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DERIN SiNiR AGI (DSA) TABANLI COK DIiLLi KONUSMACI YAS
TAHMINI

OZET

Finans, perakende ve diger sektorler i¢in ¢evrimigi faaliyetlerin carpici bir sekilde
bliylimesiyle birlikte, internet kullanicilarinin uzaktan profillenmesi ¢ok 6nemli bir
gereklilik haline geldi. Konusmaci yasi tahmini, 6zellikle uzak kullanicilar i¢in bu
ihtiyacin etkin bir sekilde ele alinmasina biiyiik 6l¢iide yardimci olabilir. Konusmaci
yas tahmini, konugsmay1 kullanarak yas siiflarini ve ya gergek yas degerlerini tahmin
etmek olarak tanmimlanabilir. En Onemlisi, ¢ocuklar internetteki grafik ve siddet
barindiran igeriklere genellikle fark edilmeden eristikleri i¢in, ¢ocuklarin
korunmasinda konugmaci yasi tahmin sistemleri kullanilabilir.

Bu ¢alismada, farkli siniflandirma ve 6znitelik ¢ikarma teknikleri konusmadan yas
siiflandirma ve regresyon problemleri i¢in kullanilmistir. Bu 6zniteliklerin ¢ogu,
konusmaci yasi tahmini i¢in daha dnce kullanilmamustir.

Parabolik filtre mel frekansi kepstral katsayis1 (PFMFKK), mel frekansi kepstral
katsayilarinda (MFKK) filtre bankalarinin (bant gegiren filtre dizisinin) seklini
degistirerek yeni bir Oznitelik ¢ikarma yontemi olarak onerilmistir. PFMFKK,
uyarlanmig tiim Oznitelik setlerine kiyasla kadin ve erkek veritabanlar
icin olasiliksal dogrusal ayrim analizi (ODAA, PLDA) smiflandiricist ile en iyi
performanst sunmustur. Ayrica diger siniflandiricilarla da karsilastirilabilir sonuglar
vermistir. Konusmaci tanima igin 6nerilen i-vektor ve x-vektor vektor gésterimleri de
yas tanima problemine uygulanmustir.

Bu tezde ayrica veri tabanlan arasindaki dil ve ortam farkliliginin yas tanima
performansi iizerindeki etkisi incelenmistir. Bu amagla Tiirk¢e, Almanca ve Ingilizce
tic farkli veri tabanmi kullanilmistir. Bu veri tabanlarinin hedef dilleri ile birlikte
toplandiklar1 ortamlar/geri plan giiriiltii oranlar1 da birbirinden oldukg¢a farklidir.
Deneysel sonuglar, ¢ok dilli egitim senaryosunun, tek dilli senaryoya gore yas
tahmini performansin1 ¢ok fazla etkilemedigini, ancak diller arasi1 egitim/test
senaryosuna kiyasla performansi 6nemli dl¢iide iyilestirdigini gostermistir.

Anahtar Kelimeler: Cok Dilli Egitim, Derin Ogrenme, Konusmaci Yas Tahmini
Oznitelik Flizyonu, Parabolik Filtre Bankasi.
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DEEP NEURAL NETWORK (DNN) BASED MULTILINGUAL SPEAKER
AGE ESTIMATION

ABSTRACT

With the dramatic growth of online activities for finance, retail and other sectors
remote profiling of internet users has become a crucial necessity. Speaker age
estimation can greatly help in effectively addressing this need especially for remote
users. Speaker age estimation can be defined as predicting either age classes or actual
age values exploiting speech. Most importantly, speaker age prediction systems can
be applied in safeguarding children as they usually access graphic and violent
contents on the internet unnoticed.

In this study, several feature extraction techniques are adapted and employed on
selected classification and regression models. Most of these features have never been
used for speaker age estimation. These features are used as input to selected machine
learning and deep neural network (DNN) models over age labeled multilingual
databases. i-Vector and x-vector embedding are applied for fixed dimensional
representation.

