 

RMSE (°) 0.1614 4.3504e-04 1.5244e-05 

 

d)  Noise and internal disturbance  

In part (c), the robustness of the two controllers LQG and FLQG is tested under noise 

and external disturbance. To test the controllers' response under noise and external 

disturbance, also the mass of the third link is varied from [10-20%] to the initial mass 

of the third link in time of 10s. The two controllers are robust under the internal 

disturbance. The variation of mass of the third link is given in Table 4.13.  Figure 4.24 

shows an example of the response of LQG and FLQG controllers under internal 

disturbance. Table 4.17 shows the comparison of  LQG and FLQG controllers in terms 

of Ts, PO,  Ess and RMSEs under internal disturbance. 

Table 4.17. Quantitative Comparison of Performance of LQG and FLQG controllers 

under noise and internal disturbance. 

Controllers under 

noise and internal 

disturbance 

Parameters 

Joints 

First Link (θ1) Second Link (θ2) Third link (θ3) 

LQG 

Ts(s) 3.48 2.81 1.1 

PO % 68.1 45.6 27.5 

Ess (°) 0.07 0.05 0.003 
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Table 4.17.(Cont.) Quantitative Comparison of Performance of LQG and FLQG 

controllers under noise and internal disturbance. 

 RMSE (°) 0.0085 2.6818e-04 4.6408e-05 

FLQG 

Ts(s) 2.2 2.14 0.95 

PO % 45.2 41.1 21.8 

Ess (°) 0.001 0.0010 0.00009 

RMSE (°) 0.0043 1.7146e-04 3.4258e-05 

 

Figure 4.24. Example of the response of LQG and FLQG controller under internal  

disturbance with a variation of mass of the third link in T=10s (Initial mass + 15% 

of the Third link) 

Figure 4.25. shows the control signals of LQG and FLQG controllers under noise, 

internal and external disturbances. The performance of the two controllers' effort is 

determined by the RMSEs between the control signal and zero voltage. The calculated 

RMSEs are given in Table 4.18. According to the obtained signals results, the system 

controlled with FLQG needs more effort to control the system. 
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Figure 4.25. The control signals of LQG and FLQG controllers under noise, 

internal and external disturbances 

Table 4.18. RMSEs of the control signals for the controllers 

Disturbances Controller RMSE 

Noise and external disturbance 
LQG 3.1331e-04 

FLQG 5.1696e-04 

Noise and internal disturbance 
LQG 3.9782e-04 

FLQG 5.4488e-04 

e) LQG and FLQG controllers under different variances of SNR white noise 

To test the LQG and FLQG algorithms in the presence of white noise, the DLRIP 

system is tested for three different variances of SNR of white noise. The LQR and 

FLQR algorithm takes into account the presence of the noise. The LQG and FLQG 

controllers show very good noise rejection feature. Even in the presence of very high 

noise, the LQG and FLQG can trace the desired response. Figure 4.26 shows an 

example of LQR and LQG responses with different variances of SNR of white noise: 

(a) SNR =0.001dB, (b) SNR =0.01dB and(c) SNR =0.1dB.  
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(a) 

 

(b) 

Figure 4.26. Examples of LQR and LQG responses: (a) witch SNR =0.001dB, (b) 

witch SNR =0.1dB and (c) witch SNR =0.1dB 
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(c) 

Figure 4.26.(Cont.) Examples of LQR and LQG responses: (a) witch SNR =0.001dB, 

(b) witch SNR =0.1dB and (c) witch SNR =0.1dB 

4.5.3. Performance evaluation of controllers of the DLRIP 

Ts, PO, Ess and the position RMSEs of the joints of both groups of controllers (LQR-

FLQR and LQG-FLQG) under external and internal disturbances are given in Tables  

4.12, 4.14, 4.16 and 4.17. According to the calculated Ts , PO, Ess  and position 

RMSEs, the nonlinear controllers (FLQR and FLQG) produce more accurate results 

than the linear controllers (LQR and LQG). In order to see the performance of the 

FLQR and FLQG compared with LQR and LQG respectively; The improvement 

percentages of Ts, PO, Ess and position RMSEs were computed for each disturbance 

cases, and they are given in Tables 4.19, 4.20, 4.21 and 4.22. Considering the  Ts, PO, 

Ess and position RMSEs in all joints, the percentage obtained by the  FLQR and FLQG 

controllers yields better results. 
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Table 4.19. Comparison of the performance parameters in terms of percentage between 

LQR-FLQR under external disturbance 

Controllers Parameters 
Joint 

First Link (θ1) Second Link (θ2) Third link (θ3) 

LQR- FLQR 

under external 

disturbance 

Ts 24.69 % 12.05 % 11.61% 

PO 47.01 % 51.06 % 28.43 % 

Ess 90 % 80 % 60 % 

RMSE 6.69 % 74.99 % 75 % 

 

According to the calculated improvement percentages in Table 4.19, the FLQR 

returned more accurately than LQR under external disturbance for all joints. The  Ts 

improvement percentages are 24.69% for the first link, 12.05% for the second link and 

11.61% for the third link. The PO improvement percentages are 47.01% for the first 

link, 51.06% for the second link and 28.43% for the third link. The Ess improvement 

percentages are 90% for the first link, 80% for the second link and 60% for the third 

link. The RMSEs improvement percentages are 6.69% for the first link, 74.99% for 

the second link and 75% for the third link. 

Table 4.20. Comparison of the performance parameters in terms of percentage between 

LQR-FLQR under internal disturbance 

Controllers Parameters 
Joint 

First Link (θ1) Second Link (θ2) Third link (θ3) 

LQR-FLQR 

under 

internal 

disturbance 

Ts 33.25 % 42.92 % 23.07 % 

PO 1.92 % 20 % 50.50 % 

Ess 98.75% 99.24% 97.22% 

RMSE 25.23 % 26.93 % 65.26% 

 

According to the calculated rate of improvement percentages in Table 4.20, the FLQR 

returned more accurately than LQR under internal disturbance for all joints. The  Ts 

improvement percentages are 33.25% for the first link, 42.92% for the second link and 

23.07% for the third link. The PO improvement percentages are 1.92% for the first 

link, 20% for the second link and 50.50% for the third link. The Ess improvement 

percentages are 98.75% for the first link, 99.24% for the second link and 97.22% for 

the third link. The RMSE improvement percentages are 25.23% for the first link, 
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26.93% for the second link and 65.26% for the third link. 

Table 4.21. Comparison of the performance parameters in terms of percentage between 

LQG-FLQG under noise and external disturbance 

Controllers Parameters 
Joint 

First Link (θ1) Second Link (θ2) Third link (θ3) 

LQG-FLQG 

under noise  

and external 

disturbance 

Ts 31.59 % 23.58 % 41.86 % 

PO 51.59 % 4.16 % 21.05 % 

Ess 99.5 % 62.5% 80% 

RMSE 14.64 % 35.07 % 74.99 % 

According to the calculated rate of improvement percentages in Table 4.21, the FLQG 

returned more accurately than LQG under external disturbance for all joints. The Ts 

improvement percentages are 31.59% for the first link, 23.58% for the second link and 

41.86% for the third link. The PO improvement percentages are 51.59% for the first 

link, 4.16% for the second link and 21.06% for the third link. The Ess improvement 

percentages are 99.5% for the first link, 62.5% for the second link and 80% for the 

third link. The RMSE improvement percentages are 14.64% for the first link, 35.07% 

for the second link and 74.99% for the third link. 

Table 4.22. Comparison of the performance of parameters in terms of percentage 

between LQG-FLQG under noise and internal disturbance 

Controllers Parameters 
Joint 

First Link (θ1) Second Link (θ2) Third link (θ3) 

LQG-FLQG 

under noise  

and internal 

disturbance 

Ts 36.78% 23.84% 13.63% 

PO 33.62% 9.86% 20.72% 

Ess 98.57% 98% 97% 

RMSE 49.41% 36.06% 26.18% 

 

According to the calculated rate of improvement percentages in Table 4.22, the FLQG 

returned more accurately than LQG under noise and internal disturbance for all joints. 

The Ts improvement percentages are 36.78% for the first link, 23.84% for the second 

link and 13.63% for the third link. The PO improvement percentages are 33.62% for 

the first link, 9.86% for the second link and 20.72% for the third link. The Ess 

improvement percentages are 98.57% for the first link, 98% for the second link and 
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97% for the third link. The RMSE improvement percentages are 49.41% for the first 

link, 36.06% for the second link and 26.18% for the third link. Moreover, the RMSEs 

of the control signals for the controllers (LQR-FLQR and LQG-FLQG) under external 

and internal disturbances are given in Tables 4.15 and 4.18. According to the 

calculated RMSEs of the control signals, the controllers (FLQR and FLQG) produce 

more effort than the (LQR and LQG) to control the DLRIP. The incremental 

percentages of RMSEs of the control signals are computed for each disturbance cases, 

and they are given in Table 4.23. 

Table 4.23. Comparison of the controllers based on Incremental percentages of RMSE 

control signal 

Controllers Rate 

FLQR versus LQR 34.53% - 66.62% 

FLQG versus  LQG 36.96% - 64.99% 

 

According to the incremental calculated percentages of RMSEs of the control signals 

in Table 4.23, the FLQR returned more effort than LQR with 34.53 % under internal 

disturbance and with 66.62% under external disturbance. The FLQG returned more 

effort than LQG with 36.96 % under noise and internal disturbance; Also, with 64.99 

% under noise and external disturbance. 

In this section, both FLQR and FLQG controllers were developed for the stability 

control of the DLRIP and they were compared with LQR and LQG controllers, 

respectively. The developed controllers were tested under internal and external 

disturbances to determine the robustness performance of the controllers. According to 

the obtained simulation results the nonlinear FLQR and FLQG controllers are robust 

and produce better results than the LQR and LQG controllers in terms of Ts, PO, Ess 

and RMSEs. RMSEs improvement percentages between FLQR and LQR range from 

6.69% to 75% and 25.23% to 65.26% under external and internal disturbances, 

respectively. Similarly, RMSEs improvement percentages between FLQG and LQG 

range from 14.64% to 74.99 % and 25.23 % to 49.41 % under external and internal 

disturbances, respectively. Moreover, the LQG and FLQG controllers in the DLRIP 

were tested in the presence of white noise with different SNRs. The LQG and FLQG 

controllers show very good noise rejection feature. The increment percentages of 
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RMSEs of the control signals for the FLQR and FLQG compared with LQR and LQG 

is from 34.53% to 66.62%. Accordingly, the FLQR and FLQG controllers need more 

control efforts than the classical LQR and LQG. The design compromise between 

controller performance and efforts should be made based on which one is more 

important than others. Generally, the performance of the controller is a more crucial 

aspect of control applications.  

4.6. Anti-swing Control of The DLRIP 

4.6.1. Anti-swing ANFIS-LQR controller of the DLRIP 

The design aspect and the procedure of the ANFIS-LQR controller are explained with 

details in section (4.2.6). In this section, only the ANFIS-LQR parameters used for the 

anti-swing control of the DLRIP will be explained. The ANFIS parameters such as the 

number and type of membership functions, error tolerance, epochs number and 

learning method applied to the DLRIP are given in Table 4.24. 

Table 4.24. ANFIS parameters to the DLRIP 

ANFIS parameter Value 

Number of membership functions 7 

Type of membership function Triangular 

Error tolerance Zero 

Epochs number 1000 

Learning method Hybrid 

e and ė are of the DLRIP calculated as follows: 

[
e
ė
] = KxT = [

Kθ1 
θ1 + Kθ2 

θ2 + Kθ3 
θ3 

Kθ1̇
θ1̇ + Kθ2̇

θ2̇ + Kθ3̇
θ3̇

]                                                                    (4.37) 

Where 

K = [
Kθ1

Kθ2
Kθ3

0 0 0

0 0 0 Kθ1̇
Kθ2̇

Kθ3̇

 ]                                                                    (4.38) 

x =  [θ1 θ2 θ2 θ̇1 θ̇2 θ̇3]                                                                                 (4.39) 

The sampling rate is chosen as 1khz for the 50s. (e, ė) and (U) are the inputs and output 

of ANFIS, respectively. For one example, the loaded data for training, the training 
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error, and the trained data in ANFIS editor are shown in Figure 4.27. The network 

structure and the surface relationship of the two inputs and one output are shown in 

Figure 4.28. The block diagram of the ANFIS-LQR of the DLRIP is given as an 

example in Figure 4.8 in section (4.2.6). 

 

(a) 

 

(b) 

 

(c) 

Figure 4.27. One example (a) the loaded data for training (b) 

the training error and (c) the trained data 
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(a)                                                                      (b) 

Figure 4.28. ANFIS: (a) network structure (b) inputs-output surface 

4.6.2. Anti-swing RBNF-LQR controller of the DLRIP 

The RBNF-LQR controller is explained in details in section (4.2.6). The RBNF-LQR 

is developed to obtain better control performance than the classical ANFIS-LQR 

controller. Two RBNNs are used to train the positions and velocities of state variables 

multiplied by their LQR gains, respectively. The inputs and output (u) data obtained 

from the non-linear FLQR controller are used for the training of both RBNNs. The 

block diagram of RBNF-LQR controller is shown as an example in Figure 4.9 in 

section (4.2.7). 300000 data of each input and 100000 data of output are used to train 

for RBNNs. For the two RBNNs, Bayesian Regularization (BR) algorithm is used to 

treat the inputs and the output. 70% of the data used for simulation were used for 

training, 15% for validation, and 15% for the testing for each RBFNN. The realized 

values and calculated values of all data for each RBNN are shown in Figure 4.29. The 

regression value for all data is 0.99 for both RBNNs. As can be seen in Figure 4.30, 

the best validation performance value is obtained at the 66-ith and 66-ith iterations for 

both RBNNs, respectively. The Mamdani type fuzzy model is developed and 

explained in section (4.2.6). 
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(a) 

 

(b) 

Figure 4.29. Regression graphs for : (a) positions RBNN (b) velocities RBNN 
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         (a)                                                               (b) 

Figure 4.30. Convergence behavior of the RBNNs during training iterations : (a) 

positions RBNN (b) velocities RBNN  

4.6.3. Comparison between the two anti-swing NF controllers of the DLRIP  

In this section, both anti-swing NF controllers (ANFIS-LQR and RBNF-LQR) are 

compared based on the performance of the control signal obtained from the three joints 

of the DLRIP.  According to the obtained results, the RBNF-LQR controller returned 

better control performance than ANFIS-LQR controller. Furthermore, the RBNF-LQR 

controller is chosen as our NF controller applied to the DLRIP. Figure 4.31. shown a 

comparison between the ANFIS-LQR and RBNF-LQR based on the performance of 

the control signal. In the next section, three controllers (RBNF-LQR, FLQR and LQR) 

are developed for the anti-swing control of the DLRIP. The three controllers are 

modelled and simulated in MATLAB/Simulink. 
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Figure 4.31. Control signal obtained by the ANFIS-LQR and RBNF-LQR 

4.6.4. Anti-swing control results and robustness analysis of the DLRIP 

The developed controllers (RBNF-LQR, FLQR and LQR) for the anti-swing control 

of the DLRIP are modeled and simulated using the SimMechanics Toolbox in 

MATLAB/Simulink. The anti-swing control is performed by the initial conditions of 

 θ1  = 0 °,  θ2 = 60°, θ3 = 0°, and gain matrix K=[-0.1826   56.1059    1.3411   -0.8416    

8.8488    0.4982]. All output variables of the DLRIP need to be stabilized at the 

reference point by all anti-swing controllers. Moreover, a comparison between the 

angle signals (θ1,θ2 and θ3) with anti-swing controllers in simulation given in Figures 

4.32.  