Parabolic filter mel-frequency cepstral coefficient (PFMFCC) is proposed as a new
feature extraction method by modifying the shape of the filter banks in mel-
frequency cepstral coefficients (MFCC). PFMFCC offered the best performances
with probabilistic linear discriminant analysis (PLDA) classifier for female and male
databases compared to all adapted feature sets. It also showed comparable results
with other classifiers.

Multilingual settings are established to introduce diversity in language and are
observed making differences especially when there is language mismatch.
Experimental results indicate that multilingual training setup does not affect the
performance of speaker age estimation in single language approaches much, but it
improves the performance compared to cross-language evaluations significantly.

Keywords: Multilingual Training, Deep Learning, Speaker Age Estimation, Feature
Fusion, Parabolic Filter Bank.
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INTRODUCTION

The ultimate aim of research is to find out ways, methods and solutions to specific
problems that can improve the lives of a human society. Hence, research is a long
journey of finding answers to a series of “why” and “how” questions. Discovering
the causes of problems is half of the solution. The common saying ‘the devil is in the
details’ reflects the challenges during the research process. Research brings new
perspectives in to light to solve specific problems in many disciplines. In this sense it
IS a never ending journey of enquiring answers to the very fundamental questions of
“why” and “how”. The “why” questions are usually associated with analysis of

problems whereas, the “how” wing often focus on synthesis of solutions.
Characteristics and Research Dynamics of Speech Signal

Speech is made up of both universal and language or culture-specific aspects. The
universal aspects are inherently paralinguistic in nature [1]. The balance between
these properties is still open to debate. As a matter of practical reality, it is beneficial
to improve our understanding of this balance. It can be used to develop multi-lingual
speech processing systems and utilize cross-language sharing. This eventually helps
to increase the number of languages available for certain speech technologies. In

addition, it helps to make the technologies versatile with respect to languages.

Multilingualism, which refers to the use of more than one language by an individual
speaker or by a group of speakers, represents an area of significant opportunities for
automatic speech-processing systems. Although multilingual societies are
commonplace and could be by far the majority worldwide compared to monolingual
individuals, the majority of speech processing technologies are developed with a
single language in mind mostly English [2]. In Asia and Africa alone, there are more
than 4000 languages and the chance of people speaking more than two of these

languages, is highly likely.



As a step towards improved understanding of multilingual speech processing, the
current contribution investigates on how para-linguistic aspect of speech depends on
the language spoken [3]. Para-linguistic aspect of speech include tone, pitch of voice
and speaker age. The gap in language diversity requires additional research to make

speech processing applications scalable in terms of languages.

The question, “How language emerged in to human evolution?”, may never have a
complete answer according to Dr. C. George Boeree, an American psychologist and
professor emeritus at Shippensburg University who specialized in personality theory
and the history of psychology [4]. It is one of the most difficult questions to give a
satisfactory answer. However some scholars believe that language emerged in human
society as a result of some kind of social transformation by generating unprecedented
levels of public trust. In addition there are several theories which argue on the origin

of language [5].

It is a no-brainer that speech differs across cultures and languages worldwide in a
multiple of ways, ranging from acoustic phonetics through grammar, vocabulary and
metaphor to pragmatics and discourse strategies. The differences involving metaphor
or acoustic phonetics may be pronounced even for cultural groups that share the
same language, whereas other factors such as grammar tend to encompass a larger
set of speakers. However, little attention is given to the effects of culture on speech
processing tasks comparatively. English, German and Turkish languages are selected
in this study based on availability of speech data to investigate speaker age
estimation across different languages as well as multilingual approaches to mitigate

language mismatches during evaluation.