 

  

1
8

8
 

 

Figure 4.32. Comparison between the angle signals (θ1,θ2 and θ3) with LQR, FLQR and RBNF-LQR anti-swing controllers 

for DLRIP 
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According to the obtained results, all controllers have effectively maintained the anti-

swing control of the DLRIP with minimum vibration. The RBNF-LQR controller is 

developed in order to give the best results in terms of  Ts, MP,  Ess and the RMSEs 

than the FLQR and LQR controllers. Table 4.25 shows the comparison of  LQR, FLQR 

and RBNF-LQR anti-swing controllers in terms of Ts, MP, Ess and the RMSEs in 

simulation. 

Table 4.25. Comparison of the performance of LQR, FLQR and RBNF-LQR anti-

swing controllers for the DLRIP 

Controllers Parameters 
Joints 

First Link (θ1) Second Link (θ2) Third link (θ3) 

LQR 

Ts(s) 24.07 2.9841 3.34 

MP (°) 97.91 30.76 45.65 

Ess (°) 0.263 0.5 0.1 

RMSE (°) 0.1845 0.0619 0.2004 

FLQR 

Ts(s) 8.7760 1.8947 3.0847 

MP (°) 74.26 22.49 44.09 

Ess (°) 0.01 0.08 0.05 

RMSE (°) 0.0833 0.0581 0.0576 

RBNF-LQR 

Ts(s) 7.3811 4.26 2.72 

MP (°) 42.54 13.91 15 

Ess (°) 0.001 0.0051 0.0027 

RMSE (°) 0.0372 0.0637 0.0133 

According to the calculated parameters, the RBNF-LQR produces better results than 

the FLQR and LQR. To verify the RBNF-LQR performance compared with other anti-

swing controllers; the improvement percentages of all parameters are calculated and 

given in Table 4.26.  

Table 4.26. Comparison of the performance parameters in terms of percentage between 

RBNF-LQR versus FLQR and RBNF-LQR versus LQR 

Controllers Parameters 
Joints 

First Link (θ1) Second Link (θ2) Third link (θ3) 

RBNF-LQR 

versus LQR 

Ts 69.33% 29.95% 18.62% 

MP 56.55% 54.77% 67.14% 
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Table 4.26.(Cont.) Comparison of the performance parameters in terms of percentage 

between RBNF-LQR versus FLQR and RBNF-LQR versus LQR 

 
Ess 99.61% 98.98% 97.30% 

RMSE 79.83% 2.82% 93.36% 

RBNF-LQR 

versus FLQR 

Ts 15.89% 55.52% 11.82% 

MP 42.71% 38.15% 65.97% 

Ess 90.00% 93.62% 94.60% 

RMSE 55.34% 8.79% 73.40% 

According to the calculated rate of improvement percentages in Table 4.26, the RBNF-

LQR returned more accurately than LQR for the anti-swing control of the DLRIP. The 

Ts improvement percentages are 69.33% for the first link, 29.95% for the second link 

and 18.62 % for the third link. The MP improvement percentages are 56.55% for the 

first link, 54.77%  for the second link and 67.14% for the third link. The Ess 

improvement percentages are 99.61% for the first link, 98.98% for the second link and 

97.30% for the third link. The RMSE improvement percentages are 79.83% for the 

first link, 2.82% for the second link and 93.36% for the third link. Furthermore, the 

RBNF-LQR returned more accurately than FLQR for the anti-swing control of the 

DLRIP. The Ts improvement percentages are 15.98% for the first link, 55.52% for the 

second link and 11.82 % for the third link. The MP improvement percentages are 

42.71% for the first link, 38.15%  for the second link and 65.97% for the third link. 

The Ess improvement percentages are 99 % for the first link, 93.62% for the second 

link and 94.60% for the third link. The RMSE improvement percentages are 55.34% 

for the first link, 8.79% for the second link and 73.40% for the third link. 

- Robustness analysis: 

In this part, the developed controllers are tested for robustness under external 

disturbance. Figure 4.33 shows the angle signals (θ1, θ2 and θ3) with LQR, FLQR and 

RBNF-LQR controllers for the DLRIP under external disturbance. Based on the 

obtained results, all controllers are robust under external disturbance. The external 

disturbance is applied to the system at t=25s when the system is stable at zero position. 

The RBNF-LQR controller is developed to provide better control parameters than the 

FLQR and LQR. Table 4.27 shows a comparison of controllers in terms of Ts, MP, 

Ess and the RMSEs under external disturbance. According to the obtained results, the 
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RBNF-LQR yields more perfect results than the LQR and FLQR. To analyze the 

performance of the RBNF-LQR compared with FLQR and LQR under external 

disturbance; The improvement percentages of Ts, MP, Ess and position RMSEs are 

calculated and given in Table 4.28. 

 

Figure 4.33. Comparison between the angle signals (θ1,θ2 and θ3) with LQR, FLQR 

and RBNF-LQR anti-swing controllers under external disturbance for DLRIP 

Table 4.27. Comparison of the performance of LQR, FLQR and RBNF-LQR anti-

swing controllers under external for the DLRIP 

Controllers 

under external 

disturbance 

Parameters 

Joints 

First Link (θ1) Second Link (θ2) Third link (θ3) 

LQR 

Ts(s) 18.9 7.5 8.3 

MP (°) 55 1.5 1.5 

Ess (°) 0.4 0.046 0.00223 
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Table 4.27.(Cont.) Comparison of the performance of LQR, FLQR and RBNF-LQR 

anti-swing controllers under external for the DLRIP 

 RMSE (°) 0.1396  0.0015 0.0019 

FLQR 

Ts(s) 16.8 6.1 5.1 

MP (°) 43 1 0.8 

Ess (°) 0.19 0.044 0.0017 

RMSE (°) 0.1378 0.0010 0.0011 

RBNF-LQR 

Ts(s) 12.5 5.1 2.5 

MP (°) 41 0.8 0.7 

Ess (°) 0.02 0.043 0.0016 

RMSE (°) 0.1094 9.5958e-04 0.0010 

 

Table 4.28. Comparison of the performance parameters in terms of percentage between 

RBNF-LQR versus FLQR and RBNF-LQR versus LQR under external disturbance 

Controllers Parameters 
Joints 

First Link (θ1) Second Link (θ2) Third link (θ3) 

RBNF-LQR 

versus LQR 

Ts 11.11% 32.00% 69.87% 

MP 21.81% 46.66% 53.33% 

Ess 95% 6.52% 28.25% 

RMSE 21.63% 4.042% 47.36% 

RBNF-LQR 

versus FLQR 

Ts 33.86% 16.39% 50.98% 

MP 25.45% 19.99% 12.50% 

Ess 89.47 2.27% 5.882% 

RMSE 20.60% 36.02% 9.090% 

According to the calculated rate of improvement percentages in Table 4.28, the RBNF-

LQR returned more accurately than LQR for the anti-swing control under the external 

disturbance of the DLRIP. The Ts improvement percentages are 11.11% for the first 

link, 32% for the second link and 68.87% for the third link. The MP improvement 

percentages are 21.81% for the first link, 46.66%  for the second link and 53.33% for 

the third link. The Ess improvement percentages are 95% for the first link, 6.52% for 

the second link and 28.25% for the third link. The RMSE improvement percentages 

are 21.63% for the first link, 4.042% for the second link and 47.36% for the third link. 

Furthermore, the RBNF-LQR returned more accurately than FLQR for the anti-swing 

control under the external disturbance of the DLRIP. The Ts improvement percentages 
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are 33.86% for the first link, 16.39% for the second link and 50.98% for the third link. 

The MP improvement percentages are 25.45% for the first link, 19.99%  for the second 

link and 12.50% for the third link. The Ess improvement percentages are 89.47% for 

the first link, 2.27% for the second link and 5.882% for the third link. The RMSE 

improvement percentages are 20.60% for the first link, 36.02% for the second link and 

9.090% for the third link. 

In this section, a RBNF-LQR was developed and compared with FLQR and the 

classical LQR controller for the anti-swing control of the DLRIP. According to the 

obtained simulation results the RBNF-LQR controller gives better results than the 

FLQR and LQR controller in terms of Ts, MP, Ess and RMSE. RMSEs improvement 

percentages between RBNF-LQR versus FLQR and RBNF-LQR versus LQR are from 

8.79% to 73.40% and 2.82% to 93.36%, respectively. Furthermore, the RBNF-LQR 

controller produces better results than the FLQR and LQR controllers under external 

disturbance. RMSEs improvement percentages between RBNF-LQR versus FLQR 

and RBNF-LQR versus LQR are from 4.042% to 47.36% and 9.090% to 36.02% under 

external disturbance, respectively. 

4.7. Stabilisation Control of the TLRIP 

4.7.1. Model linearization of the TLRIP 

The linear state-space model of the system is given in equation (4.24). x is the state 

vector of the TLRIP, xT = [θ1 θ2 θ3 θ4    θ1̇ θ2̇ θ3̇ θ4̇] .  u is the control 

input   u = τ1,  ( τ1 is torque input of the first link). A, B, C and D are matrices for the 

state-space representation. 

 The aim is to design a robust controller for stabilizing the pendulum links in the 

upright position with minimum deflection. The stable equilibrium point corresponds 

to a state in each pendulum is downward position (θ1 = 0°  and  θ2=θ3 = θ4 = 180°). 

The unstable equilibrium corresponds to the state in each pendulum points vertically 

upwards which is against gravity ( θ1 = θ2  = θ3 = θ4 = 0° ). Substituting system 

parameters and constants for respective terms, A, B, C and D state-space matrices of 

the TLRIP become:  
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A =

[
 
 
 
 
 
 
 
0
0
0
0
0

0
0
0
0

5.5966

0
0
0
0

−4.0879
0 49.87 −18.977
0
0

−368.337
−477.853

40.9279
518.368

0
0
0
0

−1.0158

1
0
0
0

−1.1279

0
1
0
0

−1.4723

0
0
1
0

0.0136

0
0
0
1

0.0568
−10.418 −1.3476 −1.8172 2.3321 2.3285
25.674
260.418

1.0695
1.448

1.3321
1.748

−3.673
−2.747

−2.0427
−4.067 ]

 
 
 
 
 
 
 

          (4.40) 

B =

[
 
 
 
 
 
 
 

0
0
0
0

1.0095
1.7227
−2.516
−4.5160]

 
 
 
 
 
 
 

 C =

[
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0
0
0
0
0
0

0
0
0
0
0
0

1
0
0
0
0
0

0
1
0
0
0
0

0
0
1
0
0
0

0
0
0
1
0
0

0
0
0
0
1
0

0
0
0
0
0
1]
 
 
 
 
 
 
 

 D =

[
 
 
 
 
 
 
 
0
0
0
0
0
0
0
0]
 
 
 
 
 
 
 

                                (4.41) 

The initial choice of the Q and R matrices are given as follows:  

Q =

[
 
 
 
 
 
 
 

 

1 0 0    0 0 0 0 0
0 1 0   0 0 0 0 0
0
0
0
0
0
0

0
0
0
0
0
0

1
0
0
0
0
0

0
1
0
0
0
0

0
0
1
0
0
0

0
0
0
1
0
0

0
0
0
0
1
0

0
0
0
0
0
1 ]

 
 
 
 
 
 
 

  and R = 0.01                                                (4.42) 

The LQR gain vector of the TLRIP is given in equation (4.43). 

K = [−3.1623 214.0004 − 252.2487 − 138.1634   − 5.3538   1.7422   

− 9.7926   − 7.5319]                                                                          (4.43) 

The proposed controller for the stabilization control TLRIP will be described in the 

next section. 

4.7.2. Robustness analyze of the TLRIP 

In this section, LQR, FLQR, LQG and FLQG are modelled and simulated in the 

MATLAB/Simulink environment for the stabilization control of the TLRIP. The 

simulation is performed by the sampling time 1ms and 50s simulation time. A 

numerical method Bogacki-Shampine solver is selected with fixed-step. According to 

simulation results, a comparative study of all controllers is given. The controllers are 

tested for robustness under internal, external disturbances and noise. The simulation 
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results can provide a good background and feasibility for a real experimental 

implementation to the stabilization control problem of the TLRIP. SimMechanics 

model for control of TLRIP with the controller is shown in Figure 4.34. 

 

Figure 4.34. SimMechanics model of the TLRIP with the controller 

a) External disturbance   

The simulation of LQR and FLQR controllers is performed with the calculated gain 

matrix K given in equation (392) and an initial condition vector which is xT =

[0 0 0 − 0.05 0 0 0 0]. As can be seen from Figure 4.33,  The output variables of two 

controllers  are stabilized at the reference points, the three pendulum angles (θ2 , θ3 

and θ4) are stabilized. Similarly, the horizontal arm stabilized at a reference trajectory 

±50° each 25s. Figure 4.35 shows the angle signals (θ1, θ2 , θ3 and θ4) with LQR and  

FLQR controllers for the TLRIP system. 
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Figure 4.35. The angle signals (θ1, θ2, θ3 and θ4) with LQR and FLQR controllers 

According to the obtained results using the LQR controller, the LQR is robust, and it 

has successfully maintained the control of the TLRIP. An FLQR controller is 

developed to give us more best Ts, PO,  Ess and the RMSEs than the classical LQR 

controllers. The two controllers are robust under external disturbance. Table 4.29 

shows the comparison of LQR and FLQR controllers in terms of Ts, PO,  Ess and the 
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RMSEs under external disturbance. 

Table 4.29. Quantitative Comparison of Performance of LQR and FLQR controllers 

under external disturbance for the TLRIP 

Controllers 

under external 

disturbance 

Parameters 

Joints 

First Link 

(θ1) 

Second Link 

(θ2) 

Third link 

(θ3) 

Fourth link 

(θ4) 

LQR 

Ts(s) 9.54  9.10 8.9 1.33 

PO (%) 1.4 40 19 4.1 

Ess (°) 0.89 0.019 5.5 e−5 2.44 e−5 

RMSE (°) 0.4472 7.745e−4 1.4522e−4 1.7575e−5 

FLQR 

Ts(s) 5.21 4.55 3.50 1.1s 

PO (%) 0.7 15 10 3.2 

Ess (°) 0.35 0.000232 1,15 e−5 9.8 e−6 

RMSE (°) 0.3920 1.9363e−4 9.6814e−5 8.7876e−6 

b) Internal disturbance  

The robustness of two controllers LQR and FLQR is tested under external disturbance. 

To test the controllers' response under internal disturbance, the mass of the fourth link 

is varied from [10-20%] to the initial mass of the fourth link in time of 20s.  

The two controllers are robust under the internal disturbance. Figure 4.36. shows an 

example of the response of LQR and FLQR controllers under internal disturbance. 

Table 4.30 shows the comparison of  LQR and FLQR controllers in terms of Ts, PO,  

Ess and the RMSEs under internal disturbance. 
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Figure 4.36. Example of the response of LQR and FLQR controller 

under internal disturbance with a variation of mass of the fourth 

link in T=20s (Initial mass + 15% of the third link) 

Table 4.30. Quantitative Comparison of Performance of LQR and FLQR controllers 

under internal disturbance for the TLRIP 

Controllers 

under internal 

disturbance 

Parameters 

Joints 

First Link 

(θ1) 

Second Link 

(θ2) 

Third link 

(θ3) 

Fourth link 

(θ4) 

LQR 

Ts(s) 13.67 5.31 5.22 1.35 

PO (%) 19.54 18.87 2.1 5.23 

Ess (°) 1.9e-03 1.5e-03 2.0e-04 9.0e-07 

RMSE (°) 0.0038 8.5891e-05 1.0736e-05 0.0879e-05 

FLQR 

Ts(s) 5.341 1.16 1 1.2 

PO (%) 5.9 5 1.18 2.14 

Ess (°) 1.2e-03 0.5e-03 0.1 e-04 4.5e-07 

RMSE (°) 0.0022 2.1473e-05 2.2534e-06 1.4725e-06 

c) Noise and external disturbance 
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The simulation results obtained by LQR and FLQR controllers are obtained in the case 

without noise; it is not always the same case for a real experimental system. In the 

other hand, in a real experimental implementation, the system can be affected by noise. 