Various studies have proposed several methods on speaker age estimation. What we
can understand from most of these literatures is that age estimation from speech is
very challenging due to its stochastic nature. Speaker age prediction is even more
difficult for people. Some of the mechanisms that people can use to predict age
include: looking at faces, listening to speech, examining maturity level and others.
Apart from such subjective estimations; scientists have made efforts to estimate age
from a DNA test [6]. They argued that if they could measure the length of a person's
telomere, they would be able to tell his/her age [7]. After all, the more times a cell
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divides, the shorter its DNA will be. And the older the person will be, the more times
the person’s cells will have divided. Although they couldn’t determine the person’s
age from DNA test, it really helped scientists to determine the ethnicity, family
relationships and gender. A team of researchers estimated age using 200 nano grams
of DNA for each age prediction. The team found its margin of error was 3.75 years
for blood samples and 4.86 for teeth. Roughly 80% of the estimations were within

five years, either older or younger [6].

Speaker age estimation is the extraction of age information from speaker’s utterance.
Feature extraction and selecting effective features that represent the speaker’s age
characteristics uniquely are keys in speaker age classification and regression.
Another equally essential stage is the design of a suitable classification or regression
method. Classifiers use the features generated through a series of operations to
predict the speakers’ age. These operations are applied on audio signals. The focus of
this research is on finding distinctive feature sets that are able to represent utterances
such that selected classifiers can recognize the age group of the speaker with better
accuracies than previous studies. In addition, the design of a suitable classifier or
regression model plays a major role in predicting the speaker’s age. This research
investigates different classifiers and regression techniques to enhance age only
classification and prediction for each gender as well as age plus gender classification

for seven class scenario.

Much of this study gives an in-depth focus for feature extraction and tries to examine
performance of some classification and regression models in the broad artificial
intelligence for speaker age estimation on single as well as multi-language databases.
However, classification and regression schemes have been dealt in a great number of
studies in the past which only need adaptation rather than invention in our work. In
addition to investigating the performance of certain feature sets, a new feature set
called parabolic filter mel-frequency cepstral coefficient (PFMFCC) is proposed in
this study. The majority of the adapted features have never been employed for
speaker age estimation to the best of our knowledge. Choice of classifiers or
regression techniques plays a vital role regardless of which feature set is applied to
them. Keeping this in mind we treated some classical and deep neural network (DNN)

models in this work.



In a wide spectrum of studies speech features are mainly categorized in to spectral,
prosodic and glottal. Spectral features are those generated as a result of spectral
analysis of speech. Spectrum refers to the distribution of energy as a function of
frequency for a particular sound source. Prosodic features express the rhythm and
intonation of a language. The term prosodic refers to the way a speaker’s voice rises

and falls.

The motivation for age recognition from a speaker’s utterance comes from the fact
that the vocal tract anatomy changes considerably in the life time of the person. DNN
algorithms are proposed recently, that can generate important features to associate
speech with age. A well-designed classifier or regression model is equally demanded
for this task. Speaker age classification is a crucial issue for targeted advertising in
the 21% century as online activities in finance, retail and other sectors have become

certainly important.

One way to recognize a person’s age is through speech. Speech is one of the ways
which enable us to estimate age of a person in addition to appearance. Age
recognition together with gender, accent and emotional recognitions has got a wide
range of applications in language learning, remote advertising (tele-marketing),
criminal investigations, automated health, education and human-computer
interaction(HCI) [8] .For all these application areas, systems can be customized
based on speaker age category. This will highly improve user satisfaction level.
Games can be designed based on age group, commercials can be broadcasted for
specific age categories, and medical diagnosis can be carried out according to

speaker’s age [9].

Speaker age estimation can help speaker recognition or verification efforts in
contemplating speaker’s speech over the years lived. This is extremely helpful
especially in identifying criminals who have stayed behind public attention for long
years. Criminals change their appearances and speech patterns. Although face
changes are quite difficult to trace as it can also be engineered, speech changes can
be treated using collaborative effort of speaker age estimation and speaker

recognition techniques.