However, all situations cannot be measurable. White noise with different SNR is added 

to the system in the simulation to approach to a real experimental system. The level of 

added noise to the system is a critical point in the design of the controller. The LQR 

and FLQR controllers’ performance is tested by adding white noise to the TLRIP. In 

the LQG and FLQG controllers, the KF has succeeded to estimate the states in the 

noise cases applied to the system. The reference trajectory signal (50° each 25s) 

shown in Figures 4.37 and 4.38 is applied to a horizontal arm when the pendulums are 

stabilized in the equilibrium point. The initial condition vector is xT = [0 0 0 −

0.05 0 0 0 0]. The LQG and FLQG controllers are capable of eliminating noise, and 

the system remains stable for the determined time. The most important difference point 

between the LQR, FLQR controllers and LQG, FLQG controllers results is the effect 

of noise. LQR and FLQR controllers don't contain any algorithm to ignore the noise 

combined to the TLRIP. As can be seen from Figures 4.37 and 4.38, the added noise 

reflect the outputs of the system, which is eliminated by the LQG and FLQG 

controllers, respectively. Table 4.31 shows a comparison of LQG and FLQG 

controllers under noise and external disturbance in terms  of  Ts, PO,  Ess and RMSEs. 

Table 4.31. Quantitative Comparison of Performance of LQG and FLQG controllers 

under noise and external disturbance for the TLRIP 

Controllers under 

noise and external 

disturbance 

Parameters 

Joints 

First Link 

(θ1) 

Second 

Link (θ2) 

Third link 

(θ3) 

Fourth link 

(θ4) 

LQG 

Ts(s) 9.26 4.5 3.47 1.4 

PO (%) 1.24 47 20 3.7 

Ess (°) 0.5 0.02 0.003 0.0004 

RMSE (°) 0.3895 2.5841e-04 1.2920e-04 1.1628e-04 

FLQG 

Ts(s) 5.56 3.2 2.9 0.9 

PO (%) 0.32 44 18.2 3 

Ess (°) 0.04 0.005 0.001 0.0002 

RMSE (°) 0.3887 2.4587e-04 
1.19874e-

04 

1.1578e-04 
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Figure 4.37. The angle signals (θ1  , θ2 , θ3and θ4) with noised LQR and LQG 

controllers for TLRIP 

 

Figure 4.38. The angle signals (θ1 , θ2, θ3and θ4) with FLQR and FLQG controllers 

for TLRIP 
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d) Noise and internal disturbance  

The robustness of the two controllers LQG and FLQG is tested under noise and 

external disturbance. To test the controllers' response under noise and internal 

disturbance, also the mass of the fourth link is varied from [10-20%] to the initial mass 

of the third link in time of 20s.  

The two controllers are robust under the internal disturbance. Figure 4.39. shows an 

example of the response of LQG and FLQG controllers under internal disturbance. 

Table 4.32 shows the comparison of  LQG and FLQG controllers in terms of Ts, PO,  

Ess and RMSEs under internal disturbance. 

Table 4.32. Quantitative Comparison of Performance of LQG and FLQG controllers 

under noise and internal disturbance for the TLRIP 

Controllers 

under noise and 

internal 

disturbance 

Parameters 

Joints 

First Link 

(θ1) 

Second Link 

(θ2) 

Third link 

(θ3) 

Fourth link 

(θ4) 

LQG 

Ts(s) 12.48 3.81 4.9 1.5 

PO (%) 9.21 9.1 2 4.34 

Ess (°) 0.01 0.0005 0.95 e-05 3.1 e-05 

RMSE (°) 0.0019 4.2945e-05 1.0736e-05 9.614e-06 

FLQG 

Ts(s) 5.2 2.14 2.95 0.2 

PO (%) 2.78 5.2 0.1 2.27 

Ess (°) 0.001 0.0001 0.1 e-06 2.5e-05 

RMSE (°) 7.6861e-04 2.1473e-05 1.1267e-06 6.009e-06 

The performance of the two controllers' effort is determined by the RMSEs between 

the control signal and zero voltage. The calculated RMSEs are given in Table 4.33. 

According to the obtained signals results, the system controlled with FLQR and FLQG 

needs more effort to control the system. 
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Figure 4.39. Example of the response of LQG and FLQG controller under 

internal disturbance with a variation of mass of the third link in T=20s (Initial 

mass + 15% of the Third link) 

Table 4.33. RMSEs of the control signals for the controllers 

Disturbances Controller RMSE 

External disturbance 
LQR 0.6369 

FLQR 1.4761 

Internal disturbance 
LQR 4.7102e-04 

FLQR 8.269e-04 

Noise and external disturbance 
LQG 6.874e-04 

FLQG 9.3946e-04 

Noise and internal disturbance 
LQG 5.1354e-04 

FLQG 8.9823e-04 
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4.7.3. Performance evaluation of controllers of the TLRIP 

Ts, PO, Ess and the position RMSEs of the joints of both groups of controllers (LQR-

FLQR and LQG-FLQG) under external and internal disturbances are given in Tables 

4.29, 4.30, 4.31 and 4.32. According to the calculated Ts , PO, Ess  and position 

RMSEs, the nonlinear controllers (FLQR and FLQG) produce more accurate results 

than the linear controllers (LQR and LQG). In order to see the performance of the 

FLQR and FLQG compared with LQR and LQG respectively; The improvement 

percentages of  Ts, PO, Ess and position RMSEs were computed for each disturbance 

cases, and they are given in Tables 4.34, 4.35, 4.36 and 4.37. Considering the  Ts, PO, 

Ess and position RMSEs in all joints, the percentage obtained by the  FLQR and FLQG 

controllers yields better results. 

Table 4.34. Comparison of the performance parameters in terms of percentage between 

LQR-FLQR under external disturbance 

Controllers Parameters 

Joint 

First Link 

(θ1) 

Second 

Link (θ2) 

Third link 

(θ3) 

Fourth link 

(θ4) 

LQR- FLQR 

under external 

disturbance 

Ts 47.58% 50% 60.67% 17.29% 

PO 50% 62.5% 47.36% 21.95% 

Ess 60.67% 98.77% 79.09% 59.83% 

RMSE 12.34 % 74.99% 33.33% 49.99% 

According to the calculated improvement percentages in Table 4.34, the FLQR 

returned more accurately than LQR under external disturbance for all joints. The  Ts 

improvement percentages are 47.58% for the first link, 50% for the second link, 

60.67% for the third link and 17.29% for the fourth link. The PO  improvement 

percentages are 50% for the first link, 62.5 %  for the second link, 47.36% for the third 

link and 21.95% for the fourth link. The Ess improvement percentages are 60.67% for 

the first link, 98.77%  for the second link, 79.99% for the third link and 59.83% for 

the fourth link. The RMSEs improvement percentages are 12.34% for the first link, 

74.99% for the second link,33.33% for the third link and 49.99% for the fourth link. 
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Table 4.35. Comparison of the performance parameters in terms of percentage between 

LQR-FLQR under internal disturbance 

Controllers Parameters 

Joint 

First Link 

(θ1) 

Second Link 

(θ2) 

Third link 

(θ3) 

Fourth link 

(θ4) 

LQR-FLQR 

under internal 

disturbance 

Ts 60.92% 78.15% 80.84% 11.11% 

PO 69.80% 73.50% 52.38% 59.08% 

Ess 36.84% 80% 95% 50% 

RMSE 42.10% 74.99% 78.99% 81.59% 

 

According to the calculated improvement percentages in Table 4.35, the FLQR 

returned more accurately than LQR under external disturbance for all joints. The  Ts 

improvement percentages are 60.92% for the first link, 78.15% for the second link, 

80.84% for the third link and 11.11% for the fourth link. The PO  improvement 

percentages are 69.80% for the first link, 73.50%  for the second link, 52.38% for the 

third link and 59.08% for the fourth link. The Ess  improvement percentages are 

36.84% for the first link, 80%  for the second link, 95% for the third link and 50% for 

the fourth link. The RMSEs improvement percentages are 42.10% for the first link, 

74.99% for the second link,78.99% for the third link and 81.59% for the fourth link. 

Table 4.36. Comparison of the performance parameters in terms of percentage between 

LQG-FLQG under noise and external disturbance 

Controllers Parameters 

Joint 

First Link 

(θ1) 

Second 

Link (θ2) 

Third 

link (θ3) 

Fourth 

link (θ4) 

LQG-FLQG 

under noise  and 

external disturbance 

Ts 39.95% 28.88% 16.42% 35.71% 

PO 74.19% 6.38% 9% 18.91% 

Ess 92% 75% 66.66% 50% 

RMSE 0.20% 4.85% 7.21% 0.42% 

According to the calculated improvement percentages in Table 4.36, the FLQR 

returned more accurately than LQR under external disturbance for all joints. The  Ts 

improvement percentages are 39.95% for the first link, 28.88% for the second link, 

16.42% for the third link and 35.71% for the fourth link. The PO  improvement 

percentages are 74.19% for the first link, 6.38%  for the second link, 9% for the third 
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link and 18.91% for the fourth link. The Ess improvement percentages are 92% for the 

first link, 75%  for the second link, 60.66% for the third link and 50% for the fourth 

link. The RMSEs improvement percentages are 0.20% for the first link, 4.85% for the 

second link,7.21% for the third link and 0.42% for the fourth link. 

Table 4.37. Comparison of the performance of parameters in terms of percentage 

between LQG-FLQG under noise and internal disturbance 

Controllers Parameters 

Joint 

First Link 

(θ1) 

Second 

Link (θ2) 

Third link 

(θ3) 

Fourth link 

(θ4) 

LQG-FLQG 

under noise  and 

internal 

disturbance 

Ts 58.33% 43.83% 39.79% 
86.66% 

PO 69.81% 42.85% 95% 
47.69% 

Ess 90% 80% 98.94% 
19.35% 

RMSE 59.54% 49.99% 98.81% 37.49% 

According to the calculated improvement percentages in Table 4.37, the FLQR 

returned more accurately than LQR under external disturbance for all joints. The  Ts 

improvement percentages are 58.33% for the first link, 43.83% for the second link, 

39.79% for the third link and 86.66% for the fourth link. The PO  improvement 

percentages are 69.81% for the first link, 42.85%  for the second link, 95% for the third 

link and 47.69% for the fourth link. The Ess improvement percentages are 90% for the 

first link, 80%  for the second link, 98.94% for the third link and 19.35% for the fourth 

link. The RMSEs improvement percentages are 59.54% for the first link, 49.99% for 

the second link,98.81% for the third link and 37.49% for the fourth link. Moreover, 

the RMSEs of the control signals for the controllers (LQR-FLQR and LQG-FLQG) 

under external and internal disturbances are given in Table 4.33. According to the 

calculated RMSEs of the control signals, the controllers (FLQR and FLQG) produce 

more effort than the (LQR and LQG) to control the TLRIP. The incremental 

percentages of RMSEs of the control signals are computed for each disturbance cases, 

and they are given in Table 4.38. 
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Table 4.38. Comparison of the controllers based on Incremental percentages of RMSE 

control signal 

Controllers Rate 

FLQR versus LQR 56,85% - 75,55% 

FLQG versus  LQG 36.65% - 74,92% 

According to the incremental calculated percentages of RMSEs of the control signals 

in Table 4.38, the FLQR returned more effort than LQR with 56,85% under internal 

disturbance and with 75,55% under external disturbance. The FLQG returned more 

effort than LQG with 36.65% under noise and internal disturbance; Also, with 74,92% 

under noise and external disturbance. 

In this study, both FLQR and FLQG controllers were developed for the stability 

control of the TLRIP, and they were compared with LQR and LQG controllers, 

respectively. The developed controllers were tested under internal and external 

disturbances to determine the robustness performance of the controllers. According to 

the obtained simulation results the nonlinear FLQR and FLQG controllers are robust 

and produce better results than the LQR and LQG controllers in terms of Ts, PO, Ess 

and RMSEs. RMSEs improvement percentages between FLQR and LQR range from 

12.34% to 74,99% and 42,10% to 81,59% under external and internal disturbances, 

respectively. Similarly, RMSEs improvement percentages between FLQG and LQG 

range from 0.20% to 7.21 % and 37,.49 % to 98,81 % under external and internal 

disturbances, respectively. Moreover, the increment percentages of RMSEs of the 

control signals for the FLQR and FLQG compared with LQR and LQG is from 36.65% 

to 75.55%. Accordingly, the FLQR and FLQG controllers need more control efforts 

than the classical LQR and LQG. 

 The design compromise between controller performance and efforts should be made 

based on which one is more important than others. Generally, the performance of the 

controller is a more crucial aspect of control applications. 
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4.8. Anti-swing Control of the TLRIP 

4.8.1. Anti-swing ANFIS-LQR controller of the TLRIP 

The design aspect and the procedure of the ANFIS-LQR controller are explained with 

details in section (4.2.6). In this section, only the ANFIS-LQR parameters used for the 

anti-swing control of the TLRIP will be explained. The ANFIS parameters such as the 

number and type of membership functions, error tolerance, epochs number and 

learning method applied to the TLRIP are given in Table 4.39. 

Table 4.39. ANFIS parameters to the TLRIP 

ANFIS parameter Value 

Number of membership functions 7 

Type of membership function Gaussian 

Error tolerance Zero 

Epochs number 600 

Learning method Hybrid 

e and ė are of the TLRIP calculated as follows: 

[
e
ė
] = KxT = [

Kθ1 
θ1 + Kθ2 

θ2 + Kθ3 
θ3 + Kθ4 

θ4 

Kθ1̇
θ1̇ + Kθ2̇

θ2̇ + Kθ3̇
θ3̇ + Kθ4̇

θ4̇
]                                                   (4.44) 

Where 

K = [
Kθ1

Kθ2
Kθ3

Kθ4 0 0 0 0

0 0 0 0 Kθ1̇
Kθ2̇

Kθ3̇
Kθ4̇

 ]                                                 (4.45) 

x =  [θ1 θ2 θ3 θ3 θ̇1 θ̇2 θ̇3 θ̇4]                                                               (4.46) 

The sampling rate is chosen as 1khz for the 50s. (e, ė) and (U) are the inputs and output 

of ANFIS, respectively. For one example, the loaded data for training, the training 

error, and the trained data in ANFIS editor for the TLRIP are shown in Figure 4.40. 

The network structure and the surface relationship of the two inputs and one output 

are shown in Figure 4.41.  
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(a) 

 

(b) 

 

(c) 

Figure 4.40. One example (a) the loaded data for training (b) 

the training error and (c) the trained data for the TLRIP 
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(a) 

 

(b) 

Figure 4.41. ANFIS of TLRIP: (a) network structure (b) inputs-output surface 
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4.8.2. Anti-swing RBNF-LQR controller of the TLRIP 

The RBNF-LQR controller is explained in details in section (4.2.6). The RBNF-LQR 

is developed to obtain better control performance than the classical ANFIS-LQR 

controller. Two RBNNs are used to train the positions and velocities of state variables 

multiplied by their LQR gains, respectively. The inputs and output (u) data obtained 

from the non-linear FLQR controller are used for the training of both RBNNs. The 

block diagram of RBNF-LQR controller is shown as an example in Figure 4.9 in 

section (4.2.7). 400000 data of each input and 100000 data of output are used to train 

for RBNNs. For the two RBNNs, Bayesian Regularization (BR) algorithm is used to 

treat the inputs and the output. 70% of the data used for simulation were used for 

training, 15% for validation, and 15% for the testing for each RBFNN. The realized 

values and calculated values of all data for each RBNN of the TLRIP are shown in 

Figure 4.42. The regression value for all data is 0.99 for both RBNNs. As can be seen 

in Figure 4.43, the best validation performance value of the TLRIP is obtained at the 

246-ith and 336-ith iterations for both RBNNs, respectively. The Mamdani type fuzzy 

model is developed and explained in section (4.2.6). 

 

(a) 

Figure 4.42. Regression graphs for : (a) positions RBNN (b) 

velocities RBNN 
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(b) 

Figure 4.42.(Cont.)  Regression graphs for : (a) positions RBNN 

(b) velocities RBNN 

 

Figure 4.43. Convergence behavior of the RBNNs during training iterations: (a) 

positions RBNN (b) velocities RBNN  
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4.8.3. Comparison between the two anti-swing NF controllers of the TLRIP  

In this section, both anti-swing NF controllers (ANFIS-LQR and RBNF-LQR) are 

compared based on the performance of the control signal obtained from the four joints 

of the TLRIP.  According to the obtained results, the RBNF-LQR controller returned 

better control performance than ANFIS-LQR controller. Furthermore, the RBNF-LQR 

controller is chosen as our NF controller applied to the TLRIP. Figure 4.44. shown a 

comparison between the ANFIS-LQR and RBNF-LQR based on the performance of 

the control signal. In the next section, three controllers (RBNF-LQR, FLQR and LQR) 

are developed for the anti-swing control of the TLRIP. The three controllers are 

modelled and simulated in MATLAB/Simulink. 

 

Figure 4.44. Control signal obtained by the ANFIS-LQR and RBNF-LQR 
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4.8.4. Anti-swing control results and robustness analysis of the TLRIP 

The developed controllers (RBNF-LQR, FLQR and LQR) for the anti-swing control 

of the TLRIP are modeled and simulated using the SimMechanics Toolbox in 

MATLAB/Simulink. The anti-swing control is performed by the initial conditions of 

 θ1  = 0 °,  θ2 = 60°, θ3 = 0°,  θ4 = 0°, and gain matrix K=[-0.9826   5.0197    1.5798   

1.0011 -0.2527    4.9547    0.3282]. All output variables of the TLRIP need to be 

stabilized at the reference point by all anti-swing controllers. Moreover, a comparison 

between the angle signals (θ1,θ2, θ3 and θ4) with anti-swing controllers in simulation 

given in Figures 4.45.  

 

Figure 4.45. Comparison between the angle signals (θ1,θ2, θ3 and θ4) with LQR, 

FLQR and RBNF-LQR anti-swing controllers for TLRIP 
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According to the obtained results, all controllers have effectively maintained the anti-

swing control of the TLRIP with minimum vibration. The RBNF-LQR controller is 

developed in order to give the best results in terms of  Ts, MP,  Ess and the RMSEs 

than the FLQR and LQR controllers. Table 4.40 shows the comparison of  LQR, FLQR 

and RBNF-LQR anti-swing controllers in terms of Ts, MP, Ess and RMSEs. 

Table 4.40. Comparison of the performance of LQR, FLQR and RBNF-LQR anti-

swing controllers for the TLRIP 

Controllers Parameters 

Joints 

First Link 

(θ1) 

Second Link 

(θ2) 

Third link 

(θ3) 

Fourth link 

(θ4) 

LQR 

Ts(s) 8.0366 6.9355 6.1150 6.3084 

MP (°) 356.35 93.1785 13.3801 20.3612 

Ess (°) 0.28 0.00037 0.00023 0.046 

RMSE (°) 1.0593 0.1539 0.0230 0.0356 

FLQR 

Ts(s) 7.9398 5.1135 4.4178 4.6032 

MP (°) 157.5294 21.9637 11.0300 19.9357 

Ess (°) 0.2 0.00033 0.00020 0.040 

RMSE (°) 0.4118 0.0603 0.0158 0.0257 

RBNF-LQR 

Ts(s) 7.6090 1.0923 2.4879 3.2473 

MP (°) 29.6568 14.3582 7.5322 4.5816 

Ess (°) 0.1 0.0001 0.0001 0.020 

RMSE (°) 0.0143 0.0169 0.0033 0.0019 

According to the calculated parameters, the RBNF-LQR produces better results than 

the FLQR and LQR. To verify the RBNF-LQR performance compared with other anti-

swing controllers; the improvement percentages of all parameters are calculated and 

given in Table 4.41.  
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Table 4.41. Comparison of the performance parameters in terms of percentage between 

RBNF-LQR versus FLQR and RBNF-LQR versus LQR for the TLRIP 

Controllers Parameters 

Joints 

First Link 

(θ1) 

Second Link 

(θ2) 

Third link 

(θ3) 

Fourth link 

(θ4) 

RBNF-LQR 

versus LQR 

Ts 5.32% 84.25% 59.31% 48.52% 

MP 91.67% 84.59% 43.70% 77.49% 

Ess 64.28% 72.97% 56.52% 56.52% 

RMSE 98.65% 89.01% 85.65% 94.66% 

RBNF-LQR 

versus FLQR 

Ts 4.16% 78.63% 43.68% 43.68% 

MP 81.17% 34.62% 31.71% 77.01% 

Ess 50.00% 69.69% 50.00% 50.00% 

RMSE 96.52% 71.97% 79.11% 92.60% 

According to the calculated rate of improvement percentages in Table 4.41, the RBNF-

LQR returned more accurately than LQR for the anti-swing control of the TLRIP. The 

Ts improvement percentages are 5.32% for the first link, 84.25% for the second link, 

59.31 % for the third link and 48.52 % for the fourth link. The MP improvement 

percentages are 91.67% for the first link, 84.59%  for the second link, 43.70% for the 

third link and 77.49% for the fourth link. The Ess  improvement percentages are 

64.28% for the first link, 72.79% for the second link, 56.52% for the third link and 

56.52 % for the fourth link. The RMSE improvement percentages are 98.65% for the 

first link, 89.01% for the second link, 85.65% for the third link and 94.66 % for the 

fourth link. Furthermore, the RBNF-LQR returned more accurately than FLQR for the 

anti-swing control of the TLRIP. The Ts improvement percentages are 4.16% for the 

first link, 78.63% for the second link, 43.68% for the third link and 43.68% for the 

fourth link. The MP improvement percentages are 81.17% for the first link, 34.62%  

for the second link, 31.71% for the third link and 77.01% for the fourth link. The Ess 

improvement percentages are 50% for the first link, 69.69% for the second link, 50% 

for the third link and 50% for the fourth link. The RMSE improvement percentages 

are 96.52% for the first link, 71.97% for the second link,79.11% for the third link and 

92.60% for the fourth link. 
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- Robustness analysis: 

In this part, the developed controllers are tested for robustness under external 

disturbance. Figure 4.46 shows the angle signals (θ1, θ2, θ3 and θ4) with LQR, FLQR 

and RBNF-LQR controllers for the TLRIP under external disturbance. Based on the 

obtained results, all controllers are robust under external disturbance. The external 

disturbance is applied to the system at t=25s when the system is stable at zero position. 

The RBNF-LQR controller is developed to provide better control parameters than the 

FLQR and LQR. Table 4.42 shows a comparison of controllers in terms of Ts, MP, 

Ess and the RMSEs under external disturbance. According to the obtained results, the 

RBNF-LQR yields more perfect results than the LQR and FLQR. To analyze the 

performance of the RBNF-LQR compared with FLQR and LQR under external 

disturbance; The improvement percentages of Ts, MP, Ess and position RMSEs are 

calculated and given in Table 4.43. 

 

Figure 4.46. Comparison between the angle signals (θ1 ,θ2 , θ3and θ4) with LQR, 

FLQR and RBNF-LQR anti-swing controllers under external disturbance for TLRIP 
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Table 4.42. Comparison of the performance of LQR, FLQR and RBNF-LQR anti-

swing controllers under external for the TLRIP 

Controllers 

under 

external 

disturbance 

Parameters 

Joints 

First Link 

(θ1) 

Second Link 

(θ2) 

Third link 

(θ3) 

Fourth link 

(θ4) 

LQR 

Ts(s) 21.61 17.653 12.400 18.2952 

MP (°) 86.47 10.7703 4.6733 4.6697 

Ess (°) 0.55 0.1 0.02 0.043 

RMSE (°) 0.2569 0.0179 0.0066 0.0063 

FLQR 

Ts(s) 13.4539 12.417 8.3664 14.6523 

MP (°) 42.4970 3.9547 3.6651 2.0547 

Ess (°) 0.20 0.004 0.00022 0.041 

RMSE (°) 0.1387 0.0057 0.0045 0.0024 

RBNF-LQR 

Ts(s) 12.4939 12.021 8.1917 9.1151 

MP (°) 20.8681 2.3063 1.8112 0.6816 

Ess (°) 0.15 0.002 0.0020 0.04 

RMSE (°) 0.0964 0.0030 0.0023 9.8547e-04 

 

Table 4.43. Comparison of the performance parameters in terms of percentage between 

RBNF-LQR versus FLQR and RBNF-LQR versus LQR under external disturbance 

for the TLRIP 

Controllers Parameters 

Joints 

First Link 

(θ1) 

Second Link 

(θ2) 

Third link 

(θ3) 

Third link 

(θ4) 

RBNF-LQR 

versus LQR 

Ts 41.18% 31.90% 33.93% 50.17% 

MP 75.86% 78.58% 61.24% 85.40% 

Ess 72.72% 98% 90% 6.67% 

RMSE 62.47% 83.24% 65.15% 84.35% 

RBNF-LQR 

versus FLQR 

Ts 7.10% 3.189% 2.088% 37.79% 

MP 50.88% 41.68% 50.58% 66.82% 

Ess 25.00% 64.91% 55.55% 2.43% 

RMSE 30.49% 47.36% 48.88% 58.93% 
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According to the calculated rate of improvement percentages in Table 4.43, the RBNF-

LQR returned more accurately than LQR for the anti-swing control under the external 

disturbance of the TLRIP. The Ts improvement percentages are 41.18% for the first 

link, 31.90% for the second link, 33.93 % for the third link and 50.17% for the fourth 

link. The MP improvement percentages are 75.86% for the first link, 78.58%  for the 

second link, 61.24% for the third link and 85.40% for the fourth link. The Ess 

improvement percentages are 72.72% for the first link, 98% for the second link, 90% 

for the third link and 6.67 % for the fourth link. The RMSE improvement percentages 

are 62.47% for the first link, 83.24% for the second link, 65.15% for the third link and 

84.35% for the fourth link. Furthermore, the RBNF-LQR returned more accurately 

than FLQR for the anti-swing control under the external disturbance of the TLRIP. 

The Ts improvement percentages are 7.10% for the first link, 3.189% for the second 

link, 2.88% for the third link and 37.79% for the fourth link. The MP improvement 

percentages are 50.88% for the first link, 41.68%  for the second link, 50.58% for the 

third link and 66.82% for the fourth link. The Ess improvement percentages are 25% 

for the first link, 64.91% for the second link, 55.55% for the third link and 2.43% for 

the fourth link. The RMSE improvement percentages are 30.49% for the first link, 

47.36% for the second link, 48.88% for the third link and 58.93% for the fourth link. 

In this section, a RBNF-LQR was developed and compared with FLQR and the 

classical LQR controller for the anti-swing control of the TLRIP. According to the 

obtained simulation results the RBNF-LQR controller gives better results than the 

FLQR and LQR controller in terms of Ts, MP, Ess and RMSE. RMSEs improvement 

percentages between RBNF-LQR versus FLQR and RBNF-LQR versus LQR are from 

71.97% to 96.52% and 85.65% to 98.65%, respectively. Furthermore, the RBNF-LQR 

controller produces better results than the FLQR and LQR controllers under external 

disturbance. RMSEs improvement percentages between RBNF-LQR versus FLQR 

and RBNF-LQR versus LQR are from 30.49% to 58.93% and 62.47% to 84.35% under 

external disturbance, respectively. 
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5. IMPLEMENTATION OF THE REAL SYSTEM AND EXPERIMENTAL 

WORK 

The last chapter of this thesis deals with the real prototype of the and the experimental 

works. All anti-swing controllers investigate in the previous chapter for each model 

(SLRIP, DLRIP and TLRIP), are developed and verified experimentally. At first, the 

mechanical structure of the system such as the DC torque motor servo system, Motor 

driver, encoders, pendulums, slippings..., are described with details. Secondly, PID 

and LQR controllers are developed for the anti-swing control problem of the real 

implementation of the SLRIP. Furthermore, RBNF-LQR, FLQR and LQR are 

developed for the anti-swing control of the real implementations of the DLRIP and 

TLRIP, respectively. The dynamic responses of the anti-swing controllers were 

compared experimentally based on robustness analysis under external disturbances. 

5.1. General Structure of the Experimental System 

Our system comprises a horizontal rotary link and three pendulum links. A direct drive 

brushless DC torque motor servo system is mounted to provide torque to the horizontal 

arm to control the system. The rotary arm rotates in the horizontal plane. The first 

pendulum link is connected to the extremity of the rotary link, the second pendulum 

link is connected to the extremity of first pendulum link, and the third pendulum link 

is connected to the extremity of second pendulum link. The three pendulum links move 

like an inverted pendulum in a plane perpendicular to the rotary link. A balance mass 

can be attached to the other extremity of the horizontal arm to maintain the balance 

inertia of the system. The three pendulum links are demountable with can provide three 

systems SLRIP, DLRIP and TLRIP. In Figure 5.1, an original prototype design and 

CAD drawing of the system are depicted.  



 

  

2
2

0
 

  

                                                   (a)                                                                                            (b) 

Figure 5.1. (a) CAD design and (b) real prototype of the TLRIP system 
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The mechanical structure of the system required to achieve the following 

requirements: 

- The base of the platform should be structurally robust and fixed to the floor to 

avoid the slip of the system out of the working area of the system. 

- The three pendulum links must be easily demountable for different control 

application (SLRIP, DLRIP and TLRIP).  

- The friction existing in the joint of pendulums must be seriously taken into 

consideration for the mechanical design of the system. 

- The system must be provided for attempts to handle manual control. 

Moreover, the electronic part of the system, which contains sensors, actuator and 

signal processing equipment needed to achieve the following requirements: 

-  Controller board should have a high degree of accuracy. 

-  Sensors must have a high rate of data acquisition. 

- Actuator needed to provide the necessaire effort to control the system. 

- All cables and hardware must be housed and isolated internally provide very good 

protection against electrical and magnetic interference. 

The horizontal arm of the system is driven by a direct drive brushless DC torque motor 

(Type: TMH-130-050-NC, ± 10V). The motor is driven by a driver motor (Model: 

Lenze, Type: Inverter Drives 8400 TopLine, 2.2 Kw). The pendulums' angles are 

measured with three encoders having a resolution of 2048 pulses per revolution 

(Model: Fenac Type: 2048 PPR sin cosine accurate speed information). The signals 

obtained from the encoder passes through the slip ring mounted in the first joint 

(Model: Moflon, Type: MT10 Series). A dSPACE-DS1103 controller board treats the 

received signals from the encoders. 