Background noise, accent variation, speech duration, text-dependent or text-
independent control variable, recording device variation, channel and space
variability, and other related factors make speaker age classification as one of the
most challenging tasks in speech processing research. Speaker age classification
consists of feature extraction and classification. A carefully designed feature
extraction technique is not only able to extract age related features from speech but
also combat the effect of background noise as the noise coming from the surrounding
is unavoidable [10]. Classification in this context, is grouping training samples in

discrete categories and to develop models for each category.

Generally popular features such as mel-frequency cepstral coefficient (MFCC) [11],
energy, relative spectral transform (RASTA) [2], speech rate [12], RASTA-
perceptual linear prediction (RASTA-PLP)[13], are used in age classification. In
addition to these features, other features can also be calculated using prosodic or
glottal characteristics of speech utterances. Four variants of MFCC, two sub-channel
based features, two phase-based spectral features and RASTA-PLP are employed in
this study.

The i-vector is first proposed for speaker verification and they are successfully
applied to age classification task in recent studies [14]. In the study, i-vectors
corresponding to each age class are averaged in the training phase. The cosine
distance between each test sample and each target age class i-vector is computed
during the test. A similar approach is followed in our work as well. The study carried
out in [15] achieved state-of-the-art performance on the aGender database. A feed-
forward DNN for age classification using features extracted from utterances is
proposed in another study which tries to combine long-term and short-term features
[16]. In this method, Gaussian mixture model (GMM) super-vectors are fed into the
DNN similar to the GMM/SVM. A DNN age classification method that combines
database of German and Turkish speech utterances is proposed in [17]. This method

achieved an absolute improvement of 7% over GMM classifier.

Weighted supervised non-negative matrix factorization (WSNMF) is used together
with a general regression neural network (GRNN) for age estimation and gender
detection from speech [18]. This matrix is trained with GMM weight super-vectors.

5



GRNN is preferred over other neural networks since it does not demand an iterative
training and it is more effective if it is used for sparse data. A performance better

than chance level, is obtained using this experiment.

Chronologically, the first major task in this study was to summarize the performance
evaluation of three classifiers (GMM, Cosine Distance Scoring (CDS) and PLDA)
using 10 feature sets for speaker age classification. Most of these feature sets are
used for replay and spoofing attack detection in a previous study[19]. GMM and i-
vector classifiers are employed on these feature sets to detect genuine and spoofed
utterances. The constant-Q cepstral coefficients (CQCC) features with i-vector
classifier was found to offer the smallest equal error rate (EER) which is 21.38% on
the evaluation set used in the experiment. The aGender German [20], Turkish [17]
and Age-Vox-Celeb English [21] databases are used in our study. The task is

performed on male and female genders separately.
Motivation of the Study

Back in 2016 we started to re-examine and explore the capabilities of classical and
modern classifiers and function approximation approaches. The aim of this
investigation was to apply these methods on speech processing applications. We
identified three interesting areas that we can apply deep learning and machine
learning algorithms to speech processing problems:

1. Speech based criminal investigation

2. Speech for diagnosis of breathing system related health problems

3. Speaker age estimation and classification

Due to shortage of access to appropriate data we declined not to proceed on the first
two topics. With the outbreak of COVID19 pandemic, the second problem could
have been a ground breaking research in its outcome due to its level of necessity.
However, based on ease of access to suitable database we decided to conduct speaker
age estimation and classification. In addition, the explosion of violent contents on the
internet demanded our mind to devise a method that can limit access to these
contents. These internet contents are inappropriate and very abusive for children and
young people. With this in mind, identifying users based on their speech as children,

young, adults or elders remotely can save children and the youth from psychological
6



trauma while watching violent online resources. Moreover, its commercial benefit in
targeting users remotely based on their age class is what convinced us to make our

choice.

Kids these days can easily access violent and highly graphic websites that can affect
their mental development. Placing age limit requirements is extremely demanded in
such digital platforms. Most websites require users if they are not a robot prompt
which can be successfully completed by even children. But speech input must be
demanded to prove a user is not below the required age. Speech is highly secure

compared to text and image data regarding user age information.