5.1.1. Brushless DC torque servo-motor 

The system is driven by a direct drive brushless DC torque servo-motor (Type: TMH-

130-050-NC, ± 10V) in joint of the horizontal link (θ1). τ is the torque applied at the 

horizontal link produced by the torque servo-motor, it is given in the equation (5.1).  
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τ =  
ƞm Kt ( Vm− Kmθ̇) 

Rm
                                                                                                         (5.1) 

Where the motor efficiency coefficient  ƞm = 0.73. Motor constant Km = 0.52. The 

armature resistance Rm = 23.4. Vm is the input voltage.  The datasheet of the servo-

motor is given in Table 5.1. Figure 5.2 shows the direct drive brushless DC torque 

servo-motor (Type: TMH-130-050-NC, ± 10V). [145] 

Table 5.1. Datasheet of the direct drive brushless DC torque servo-motor (Type: 

TMH-130-050-NC, ± 10V) 

Motor Parameters Symbols Units TMH-130-050-NC 

Rated Torque Tr Nm 10.4 

Peak Torque Tpeak Nm 34.13 

Rated Speed Nr rpm 375 

No-Load Speed Nno−load rpm 480 

Torque Constant Kt Nm/A 7.43 

Voltage Constant Kv V/rpm 0.636 

Max. Cogging Torque Tcog Nm 0.002 

Torque Ripple Tripple % 0.25 

Number of Pole 2n -- 24 

Rated Current Ir Arms 1.4 

Peak Current Ipeak Arms 5.9 

Line Resistance RLL@20° Ohm 23.4 

Line Inductance LLL mh 127.3 

Stator Weight Ws kg 2.95 

Rotor Weight Wr kg 0.96 

Total Weight Wtotal kg 3.91 

Meh. Time Constant Kmech ms 0.56 

Thermal Resistance(2) Rth °C/W 0.61 

Inertia J Kg.m2 0.0011 

Motor Constant Km Nm/W 0.52 

Rotor ID mm 55 

Stator OD mm 130 
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Figure 5.2. Brushless DC torque servo-motor Type: 

TMH-130-050-NC, ± 10V 

5.1.2. Driver motor 

The brushless DC torque servo-motor (Type: TMH-130-050-NC, ± 10V) is driven by 

a driver motor (Model: Lenze, Type: Inverter Drives 8400 TopLine) [146]. This driver 

is used in order to easily achieve high dynamic performance and precision in the first 

link of the TLRIP.  The power of the driver is 2.2Kw, which supply a single phase 

200/240v. This driver is particularly suitable for handling and positioning systems 

such as the control of the RIPS. Figure 5.3 shown the driver motor used in our system 

(Model: Lenze, Type: Inverter Drives 8400 TopLine). 

5.1.3. Encoders 

The pendulums' angles are measured with three encoders having a resolution of 2048 

pulses per revolution (Model: Fenac, Type: 2048 PPR sin cosine accurate speed 

information) [147]. The encoder is an electro-mechanical device that converts the 

angular position of the shaft to digital output signals. Figure 5.4 shown an example of 

the encoder model used in joints for the system.  
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Figure 5.3. Driver motor (Model: 

Lenze, Type: 8400 TopLine, 2.2Kw) 

 

Figure 5.4. Encoder (Model: Fenac, Type: 

2048 PPR sin cosine accurate speed 

information) 
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5.1.4. Slip ring 

The signals obtained from the encoder of each joint are passes through the slip ring 

mounted in the first joint. The model of the slip ring is Moflon, type: MT10 series 

[148]. The slip ring is an electromechanical device that allows the transmission of 

electrical signals from a stationary to a rotating structure. Figure 5.5 shown an 

example of the slip ring model mounted in the first joint of the horizontal arm.  

 

Figure 5.5. Slip ring (Model: Moflon, Type: MT10 

Series) 

5.1.5. Controller board 

A dSPACE-DS1103 controller board is used to treat the received signals from the 

encoders. At present dSPACE DS1103 is the famous hardware and real-time software 

tools which operate through Matlab/Simulink interface programming for rapid control 

prototyping [149]. However, it has different various ADC and DAC ports, internal 

memory and a different number of input/output ports etc. Figure 5.6 shown an 

example of a dSPACE controller board. 
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Figure 5.6. An example of a dSPACE controller board 

5.2. Anti-swing Control for a Real Experimental Implementation of the SLRIP 

The two anti-swing controllers (PID and LQR) developed in the Simulink 

environment in the last chapter, will be verified experimentally in this section. The 

initial conditions of the links are  taken with θ1 = 0 ° and θ2 = 60°. The optimized PID 

controller parameters for the anti-swing controller are given in Table 4.7 in the last 

chapter. The anti-swing LQR controller is performed with K= [-0.2586   46.3074    

1.136 -1.9724].  All output variables of the real experimental implementation of the 

SLRIP must be stabilized at the reference zero position by the both PID and LQR anti-

swing controllers. The real experimental implementation of the SLRIP is shown in 

Figure 5.7. The dSPACE models of the anti-swing controllers (PID and LQR) in 

Matlab/Simulink are depicted in Figure 5.8. As can be seen from Figure 5.9, the 

horizontal arm and the pendulum link were stabilized at the reference position with 

minimum vibrations.  
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Figure 5.7. Real experimental 

implementation of the SLRIP 

 

(a) 

 

(b) 

Figure 5.8. dSPACE models of the anti-swing controllers in Matlab/Simulink: 

(a) PID and (b) LQR 
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5.2.1. Performance evaluation of the anti-swing PID and LQR controllers 

Figure 5.9 presents a comparison between the angle signals (θ1 and θ2) with PID and 

LQR anti-swing controllers of the real experimental implementation of the SLRIP. 

According to the obtained results, the PID has successfully maintained the control of 

the SLRIP with minimum vibrations. Furthermore, the LQR controller is developed 

to give better Ts, MP, Ess and the RMSEs than the PID controller. Table 5.2 shown 

the comparison of PID and LQR controllers in terms of Ts, MP,  Ess and RMSEs in 

the experiment. According to the calculated Ts, MP, Ess and position RMSEs, the 

LQR produces more perfect results than the PID. To understand the LQR performance 

compared with PID; The improvement percentages of all parameters were calculated 

for each case and given in Table 5.3.  

 

Figure 5.9. Angle signals (θ1  and  θ2 ) with PID and LQR anti-swing 

controllers of the SLRIP in the experiment 
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Table 5.2. Quantitative comparison of the performance of PID and LQR anti-swing 

controllers in the experiment 

Anti-swing controllers Parameters 
Joints 

First Link (θ1) Second Link (θ2) 

PID 

Ts (s) 2.3701 2.0935 

MP (°) 173.18 48.07 

Ess (°) 0.1 0.01 

RMSE (°) 0.7325 0.2087 

LQR 

Ts (s) 1.9601 1.6307 

MP % 144.36 38.3203 

Ess (°) 0.09 0.002 

RMSE (°) 0.5468 0.1808 

 

Table 5.3. Quantitative comparison of the performance parameters in terms of 

percentage between PID-LQR anti-swing controllers in the experiment 

Anti-swing controllers Parameters 
Joints 

First Link (θ1) Second Link (θ2) 

LQR versus PID 

Ts  17.21 % 22.10 %  

MP 16.64 % 20.28 % 

Ess 91 %  80 % 

RMSE 25.37 % 13.36 % 

According to the calculated improvement percentages in Table 5.3, the LQR returned 

more accurately than PID for all joints. The Ts improvement percentages are 17.21% 

for the first link and 22.10% for the second link. The MP improvement percentages 

are 16.64% for the first link and 20.28% for the second link. The Ess improvement 

percentages are 91% for the first link, and 80%  for the second link. The RMSEs 

improvement percentages are 25.37% for the first link and 13.36% for the second link. 

The developed anti-swing controllers are tested for robustness under external 

disturbances in the experiment. The pendulum angles (θ2) and the link angle (θ1) are 

stabilized at zero positions. Figure 5.10 shows the angle signals (θ1 and θ2) with PID 

and LQR anti-swing controllers for the SLRIP under external disturbance in zero 

position at T=1s. Both anti-swing controllers are robust, and it has successfully 

maintained the control of the SLRIP under external disturbance. Table 5.4 shows the 
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comparison of PID and LQR controllers in terms of Ts, MP, Ess and the RMSEs under 

external disturbance in the experiment. According to the calculated parameters, the 

LQR yields more perfect results than the PID under external disturbance. To see the 

performance of the PID compared with LQR; The improvement percentages of all 

parameters were calculated and given in Table 5.5. 

 

Figure 5.10. Comparison between the angle signals (θ1  and  θ2) under external 

disturbance with PID and LQR anti-swing controllers of the SLRIP in the 

experiment 
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Table 5.4. Quantitative comparison of the performance of the PID and LQR anti-

swing controllers under external disturbance in the experiment 

Anti-swing controllers 

under external disturbance 
Parameters 

Joints 

First Link (θ1) Second Link (θ2) 

PID 

Ts (s) 1.2703 0.5939 

MP (°) 19.1602 6.7336 

Ess (°) 0.05 0.007 

RMSE (°) 0.0778 0.0198 

LQR 

Ts (s) 0.4521 0.5818  

MP % 4.1748 2.6016 

Ess (°) 0.03 0.005 

RMSE (°) 0.0122 0.0085 

 

Table 5.5. Quantitative comparison of the performance parameters in terms of 

percentage between PID-LQR anti-swing controllers in the experiment 

Anti-swing controllers 

under external disturbance 
Parameters 

Joints 

First Link (θ1) Second Link (θ2) 

LQR versus PID 

Ts  64.40% 2.037% 

MP 78.211 % 61.36% 

Ess 40% 28.57% 

RMSE 84.31% 57.07% 

According to the calculated improvement percentages in Table 5.5, the LQR returned 

more accurately than PID for all joints. The Ts improvement percentages are 64.40% 

for the first link and 2.037% for the second link. The PO improvement percentages 

are 78.211% for the first link and 61.36% for the second link. The Ess improvement 

percentages are 40% for the first link, and 28.57% for the second link. The RMSEs 

improvement percentages are 84.31% for the first link and 57.07% for the second link. 

5.3. Anti-swing Control for a Real Experimental Implementation of the DLRIP 

Three controllers RBNF-LQR, FLQR and LQR developed in the Simulink 

environment will be verified experimentally in this section. The anti-swing control is 

performed by the initial conditions of  θ1  = 0 °,  θ2 = 60°, θ3 = 0°, and gain matrix 

K=[-0.1826   56.1059    1.3411   -0.8416    8.8488    0.4982]. All output variables of 



232 

 

the DLRIP need to be stabilized at the reference point by all anti-swing controllers. 

The real experimental implementation of the DLRIP is shown in Figure 5.11. The 

dSPACE models of the anti-swing controllers (RBNF-LQR, FLQR and LQR) in 

Matlab/Simulink are depicted in Figure 5.12. As can be seen from Figure 5.13, the 

horizontal arm and the two pendulum links were stabilized at the reference position 

with minimum vibrations. 

 

Figure 5.11. Real experimental 

implementation of the DLRIP 

 

(a) 

Figure 5.12. dSPACE models of the anti-swing controllers in Matlab/Simulink: (a) 

LQR, (b) FLQR and (c) RBNF-LQR  
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(b) 

 

(c) 

Figure 5.12.(Cont.) dSPACE models of the anti-swing controllers in 

Matlab/Simulink: (a) LQR, (b) FLQR and (c) RBNF-LQR  

5.3.1. Performance evaluation of the anti-swing LQR, FLQR and RBNF-LQR 

controllers 

Figure 5.13 shows a comparison between the angle signals  (θ1,θ2 and θ3) with anti-

swing controllers of the DLRIP in experiment case. According to the obtained results, 

all controllers have effectively maintained the anti-swing control of the DLRP with 

minimum vibration. The RBNF-LQR controller is developed in order to give the best 

results in terms of  Ts, MP,  Ess and the RMSEs than the FLQR and LQR controllers. 

Table 5.6 shows the comparison of  LQR, FLQR and RBNF-LQR anti-swing 

controllers in terms of Ts, MP, Ess and the RMSEs in the experiment. To verify the 

RBNF-LQR performance compared with other anti-swing controllers; the 

improvement percentages of all parameters are calculated and given in Table 5.7. 
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Figure 5.13. Comparison between the angle signals (θ1,θ2 and θ3) with LQR, FLQR 

and RBNF-LQR anti-swing controllers for DLRIP in the experiment 

Table 5.6. Comparison of the performance of the LQR, FLQR and RBNF-LQR anti-

swing controllers in the experiment 

Anti-swing 

controllers 
Parameters 

Joints 

First Link 

(θ1) 

Second Link 

(θ2) 

Third link 

(θ3) 

LQR 

Ts(s) 22.13 1.7292 5.2754 

MP (°) 87.56 27.7 24.3 

Ess (°) 0.27 0.5 0.1 

RMSE (°) 0.1634 0.0605 0.0792 
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Table 5.6.(Cont.) Comparison of the performance of the LQR, FLQR and RBNF-LQR 

anti-swing controllers in the experiment 

FLQR 

Ts(s) 9.0763 1.4984 5.1250 

MP (°) 72.39 26.1 25.1 

Ess (°) 0.025 0.08 0.05 

RMSE (°) 0.0908 0.0562 0.0628 

RBNF-LQR 

Ts(s) 6.3799 7.3946 4.1944 

MP (°) 45.77 17.65 4.8959 

Ess (°) 0.01 0.02 0.001 

RMSE (°) 0.0829 0.1354 0.0256 

 

Table 5.7. Comparison of the performance parameters in terms of percentage between 

RBNF-LQR versus FLQR and RBNF-LQR versus LQR in the experiment 

Anti-swing controllers Parameters 

Joints 

First Link 

(θ1) 

Second 

Link (θ2) 
Third link (θ3) 

RBNF-LQR versus LQR 

Ts 71.17% 76.61% 20.49% 

MP 47.72% 36.28% 79.85% 

Ess 96.29% 96 % 99% 

RMSE 49.26% 55.31% 67.67% 

RBNF-LQR versus 

FLQR 

Ts 29.70% 79.73% 18.15% 

MP 36.77% 32.37% 4.47% 

Ess 60% 75% 98% 

RMSE 8.70% 58.49% 59.23% 

- Robustness analysis: 

In this part, the developed controllers are tested for robustness under external 

disturbance in the experiment. Figure 5.14 shows the angle signals (θ1, θ2 and θ3) 

with LQR, FLQR and NLFLQR controllers for the DLRIP under external disturbance. 

Based on the obtained results, all controllers are robust under disturbance. The RBNF-

LQR controller is developed to give better control parameters than the FLQR and 

LQR. Table 5.8 shows a comparison of controllers in terms of Ts, MP, Ess and the 

RMSEs under external disturbance in the experiment. According to the obtained 

results, the RBNF-LQR yields perfect results than the LQR and FLQR. To see the 
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performance of the RBNF-LQR compared with FLQR and LQR under external 

disturbance; The improvement percentages of Ts, MP, Ess and position RMSEs were 

calculated and given in Table 5.9. 

 

Figure 5.14. Comparison of the performance LQR, FLQR and RBNF-LQR anti-

swing controllers under external disturbance in the experiment 

Table 5.8. Comparison of the performance of the LQR, FLQR and RBNF-LQR anti-

swing controllers  

Anti-swing controllers 

under external disturbance  
Parameters 

Joints 

First Link 

(θ1) 

Second Link 

(θ2) 

Third link 

(θ3) 

LQR 

Ts(s) 2.0 2.1 1.1 

MP (°) 45 10 16 

Ess (°) 0.21 0.040 0.01 

RMSE (°) 0.0254 0.0051 0.0038 

FLQR 
Ts(s) 1.0 1.1 0.9 

MP (°) 42 8 14 
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Table 5.8.(Cont.) Comparison of the performance of the LQR, FLQR and RBNF-LQR 

anti-swing controllers  

 
Ess (°) 0.19 0.035 0.002 

RMSE (°) 0.0160 0.0024 0.0031 

RBNF-LQR 

Ts(s) 0.9s 0.5 0.2 

MP (°) 31 6 11 

Ess (°) 0.010 0.010 0.001 

RMSE (°) 0.0111 0.0017 9.4636e-04 

 

Table 5.9. Comparison of the performance parameters in terms of percentage between 

RBNF-LQR versus FLQR and RBNF-LQR versus LQR under external disturbance in 

the experiment 

Controllers Parameters 

Joints 

First Link 

(θ1) 

Second Link 

(θ2) 

Third link 

(θ3) 

RBNF-LQR versus 

LQR 

Ts(s) 55.00% 76.19% 81.81% 

MP (°) 31.11% 40% 31.25% 

Ess (°) 95.23% 75% 90% 

RMSE (°) 56.29% 66.66% 75.09% 

RBNF-LQR versus 

FLQR 

Ts(s) 9.99% 54.54% 77.77% 

MP (°) 26.19% 25% 21.42% 

Ess (°) 94.73% 71.42% 50% 

RMSE (°) 30.62% 29.16% 69.47% 

In this section, the RBNF-LQR was developed and compared experimentally with 

FLQR and the classical LQR controller for the anti-swing control of the real 

experimental implementation of the DLRIP. According to the obtained simulation 

results the RBNF-LQR controller gives better results than the FLQR and LQR 

controller in terms of Ts , MP, Ess  and RMSE. RMSEs improvement percentages 

between RBNF-LQR versus FLQR and RBNF-LQR versus LQR are from 8.70% to 

73.40% and 49.26% to 67.67% in the experiment, respectively. Furthermore, the 

RBNF-LQR controller produces better results than the FLQR and LQR controllers 

under external disturbance. RMSEs improvement percentages between RBNF-LQR 

versus FLQR and RBNF-LQR versus LQR are from 29.18% to 69.47% and 59.29% 

to 75.09% under external disturbance in the experiment, respectively.  Furthermore, 
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non-linear controllers may be developed and compared experimentally witch the 

RBNF-LQR.  

5.4. Anti-swing Control for a Real Experimental Implementation of the TLRIP 

Three controllers (RBNF-LQR, FLQR and LQR) are developed for the anti-swing 

control of the TLRIP in the Simulink environment in the last chapter, will be verified 

experimentally in this section. The anti-swing control is performed by the initial 

conditions of  θ1   = 0 °,  θ2  = 60°, θ3 = 0°,  θ4 = 0°, and gain matrix K=[-0.9826   

5.0197    1.5798   1.0011 -0.2527    4.9547    0.3282]. All output variables of the 

TLRIP need to be stabilized at the reference point by all anti-swing controllers. The 

real experimental implementation of the TLRIP is shown in Figure 5.15. The dSPACE 

models of the anti-swing controllers (RBNF-LQR, FLQR and LQR) in 

Matlab/Simulink are depicted in Figure 5.16. As can be seen from Figure 5.17, the 

horizontal arm and the three pendulum links were stabilized at the reference position 

with minimum vibrations. 

 

Figure 5.15. Real experimental 

implementation of the TLRIP 
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(a) 

 

(b) 

 

(c) 

Figure 5.16. dSPACE models of the anti-swing controllers in Matlab/Simulink: (a) 

LQR, (b) FLQR and (c) RBNF-LQR  

5.4.1. Performance evaluation of the anti-swing LQR, FLQR and RBNF-LQR 

controllers 

Figure 5.17 shows a comparison between the angle signals (θ1,θ2,θ3 and θ4) with 

anti-swing controllers of the TLRIP in the experiment. According to the obtained 

results, all controllers have effectively maintained the anti-swing control of the TLRIP 
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with minimum vibration. The RBNF-LQR controller is developed in order to give the 

best results in terms of  Ts , MP,  Ess  and the RMSEs than the FLQR and LQR 

controllers. Table 5.10 shows the comparison of  LQR, FLQR and RBNF-LQR anti-

swing controllers in terms of Ts, MP, Ess and the RMSEs in the experiment. To verify 

the RBNF-LQR performance compared with other anti-swing controllers; the 

improvement percentages of all parameters are calculated and given in Table 5.11. 

 

Figure 5.17. Comparison between the angle signals (θ1 ,θ2 , θ3  and θ4) with 

LQR, FLQR and RBNF-LQR anti-swing controllers for TLRIP in the 

experiment 
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Table 5.10. Comparison of the performance of LQR, FLQR and RBNF-LQR anti-

swing controllers for the TLRIP in the experiment 

Anti-swing 

controllers 

Controllers 

Parameters 

Joints 

First Link 

(θ1) 

Second 

Link (θ2) 

Third link 

(θ3) 

Fourth link 

(θ4) 

LQR 

Ts(s) 7.91 3.48 4.98 5.41 

MP (°) 226.40 95.19 18.87 24.61 

Ess (°) 0.35 0.02 0.055 0.1 

RMSE (°) 0.7062 0.1539 0.0248 0.0441 

FLQR 

Ts(s) 5.324 1.59 2.61 2.59 

MP (°) 200.64 25.05 15.03 22.39 

Ess (°) 0.25 0.015 0.023 0.045 

RMSE (°) 0.5147 0.0603 0.01698 0.0321 

RBNF-LQR 

Ts(s) 2.1 1.27 2.197 1.21 

MP (°) 15.78 10.98 10.031 5.69 

Ess (°) 0.01 0.0018 0.01 0.0020 

RMSE (°) 0.1428 0.0169 0.0041 0.0019 

 

Table 5.11. Comparison of the performance parameters in terms of percentage between 

RBNF-LQR versus FLQR and RBNF-LQR versus LQR for the TLRIP in the 

experiment 

Controllers Parameters 

Joints 

First Link 

(θ1) 

Second Link 

(θ2) 

Third link 

(θ3) 

Fourth link 

(θ4) 

RBNF-LQR 

versus LQR 

Ts 73.45% 63.50% 55.88% 77.63% 

MP 93.03% 56.16% 45.36% 76.87% 

Ess 97.14% 91% 81.81% 98% 

RMSE 79.04% 89.01% 83.46% 95.69% 

RBNF-LQR 

versus FLQR 

Ts 60.55% 20.12% 15.82% 53.28% 

MP 92.84% 88.46% 33.26% 74.58% 

Ess 96.00% 88 % 56.52% 95.55% 

RMSE 71.24% 71.97% 75.85% 94.08% 
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According to the calculated rate of improvement percentages in Table 5.11, the RBNF-

LQR returned more accurately than LQR for the anti-swing control of the TLRIP. The 

Ts improvement percentages are 73.45% for the first link, 63.50% for the second link, 

55.88% for the third link and 77.63% for the fourth link. The MP improvement 

percentages are 93.03% for the first link, 56.36%  for the second link, 45.36% for the 

third link and 76.87% for the fourth link. The Ess  improvement percentages are 

97.14% for the first link, 91% for the second link, 81.81% for the third link and 98% 

for the fourth link. The RMSE improvement percentages are 79.04% for the first link, 

89.01% for the second link, 83.46% for the third link and 95.69% for the fourth link. 

Furthermore, the RBNF-LQR returned more accurately than FLQR for the anti-swing 

control of the TLRIP. The Ts improvement percentages are 60.55% for the first link, 

20.12% for the second link, 15.82% for the third link and 53.28% for the fourth link. 

The MP improvement percentages are 92.84% for the first link, 88.46%  for the second 

link, 33.26% for the third link and 74.58% for the fourth link. The Ess improvement 

percentages are 96% for the first link, 88% for the second link, 56.52% for the third 

link and 95.55% for the fourth link. The RMSE improvement percentages are 71.24% 

for the first link, 71.97% for the second link, 75.85% for the third link and 94.08% for 

the fourth link. 

- Robustness analysis: 

In this part, the developed controllers are tested for robustness under external 

disturbance in the experiment. Figure 5.18 shows the angle signals (θ1, θ2, θ3 and θ4) 

with LQR, FLQR and RBNF-LQR controllers for the TLRIP under external 

disturbance. Based on the obtained results, all controllers are robust under external 

disturbance. The external disturbance is applied to the system at t=25s when the system 

is stable at zero position. The RBNF-LQR controller is developed to provide better 

control parameters than the FLQR and LQR. Table 5.12 shows a comparison of 

controllers in terms of Ts, MP, Ess and the RMSEs under external disturbance. 

According to the obtained results, the RBNF-LQR yields more perfect results than the 

LQR and FLQR. To analyze the performance of the RBNF-LQR compared with FLQR 

and LQR under external disturbance; The improvement percentages of Ts, MP, Ess 

and position RMSEs are calculated and given in Table 5.13. 



243 

 

 

Figure 5.18. Comparison between the angle signals (θ1,θ2, θ3and θ4) with LQR, 

FLQR and RBNF-LQR anti-swing controllers under external disturbance for TLRIP 

in the experiment 

Table 5.12. Comparison of the performance of LQR, FLQR and RBNF-LQR anti-

swing controllers under external for the TLRIP in the experiment 

Controllers 

under 

external 

disturbance 

Parameters 

Joints 

First Link 

(θ1) 

Second Link 

(θ2) 

Third link 

(θ3) 

Fourth link 

(θ4) 

LQR 

Ts(s) 12.89 7.872 3.55 3.2952 

MP (°) 99.89 13.98 6.478 5.89 

Ess (°) 0.5 0.65 0.1 0.05 

RMSE (°) 0.2851 0.0199 0.0074 0.0070 

FLQR 

Ts(s) 7.9 2.5 1.37 1.65 

MP (°) 52.13 4.78 4.71 2.2 

Ess (°) 0.2 0.01 0.03 0.045 
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Table 5.12.(Cont) Comparison of the performance of LQR, FLQR and RBNF-LQR 

anti-swing controllers under external for the TLRIP in the experiment 

 RMSE (°) 0.1734 0.0072 0.0057 0.0030 

RBNF-LQR 

Ts(s) 7.5 2.35 1.19 1.12 

MP (°) 30.91 2.11 2.01 0.71 

Ess (°) 0.1 0.002 0.01 0.001 

RMSE (°) 0.1377 0.0061 0.0025 9.92628e-04 

 

Table 5.13. Comparison of the performance parameters in terms of percentage between 

RBNF-LQR versus FLQR and RBNF-LQR versus LQR under external disturbance 

for the TLRIP in the experiment 

Controllers Parameters 

Joints 

First Link 

(θ1) 

Second Link 

(θ2) 

Third link 

(θ3) 

Third link 

(θ4) 

RBNF-LQR 

versus LQR 

Ts 41.81% 70.14% 60.47% 66.01% 

MP 69.05% 84.90% 68.97% 87.94% 

Ess 80% 99.69% 90% 98% 

RMSE 51.70% 69.34% 66.21% 85.81% 

RBNF-LQR 

versus FLQR 

Ts 5.06% 5.99% 13.13% 32.12% 

MP 40.70% 55.85% 57.32% 69.72% 

Ess 50% 80.0% 66.66% 97.77% 

RMSE 20.58% 15.27% 56.14% 66.91% 

 

According to the calculated rate of improvement percentages in Table 5.13, the RBNF-

LQR returned more accurately than LQR for the anti-swing control under the external 

disturbance of the TLRIP. The Ts improvement percentages are 41.18% for the first 

link, 70.14% for the second link, 60.47% for the third link and 66.01% for the fourth 

link. The MP improvement percentages are 69.05% for the first link, 84.90%  for the 

second link, 68.97% for the third link and 87.94% for the fourth link. The Ess 

improvement percentages are 80% for the first link, 99.69% for the second link, 90% 

for the third link and 98 % for the fourth link. The RMSE improvement percentages 

are 51.70% for the first link, 69.34% for the second link, 66.21% for the third link and 

85.81% for the fourth link. Furthermore, the RBNF-LQR returned more accurately 

than FLQR for the anti-swing control under the external disturbance of the TLRIP. 

The Ts improvement percentages are 5.06% for the first link, 5.99% for the second 
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link, 13.13% for the third link and 32.12% for the fourth link. The MP improvement 

percentages are 40.70% for the first link, 55.85%  for the second link, 57.32% for the 

third link and 69.72% for the fourth link. The Ess improvement percentages are 50% 

for the first link, 80% for the second link, 66.66% for the third link and 97.77% for the 

fourth link. The RMSE improvement percentages are 20.58% for the first link, 15.27% 

for the second link, 56.14% for the third link and 66.91% for the fourth link. 

In this section, a RBNF-LQR was developed and compared with FLQR and the 

classical LQR controller for the anti-swing control of the TLRIP. According to the 

obtained experimental results the RBNF-LQR controller gives better results than the 

FLQR and LQR controller in terms of Ts, MP, Ess and RMSE. RMSEs improvement 

percentages between RBNF-LQR versus FLQR and RBNF-LQR versus LQR are from 

71.24% to 94.08% and 79.04% to 95.69%, respectively. Furthermore, the RBNF-LQR 

controller produces better results than the FLQR and LQR controllers under external 

disturbance. RMSEs improvement percentages between RBNF-LQR versus FLQR 

and RBNF-LQR versus LQR are from 15.27% to 66.91% and 51.70% to 85.81% under 

external disturbance, respectively 
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6. CONCLUSIONS AND RECOMMENDATIONS 

In this thesis, a novel design of a single, double and triple link rotary inverted system 

is developed to be controlled. This system presents an important challenging problem 

in the area of linear and nonlinear control engineering applications. The contribution 

of this thesis consisted of the development of  novel friction estimation models which 

take into consideration positions, velocities and accelerations of the joints of three 

serial pendulum links. Furthermore, more sophisticated nonlinear controllers such as  

FLQR, FLQG, RBNF-LQR are developed for the stabilization and anti-swing control 

problems. The novel nonlinear controllers take into consideration the complex inputs-

outputs and nonlinear function approximation of the system. 

In this research, joint frictions of the TLRIP are examined based on its experimental 

and simulation dynamic responses. Three different friction estimation models such as 

NCFM, LFM and NLFM are compared to estimate the joint frictions of the TLRIP 

developed in our laboratory. In order to determine the estimation performance of the 

friction models, RMSEs between position simulation results obtained from each joint 

friction model and encoders in the experimental setup are computed. According to the 

comparative experimental friction analysis, the joint frictions of the TLRIP are 

estimated more effectively using an NLFM which yields better improvement 

percentage from 11.56% to 94.55%. Moreover, AFEMs were developed to estimate 

the frictions in three pendulums’ joints of the TLRIP and compared with existing 

friction estimation models NCFM, LFM, and NLFM. Based on the position RMSEs 

obtained from each joint friction model, the AFEMs were better than the existing 

friction estimation models (NCFM, LFM, and NLFM). Among the friction estimation 

models and considering the RMSEs of position in all joints, the best results were 

produced by the ANLFM, which provide the best improvement percentage from 

1.99 % to 93.84%. At last, NFFEMs are developed to estimate the joint friction 

coefficients in a TLRIP system and compared with an AFEMs. The different versions 

of the AFEMs and NFFEMs are generated based on each of the following friction 

estimation models: NCFM, LFM, and NLFM. The aim of this study is to obtain joint 
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friction models which depend on both velocity and acceleration in a large range of 

motion trajectory that involves difficult and sudden large changes. In order to 

determine the estimation performance of the friction models, the RMSEs of position 

in all joints are computed. The NFFEMs produce better estimation results than the 

AFEMs. Among NFFEMs, the NFNLM gives the best results which provide the best 

improvement percentage from 11.56% and 94.55%. In this research, the friction study 

has three important contributions to the literature: Firstly, all friction models in the 

literature depend only on velocity; however, the friction model developed here 

depends on both velocity and acceleration. This approach has enabled us to obtain a 

two-dimensional friction model. Secondly, the coefficients of all friction models in the 

literature were constant when the physical quantities change. On the other hand, the 

coefficients of the friction models in this work vary depending on the state of the 

velocity and acceleration. Hence, this friction model allows for better estimation of the 

effects of friction in different velocity and acceleration conditions. Thirdly, much of 

existing researches in the literature have studied only the frictions of the linear motion 

which depends on linear velocity and force. This work examines frictions on the joints 

which have hard rotational motions. 