Speech is more natural and if effectively implemented, it can easily be utilized for
remote applications and most importantly it is more convenient and reliable
compared to data communication. In commercials an automatic advertisement is very
common these days. It would be smarter if the automatic system could predict the
age of the person on a phone call. Customers feel satisfied when their preferences
have been foreseen and understood. Therefore, speech is the best choice for age
information extraction. Considering the current challenges due to the COVID19
pandemic, speech is undeniably preferable despite the fact that age information can
be retrieved from various other ways including facial images [22].

There is an old but re-emerging phenomenon called ageism [23]. Just like other
sectarian thoughts this could also be a threat to mutual coexistence of human society.
Ageism is selectively favoring or disregarding people based on their age [24]. It can
be casual or in some societies it might even be systematic. Robert Neil Butler used
this term for the first time in 1969 to describe the discrimination against older people.
There is a popular expression in Ethiopian society related to this idea which
describes older people as “the 1960s generation”. In fact the expression is not only
related to ageism, it also refers a political rhetoric. Sectarianism is generally an
uncivilized, demonizing and counterproductive to mutual coexistence, peace and

happiness of the human society.

This study is conducted with the aim of improving estimation metrics in general, or
increasing classification accuracies and reducing regression errors in particular for

speaker age estimation using specifically the aGender German and Turkish databases
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The Turkish database is collected mainly for voice conversion that includes age
information[17]. Therefore, this research work is basically a classification as well as
regression problem involving multilingual data for speaker age estimation. Trainings
are carried out with single language as well as multi-language datasets. Evaluations

are also considered for matched, cross-language and multilingual scenarios.
Freedom of speech versus hate speech

Most people use social media platforms such as Facebook, Twitter, Instagram and
others to express their free opinion [25]. Unfortunately some contents expressed as a
free thought could instigate violence and others demonize individuals and even
societies collectively. These are acts of hate speech [26]. Hate speech has caused the
death of millions in Africa and many parts of the world. It is easily accessible to
billions of internet users. Children and young people are the most likely to be victims

of hate speech as they lack maturity.

Social media platforms need to have plans to balance between freedom of speech and
hate speech. People can have the right to express their opinion to the extent of hate
[25]. But these platforms must develop mechanisms to have monopoly on who can
view selected contents and who must not view them. Age classification based on
speech can greatly contribute to this effort. It is not only authentic but also secure to
prompt users to utter their speech for a few seconds and make a decision whether to

grant or deny access based on speaker age.

Children can greatly benefit from such careful design of social media platforms as it
protects them from viewing harmful, hateful and violent contents. Speaker age
classification especially, for children recognition, can be employed with less
challenge compared to young, adult and old speakers. This is mainly because their
speech characteristics is more distinct, separable and contains the highest
fundamental frequency [27]. The average fundamental frequency F, generally
decreases with age across both male and female children of age from 6 years to 16
years old [28].



Scope and Main Contribution of the Study

This study is confined to age estimation in general, classification and regression in
particular based on speaker utterances. The study consists of two databases namely;
the aGender database which consists of 47 hours of German speeches uttered by
speakers of age 7 to 80 years old [20] and a Turkish database mainly collected for
voice conversion. Some speech data is added from Age-Vox-Celeb database in order
to include English speakers in certain scenarios. The study mainly focuses on front
end analysis of speech aimed at finding suitable feature sets for speaker age
estimation. Our study began with classification but later extended to estimation
including some regression models. However, classification is generally believed to
offer more benefits and more feasible with small database than estimation. Although
good speaker age estimation leads to an acceptable accuracy level of classification, it
requires a relatively larger database than classification. Our experiments are carried
out independently on both genders as well as on a mixed database of consisting male

and female utterances for training and testing.

In this thesis, several feature extraction schemes are employed for speaker age
estimation with selected classification and regression models. The majority of the
feature sets have never been used for speaker age estimation before to the best of our
knowledge. Except few the majority of adapted features performed comparatively
well compared to conventional feature sets. And quite few including phase-based
spectral features have surprisingly outperformed the popular MFCC feature with
certain classifiers. We carried out the experiments using Matlab, Python [29], and

Kaldi toolkit and verified better feature sets for certain classifiers [30].