The stabilization and anti-swing control problems of the system are studied for the  

SLRIP, DLRIP and TLRIP, respectively. To determine the control performance of all 

controllers, different control parameters are computed such as Ts, PO, Ess, MP and the 

RMSEs of the joint positions. PID, LQR and swing-up based LQR controllers are 

developed for the stability control problem of the SLRIP. The controllers are compared 

under external disturbance. The robustness results indicate that the LQR controller 

under external disturbances was effective. The RMSEs improvement percentages 

between LQR versus PID are from 24.28% to 75,28%. Moreover, according to the 

incremental calculated percentages of RMSEs of the control signals, the LQR returned 

more effort than PID with 42.95 % under external disturbance. Furthermore, nonlinear 

FLQR and FLQG controllers are developed for the stability control of the DLRIP and 

TLRIP systems. The aim of this work is to study dynamic performance analysis of 

both FLQR and FLQG controllers and to compare them with the classical LQR and 

LQG controllers, respectively. The developed controllers were tested under internal 

and external disturbances to determine the robustness performance of the controllers. 



248 

 

According to the obtained simulation results, the nonlinear FLQR and FLQG 

controllers are robust and produce better results than the LQR and LQG controllers. 

Based on to the obtained results of the stability control of the DLRIP, the RMSEs 

improvement percentages between FLQR and LQR are from 6.69% to 75% and 

25.23% to 65.26% under external and internal disturbances, respectively. Similarly, 

RMSEs improvement percentages between FLQG and LQG are from 14.64% to 

74.99% and 25.23% to 49.41% under external and internal disturbances, respectively. 

Moreover, the LQG and FLQG controllers in the DLRIP were tested in the presence 

of white noise with different SNRs. The LQG and FLQG controllers show very good 

noise rejection feature. The increment percentages of RMSEs of the control signals for 

the FLQR and FLQG compared with LQR and LQG are from 34.53% to 66.62%. 

Accordingly, the FLQR and FLQG controllers need more control efforts than the 

classical LQR and LQG. On the other hand, based on the obtained results of the 

stability control of the TLRIP, the RMSEs improvement percentages between FLQR 

and LQR range from 12.34% to 74.99% and 42.10% to 81.59% under external and 

internal disturbances, respectively. Similarly, RMSEs improvement percentages 

between FLQG and LQG are from 0.20% to 7.21% and 37.49% to 98.81% under 

external and internal disturbances, respectively. Moreover, the increment percentages 

of RMSEs of the control signals for the FLQR and FLQG compared with LQR and 

LQG are from 36.65% to 75.55%. Accordingly, the FLQR and FLQG controllers need 

more control efforts than the classical LQR and LQG. The design compromise 

between controller performance and efforts should be made based on which one is 

more important than others. Generally, the performance of the controller is a more 

crucial aspect of control applications. 

In this research, PID and LQR are developed for the anti-swing control problem of the 

SLRIP. Both controllers are compared under external disturbance. The results indicate 

that the LQR controller returned best results than the PID. The RMSEs improvement 

percentages between LQR versus PID are from 6.091% to 31.82% and 13.36% to 

25.37% in simulation and experiment, respectively. Also, the LQR controller produces 

better results than the PID controller under external disturbance. The RMSEs 

improvement percentages between LQR versus PID are from 50.09% to 51.28% and 

57.07% to 84.31% under external disturbance in simulation and experiment, 
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respectively. Furthermore, nonlinear RBNF-LQR controller is developed for the anti-

swing control problem of the DLRIP and TLRIP systems in order to obtain better 

results than the FLQR and LQR controllers. Based on the obtained results of the anti-

swing control of the DLRIP. The RMSEs improvement percentages between RBNF-

LQR versus FLQR and RBNF-LQR versus LQR are from 8.79% to 73.40% and 2.82% 

to 93.36% in simulation, respectively. The RMSEs improvement percentages between 

RBNF-LQR versus FLQR and RBNF-LQR versus LQR are from 8.70% to 73.40% 

and 49.26% to 67.67% in the experiment, respectively. Furthermore, the RBNF-LQR 

controller produces better results than the FLQR and LQR controllers under external 

disturbance. The RMSEs improvement percentages between RBNF-LQR versus 

FLQR and RBNF-LQR versus LQR are from 4.042% to 47.36% and 9.090% to 

36.02% under external disturbance in simulation, respectively. The RMSEs 

improvement percentages between RBNF-LQR versus FLQR and RBNF-LQR versus 

LQR are from 29.18% to 69.47% and 59.29% to 75.09% under external disturbance 

in the experiment, respectively. On the other hand, based on the obtained results of the 

anti-swing control of the TLRIP. The RMSEs improvement percentages between 

RBNF-LQR versus FLQR and RBNF-LQR versus LQR are from 71.97% to 96.52% 

and 85.65% to 98.65% in simulation, respectively. RMSEs improvement percentages 

between RBNF-LQR versus FLQR and RBNF-LQR versus LQR are from 71.24% to 

94.08% and 79.04% to 95.69% in the experiment, respectively. Furthermore, the 

RBNF-LQR controller produces better results than the FLQR and LQR controllers 

under external disturbance. RMSEs improvement percentages between RBNF-LQR 

versus FLQR and RBNF-LQR versus LQR are from 30.49% to 58.93% and 62.47% 

to 84.35% under external disturbance in simulation, respectively. RMSEs 

improvement percentages between RBNF-LQR versus FLQR and RBNF-LQR versus 

LQR are from 15.27% to 66.91% and 51.70% to 85.81% under external disturbance 

in the experiment, respectively.  

Some future works recommendation be given as follows:  

- The fuzzification ranges and rules of the NF system can be tuned with evolutionary 

algorithms to enhance the estimation performance of the NFFEMs.  

- More inputs such as jerks and snaps of the joints can be applied to the NF system, 

and the TLRIP system can be controlled using the proposed friction models.  
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- Swing-up controllers can be conducted to prove the experimental performance of 

the non-linear controllers such as (FLQR, FLQG, RBNF-LQR). 

- The proposed controller method can be compared with other non-linear controllers 

existing in the literature. 
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Appendix-A 

The Matlab .m codes used to calculate the mathematical models of the SLRIP, DLRIP 

and TLRIP are given in this section. Only the variables of each model must take into 

consideration for the codes. 

close all; clear; clc; 
%%%--------------------------------------  
syms Q1 Q2 Q3 Q4 
syms dQ1 dQ2 dQ3 dQ4  
syms ddQ1 ddQ2 ddQ3 ddQ4 
syms L1 L2 L3 L4 L5 
syms g m1 m2 m3 m4 
syms I1 I2 I3 I4 
%%%--------------------------------------  
gv = [0 0 -g].'; 
%%%--------------------------------------  
%%%%%%%%%%  Vars: R = 0, P = 1, Not a Joint = -1. 
%%%%%%%%%%  Alpha(i-1) a(i-1)  d(i)   Q(i) Vars      i 
DHstruct = [        0,     0,    0,     0,    0;  %  1 
                -pi/2,     0,   L1, -pi/2,    0;  %  2 
                    0,    L2,    0,     0,    0;  %  3 
                    0,    L3,    0,     0,    0;  %  4 
                    0,    L4,    0,     0,   -1]; %  5 
T = stuff(DHstruct); 
%%%---------------------------------------  
Zii = [0 0 1].'; 
s = zeros(3,1); 
dq  = [ dQ1  dQ2  dQ3  dQ4].'; 
ddq = [ddQ1 ddQ2 ddQ3 ddQ4].'; 

  
T01 = T(:,:,1);     R01 = T01(1:3,1:3); Z01 = R01(:,3); P01 = 

T01(1:3,4); 
T02 = T01*T(:,:,2); R02 = T02(1:3,1:3); Z02 = R02(:,3); P02 = 

T02(1:3,4); 
T03 = T02*T(:,:,3); R03 = T03(1:3,1:3); Z03 = R03(:,3); P03 = 

T03(1:3,4); 
T04 = T03*T(:,:,4); R04 = T04(1:3,1:3); Z04 = R04(:,3); P04 = 

T04(1:3,4); 

  
R01 = T(1:3,1:3,1);%P01 = T(1:3,4,1); 
R12 = T(1:3,1:3,2); P12 = T(1:3,4,2); 
R23 = T(1:3,1:3,3); P23 = T(1:3,4,3); 
R34 = T(1:3,1:3,4); P34 = T(1:3,4,4); 

  
Pc11 = [0, L1/2, 0, 1].'; h1 = T01(1:3,:)*Pc11; 
Pc22 = [L2/2, 0, 0, 1].'; h2 = T02(1:3,:)*Pc22; 
Pc33 = [L3/2, 0, 0, 1].'; h3 = T03(1:3,:)*Pc33; 
Pc44 = [L4/2, 0, 0, 1].'; h4 = T04(1:3,:)*Pc44; 

  
Ic1 = [ I1 , 0,  0; 
         0,  0,  0; 
         0,  0, I1]; 

  
Ic2 = [  0 , 0,  0; 
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         0, I2,  0; 
         0,  0, I2]; 

  
Ic3 = [  0 , 0,  0; 
         0, I3,  0; 
         0,  0, I3]; 

  
Ic4 = [  0 , 0,  0; 
         0, I4,  0; 
         0,  0, I4]; 
%%%---------------------------------------  
A1 = [diff(h1,Q1),          s,          s,          s]; 
A2 = [diff(h2,Q1),diff(h2,Q2),          s,          s]; 
A3 = [diff(h3,Q1),diff(h3,Q2),diff(h3,Q3),          s]; 
A4 = [diff(h4,Q1),diff(h4,Q2),diff(h4,Q3),diff(h4,Q4)]; 

  
B1 = [Z01,  s,  s,  s]; 
B2 = [Z01,Z02,  s,  s]; 
B3 = [Z01,Z02,Z03,  s]; 
B4 = [Z01,Z02,Z03,Z04]; 

  
B11 = R01.'*B1; Dm1 = A1.'*A1*m1 + B11.'*Ic1*B11; 
B22 = R02.'*B2; Dm2 = A2.'*A2*m2 + B22.'*Ic2*B22; 
B33 = R03.'*B3; Dm3 = A3.'*A3*m3 + B33.'*Ic3*B33; 
B44 = R04.'*B4; Dm4 = A4.'*A4*m4 + B44.'*Ic4*B44; 

  
D = Dm1 + Dm2 + Dm3 + Dm4; 

  
dD = diff(D,Q1)*dQ1 + diff(D,Q2)*dQ2 + diff(D,Q3)*dQ3 + 

diff(D,Q4)*dQ4; 
pKpq = 0.5*[dq.'*diff(D, Q1)*dq; 
            dq.'*diff(D, Q2)*dq; 
            dq.'*diff(D, Q3)*dq; 
            dq.'*diff(D, Q4)*dq]; 
C = dD*dq - pKpq; 

  
G = (-m1*gv.'*A1 -m2*gv.'*A2 -m3*gv.'*A3 -m4*gv.'*A4).'; 

  
tau = D*ddq + C + G; 

  
%%%---------------------------------------  
w01 = w00 + dQ1*Z01; w11 = R01.'*w01; 
w02 = w01 + dQ2*Z02; w22 = R02.'*w02; 
w03 = w02 + dQ3*Z03; w33 = R03.'*w03; 
w04 = w03 + dQ4*Z04; w44 = R04.'*w04; 

  
v00 = zeros(3,1); 
v01 = v00 + cross(w00,P01    ); Vc1 = v01 + cross(w01, h1-P01); 
v02 = v01 + cross(w01,P02-P01); Vc2 = v02 + cross(w02, h2-P02); 
v03 = v02 + cross(w02,P03-P02); Vc3 = v03 + cross(w03, h3-P03); 
v04 = v03 + cross(w03,P04-P03); Vc4 = v04 + cross(w04, h4-P04); 

  
K1 = (Vc1.'*Vc1*m1 + w11.'*Ic1*w11)/2; U1 = -m1*gv.'*h1; 
K2 = (Vc2.'*Vc2*m2 + w22.'*Ic2*w22)/2; U2 = -m2*gv.'*h2; 
K3 = (Vc3.'*Vc3*m3 + w33.'*Ic3*w33)/2; U3 = -m3*gv.'*h3; 
K4 = (Vc4.'*Vc4*m4 + w44.'*Ic4*w44)/2; U4 = -m4*gv.'*h4; 
K = K1 + K2 + K3 + K4; 
U = U1 + U2 + U3 + U4; 
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L = K - U; 

  
Ldq1 = diff(L,dQ1); 
Ldq2 = diff(L,dQ2); 
Ldq3 = diff(L,dQ3); 
Ldq4 = diff(L,dQ4); 

  
dLdq1 = diff(Ldq1, Q1)* dQ1 + diff(Ldq1, Q2)* dQ2 + diff(Ldq1, Q3)* 

dQ3 + diff(Ldq1, Q4)* dQ4 +... 
        diff(Ldq1,dQ1)*ddQ1 + diff(Ldq1,dQ2)*ddQ2 + 

diff(Ldq1,dQ3)*ddQ3 + diff(Ldq1,dQ4)*ddQ4; 

  
dLdq2 = diff(Ldq2, Q1)* dQ1 + diff(Ldq2, Q2)* dQ2 + diff(Ldq2, Q3)* 

dQ3 + diff(Ldq2, Q4)* dQ4 +... 
        diff(Ldq2,dQ1)*ddQ1 + diff(Ldq2,dQ2)*ddQ2 + 

diff(Ldq2,dQ3)*ddQ3 + diff(Ldq2,dQ4)*ddQ4; 

  
dLdq3 = diff(Ldq3, Q1)* dQ1 + diff(Ldq3, Q2)* dQ2 + diff(Ldq3, Q3)* 

dQ3 + diff(Ldq3, Q4)* dQ4 +... 
        diff(Ldq3,dQ1)*ddQ1 + diff(Ldq3,dQ2)*ddQ2 + 

diff(Ldq3,dQ3)*ddQ3 + diff(Ldq3,dQ4)*ddQ4; 

  
dLdq4 = diff(Ldq4, Q1)* dQ1 + diff(Ldq4, Q2)* dQ2 + diff(Ldq4, Q3)* 

dQ3 + diff(Ldq4, Q4)* dQ4 +... 
        diff(Ldq4,dQ1)*ddQ1 + diff(Ldq4,dQ2)*ddQ2 + 

diff(Ldq4,dQ3)*ddQ3 + diff(Ldq4,dQ4)*ddQ4; 

  
Lq1 = diff(L,Q1); 
Lq2 = diff(L,Q2); 
Lq3 = diff(L,Q3); 
Lq4 = diff(L,Q4); 

  
tau_LE = [dLdq1 - Lq1; 
          dLdq2 - Lq2; 
          dLdq3 - Lq3; 
          dLdq4 - Lq4]; 
disp('compare torque equations with LE :') 
disp(simplify(tau - tau_LE)) 
disp(char('-'*ones(1,60))) 

  
%%%---------------------------------------  

 

  
W00 = s; 
W11 = R01.'*W00 + dQ1*Zii; 
W22 = R12.'*W11 + dQ2*Zii; 
W33 = R23.'*W22 + dQ3*Zii; 
W44 = R34.'*W33 + dQ4*Zii; 

  
dW00 = s; 
dW11 = R01.'*dW00 + ddQ1*Zii + cross(W11, dQ1*Zii); 
dW22 = R12.'*dW11 + ddQ2*Zii + cross(W22, dQ2*Zii); 
dW33 = R23.'*dW22 + ddQ3*Zii + cross(W33, dQ3*Zii); 
dW44 = R34.'*dW33 + ddQ4*Zii + cross(W44, dQ4*Zii); 

  
dV00 = -gv; 
dV11 = R01.'*( dV00 + cross(dW00, P01) + cross(W00, cross(W00, 

P01)) ); 



267 

 

dV22 = R12.'*( dV11 + cross(dW11, P12) + cross(W11, cross(W11, 

P12)) ); 
dV33 = R23.'*( dV22 + cross(dW22, P23) + cross(W22, cross(W22, 

P23)) ); 
dV44 = R34.'*( dV33 + cross(dW33, P34) + cross(W33, cross(W33, 

P34)) ); 

  
Pc11(4) = []; Pc22(4) = []; Pc33(4) = []; Pc44(4) = []; 
dVc1 = dV11 + cross(dW11, Pc11) + cross(W11, cross(W11, Pc11)); 
dVc2 = dV22 + cross(dW22, Pc22) + cross(W22, cross(W22, Pc22)); 
dVc3 = dV33 + cross(dW33, Pc33) + cross(W33, cross(W33, Pc33)); 
dVc4 = dV44 + cross(dW44, Pc44) + cross(W44, cross(W44, Pc44)); 

  
F11 = m1*dVc1; 
F22 = m2*dVc2; 
F33 = m3*dVc3; 
F44 = m4*dVc4; 

  
N11 = Ic1*dW11 + cross(W11, Ic1*W11); 
N22 = Ic2*dW22 + cross(W22, Ic2*W22); 
N33 = Ic3*dW33 + cross(W33, Ic3*W33); 
N44 = Ic4*dW44 + cross(W44, Ic4*W44); 

  
f44 =           F44; 
f33 = R34*f44 + F33; 
f22 = R23*f33 + F22; 
f11 = R12*f22 + F11; 

  
n44 = N44           + cross(Pc44, F44); 
n33 = N33 + R34*n44 + cross(Pc33, F33) + cross(P34, R34*f44); 
n22 = N22 + R23*n33 + cross(Pc22, F22) + cross(P23, R23*f33); 
n11 = N11 + R12*n22 + cross(Pc11, F11) + cross(P12, R12*f22); 

  
tau_NE = [n11.'*Zii; 
          n22.'*Zii; 
          n33.'*Zii; 
          n44.'*Zii]; 
disp('compare torque equations with NE :') 
disp(simplify(tau - tau_NE)) 
disp(char('-'*ones(1,60))) 
%%%---------------------------------------  

 
disp('compare LE equations with NE :') 
disp(simplify(tau_LE - tau_NE)) 
%%%--------------------------------------- 

  
disp(collect(simplify(D), {'sin', 'cos'})) 
disp(collect(simplify(C), {'sin', 'cos'})) 
disp(collect(simplify(G), {'sin', 'cos'})) 
%%%---------------------------------------  
% The equations of accelerations 
 

ddQ=(inv(D)*(-C-G)) 
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function T = stuff( DHstruct ) 
T  = fun_T(fun_DH(DHstruct)); 

 

 
function DH = fun_DH(DHstruct,Q) 
    Jnts = fun_JointTypes(DHstruct(:,5,1)); 
    if isa(DHstruct,'sym'), Q = 

fun_JointVariables('Pos',Jnts.R,Jnts.P); end 
    szQ = size(Q); 
    if szQ(2)>1 
        DH = DHstruct(:,1:4,ones(1,szQ(2))); 
        tmpQ = permute(Q,[1,3,2]); 
        if any(Jnts.P), DH(Jnts.P,3,:) = DH(Jnts.P,3,:) + 

tmpQ(Jnts.P,1,:); end 
        if any(Jnts.R), DH(Jnts.R,4,:) = DH(Jnts.R,4,:) + 

tmpQ(Jnts.R,1,:); end 
    else 
        DH = DHstruct(:,1:4); 
        if any(Jnts.P), DH(Jnts.P,3) = DH(Jnts.P,3) + Q(Jnts.P); end 
        if any(Jnts.R), DH(Jnts.R,4) = DH(Jnts.R,4) + Q(Jnts.R); end 
    end 
end 
function Jnts = fun_JointTypes( JointTypes ) 
    if ~isa(JointTypes,'double'), JointTypes = double(JointTypes); 

end 
    if size(JointTypes,1)>1 
        JointTypes = reshape(JointTypes,[1,numel(JointTypes)]); 
    end 
    isJnt = JointTypes ~= -1; 
    Jnts.N = numel(isJnt(isJnt)); 
    Jnts.P = JointTypes(isJnt) == 1; 
    Jnts.R = ~Jnts.P; 
end 
function JntVars = fun_JointVariables( type, Rinds, Pinds) 
    Jnum = sum(Rinds + Pinds); 
    Jinds = 48 + (1:Jnum); 
    mask1 = ones(1,Jnum); 
    if strcmpi(type,'pos') 
        colSzs = 2; 
        Q_str = 81*mask1; 
        Q_str(1,Pinds) = 68; 
        Q_str(2,:) = Jinds; 
    elseif strcmpi(type,'vel') 
        colSzs = 3; 
        Q_str = [100;81;0]*mask1; 
        Q_str(2,Pinds) = 68; 
        Q_str(3,:) = Jinds; 
    elseif strcmpi(type,'acc') 
        colSzs = 4; 
        Q_str = [100;100;81;0]*mask1; 
        Q_str(3,Pinds) = 68; 
        Q_str(4,:) = Jinds; 

    elseif strcmpi(type,'all') 
        colSzs = [2 3 4]; 
        Q_str = 100*ones(9,Jnum); 
        QDrows = [1 4 8]; 
        Q_str(QDrows,Rinds) = 81; 
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        Q_str(QDrows,Pinds) = 68; 
        Q_str([2 5 9],:) = ones(1,3).'*Jinds; 
    end 
    JntVars = sym(mat2cell(char(Q_str.'),mask1,colSzs)); 
End 
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Appendix-B 

The Matlab .m codes used to the Jacobian matrices of the SLRIP, DLRIP and TLRIP 

is given in this section.  

% Jacobian Matrix  of the SLRIP 
Px= simplify(Ad(1,4)) 
Py= simplify(Ad(2,4)) 
Pz= simplify(Ad(3,4)) 
% % disp('Jacobian matrix with derivative ') 
%%  
 Jac=[simplify(diff(Px,Q1)), simplify(diff(Px,Q2)); 
      simplify(diff(Py,Q1)), simplify(diff(Py,Q2)); 
      simplify(diff(Pz,Q1)), simplify(diff(Pz,Q2));]; 
  %%  

  
% Jacobian matrices obtained from the linear and angular velocities 

w00 = zeros(3,1); 
v00= zeros(3,1); 
w11= R01.'*w00+dQ1*Zii ; 
v11= R01.'*(v00+cross(w00,P01)); 
w22= R12.'*w11+dQ2*Zii ; 
v22= R12.'*(v11+cross(w11,P12)); 
w33= R23.'*w22; 
v33= R23.'*(v22+cross(w22,P23)); 
v03= simplify(R03*v33); 
W03= simplify(R03*w33); 
%  
M11 = simplify(diff(v03(1,1),dQ1)); 
M12 = simplify( diff(v03(1,1),dQ2)); 
M21 = simplify(diff(v03(2,1),dQ1)); 
M22 =  simplify(diff(v03(2,1),dQ2)); 
M31 = simplify(diff(v03(3,1),dQ1)); 
M32 = simplify(diff(v03(3,1),dQ2)); 
%  
Jaco_LV= [ M11, M12 ; M21, M22 ; M31, M32;]; 
%  
X11 = simplify(diff(W03(1,1),dQ1)); 
X12 = simplify( diff(W03(1,1),dQ2)); 
X21 = simplify(diff(W03(2,1),dQ1)); 
X22 =  simplify(diff(W03(2,1),dQ2)); 
X31 = simplify(diff(W03(3,1),dQ1)); 
X32 = simplify(diff(W03(3,1),dQ2)); 

 
Jaco_AV= [ X11, X12, ; X21, X22; X31, X32;];    

Jaco_Ma =[Jaco_LV;Jaco_AV] 

Deter_SLRIP= det (Jaco_Ma) 

 

 

% Jacobian Matrix DLRIP 
Ad=simplify(T04) 
Px= simplify(Ad(1,4)) 
Py= simplify(Ad(2,4)) 
Pz= simplify(Ad(3,4)) 
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%% % % disp('Jacobian matrix with derivative ') 
Jac= [simplify(diff(Px,Q1)), simplify(diff(Px,Q2)), 

simplify(diff(Px,Q2)); 
      simplify(diff(Py,Q1)), simplify(diff(Py,Q2)), 

simplify(diff(Py,Q3)); 
      simplify(diff(Pz,Q1)), simplify(diff(Pz,Q2)), 

simplify(diff(Pz,Q3));]; 

  
%%  
% Jacobian matrices obtained from the linear and angular velocities 
w00= zeros(3,1); 
v00= zeros(3,1); 
w11= R01.'*w00+dQ1*Zii; 
v11= R01.'*(v00+cross(w00,P01)); 
w22= R12.'*w11+dQ2*Zii ; 
v22= R12.'*(v11+cross(w11,P12)); 
w33= R23.'*w22+dQ3*Zii ; 
v33= R23.'*(v22+cross(w22,P23)); 
w44= R34.'*w33; 
v44= R34.'*(v33+cross(w33,P34)); 
v04= simplify(R04*v44); 
W04= simplify(R04*w44); 
M11 = simplify(diff(v04(1,1),dQ1)); 
M12 = simplify( diff(v04(1,1),dQ2)); 
M13 = simplify (diff(v04(1,1),dQ3)); 
M21 = simplify(diff(v04(2,1),dQ1)); 
M22 =  simplify(diff(v04(2,1),dQ2)); 
M23=  simplify(diff(v04(2,1),dQ3)); 
M31 = simplify(diff(v04(3,1),dQ1)); 
M32 = simplify(diff(v04(3,1),dQ2)); 
M33 = simplify(diff(v04(3,1),dQ3)); 
%  
Jaco_LV= [ M11, M12, M13 ; M21, M22 , M23 ; M31, M32, M33;]; 
%  
X11 = simplify(diff(W04(1,1),dQ1)); 
X12 = simplify( diff(W04(1,1),dQ2)); 
X13 = simplify (diff(W04(1,1),dQ3)); 
% % % 
X21 = simplify(diff(W04(2,1),dQ1)); 
X22 =  simplify(diff(W04(2,1),dQ2)); 
X23=  simplify(diff(W04(2,1),dQ3)); 
% % % 
X31 = simplify(diff(W04(3,1),dQ1)); 
X32 = simplify(diff(W04(3,1),dQ2)); 
X33 = simplify(diff(W04(3,1),dQ3)); 

  
Jaco_AV= [X11, X12, X13; X21, X22, X23; X31, X32, X33;]; 

  
Jaco_Ma =[Jaco_LV;Jaco_AV] 

 

Deter_DLRIP= det (Jaco_Ma) 

 
% Jacobian Matrix TLRIP 
Ad=simplify(T05) 
Px= simplify(Ad(1,4)) 
Py= simplify(Ad(2,4)) 
Pz= simplify(Ad(3,4)) 
%%  
% % disp('Jacobian matrix with derivative ') 
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Jac= [simplify(diff(Px,Q1)), simplify(diff(Px,Q2)), 

simplify(diff(Px,Q3)), simplify(diff(Px,Q4)); 
      simplify(diff(Py,Q1)), simplify(diff(Py,Q2)), 

simplify(diff(Py,Q3)), simplify(diff(Py,Q4)); 
      simplify(diff(Pz,Q1)), simplify(diff(Pz,Q2)), 

simplify(diff(Pz,Q3)), simplify(diff(Pz,Q4));]; 
%%  
% Jacobian matrices obtained from the linear and angular velocities 
w00= zeros(3,1); 
v00= zeros(3,1); 
w11= R01.'*w00+dQ1*Zii; 
v11= R01.'*(v00+cross(w00,P01)); 
w22= R12.'*w11+dQ2*Zii ; 
v22= R12.'*(v11+cross(w11,P12)); 
w33= R23.'*w22+dQ3*Zii ; 
v33= R23.'*(v22+cross(w22,P23)); 
w44= R34.'*w33+dQ4*Zii ; 
v44= R34.'*(v33+cross(w33,P34)); 
w55= R45.'*w44; 
v55= R45.'*(v44+cross(w44,P45)); 
v05= simplify(R05*v55); 
W05= simplify(R05*w55); 
M11 = simplify(diff(v05(1,1),dQ1)); 
M12 = simplify(diff(v05(1,1),dQ2)); 
M13 = simplify (diff(v05(1,1),dQ3)); 
M14 = simplify (diff(v05(1,1),dQ4)); 
% % 
M21 = simplify(diff(v05(2,1),dQ1)); 
M22 = simplify(diff(v05(2,1),dQ2)); 
M23 = simplify(diff(v05(2,1),dQ3)); 
M24 = simplify(diff(v05(2,1),dQ4)); 
% % 
M31 = simplify(diff(v05(3,1),dQ1)); 
M32 = simplify(diff(v05(3,1),dQ2)); 
M33 = simplify(diff(v05(3,1),dQ3)); 
M34 = simplify(diff(v05(3,1),dQ4)); 
%  
Jaco_LV=[ M11, M12 , M13, M14 ; M21, M22, M23, M24 ; M31, M32, M33, 

M34;]; 
%%  
X11 = simplify(diff(W05(1,1),dQ1)); 
X12 = simplify(diff(W05(1,1),dQ2)); 
X13 = simplify(diff(W05(1,1),dQ3)); 
X14 = simplify(diff(W05(1,1),dQ4)); 
% % % 
X21 = simplify(diff(W05(2,1),dQ1)); 
X22 = simplify(diff(W05(2,1,dQ2))); 
X23 = simplify(diff(W05(2,1),dQ3)); 
X24=  simplify(diff(W05(2,1),dQ4)); 
% % % 
X31 = simplify(diff(W05(3,1),dQ1)); 
X32 = simplify(diff(W05(3,1),dQ2)); 
X33 = simplify(diff(W05(3,1),dQ3)); 
X34 = simplify(diff(W05(3,1),dQ4)); 
% 
Jaco_AV= [ X11, X12, X13 , X14; X21, X22, X23, X24; X31, X32, X33 , 

X34;]; 
Jaco_Ma =[Jaco_LV;Jaco_AV] 

Deter_TLRIP= det (Jaco_Ma) 
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