We proposed a new feature set based on previously implemented feature extraction
techniques. We used parabolic shaped filter banks instead of the very common
triangular one implemented in MFCC. For ease of nomenclature we named the new
feature sets as parabolic filter MFCC (PFMFCC) based on the shape of the filter
bank. This new feature has improved the accuracy of speaker age classification with
PLDA classifier and offered comparable results in other classifiers and regression

models.



We have also applied state of the art methods to represent utterances with fixed
dimensional vectors; i-vector and x-vector. We used classical as well as neural
network classification and regression models. In addition, this study verified the
positive impact of utterance length for speaker age estimation. On top of that we
further investigated impact of mismatch in length of utterances within training and
test datasets over speaker age estimation performance.

In summary, this research work combines techniques from digital signal processing
(DSP) particularly, speech processing and artificial intelligence (Al) to predict
speaker age either in terms of age groups or actual chronological age values using
short utterances. The Al techniques specifically include selected machine learning
and deep learning classification and regression models. Utterances are taken from

three databases of English, German and Turkish language speakers.

This Ph.D. thesis is organized as follows: chapter 1 presents, overview of related
literatures and developments in speech processing research, chapter 2 discusses the
front end analysis techniques and the proposed PFMFCC feature set in detail, chapter
3 briefly examines the two embedding; i-vector and x-vector and chapter 4 presents
classification and regression schemes used. Following the methodology sections,
chapter 5 presents the experimental setups, procedures employed and parameter
specifications, whereas results, discussions and conclusions are presented in chapter
6. The last chapter relates our hypothesis with experimental results and closes the

study with concluding remarks at its final sub section eventually.
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1. REVIEW OF SPEECH PROCESSING APPLICATIONS AND
RESEARCH DYNAMICS

1.1. Speech for Age Recognition

Speech contains paralinguistic information such as speaker age in addition to the
usual linguistic contents. When we break it to the level of phonemes, it takes
approximately 100 milliseconds for people to utter a single phoneme. A phoneme is
the smallest unit of speech. The English and Turkish languages for instance, have 48
and 29 phonemes respectively. The typical number of phonemes in the world’s
languages ranges from 30 to 50. Therefore, we need utmost 6 bits to represent all the
phonemes in a certain language. Even though it could vary across age, people can
produce 60 bits of information in a second through their speech. However, the actual
information content is notably higher as speech also contains essential information
about identity, gender, age, health status, smoking status, alcohol level, accent, the

rate of speaking, loudness etc.

Human speech is rich in information. Efforts have made it possible to use some of
the potential applications of speech processing. Features extracted from an audio can
convey a vast range of information. Typical applications include speech recognition,
speech synthesis, speaker recognition, and others. In relation to these applications we
have been conducting a series of experiments and simulations in our laboratory to
use these applications for different purposes. Among these efforts speaker age
recognition and vocal tract related illness detection using features extracted from an
audio have captured our interest. While the former application is quite possible since
we have organized data and we have also access to a standard database, the later
could have taken years of data collection efforts. We pursued the age identification
due to free database access whereas; the illness detection project could be our future

research focus. .
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Popular applications of speech communication include but not limited to:
¢ Digital transmission and storage

e  Speech synthesis

e  Speaker recognition, verification or identification

e The popular speech recognition

e Handicap aids

e Signal quality refinement

e  Speaker emotion, accent, gender and age recognition

e  Speech assisted automations

The main reason why speech is preferred for information extraction in this research
IS because it is safe, reliable and remotely exploitable. In addition, there are
situations where we could be forced to know something from an utterance of an
individual. In case of age verification for instance a company which advertises its
product through automatic phone calls, it would be more desirable if the system
could recognize the approximate age of the intended customer. In fact it is less likely
for a person to be shy to tell a system. But customers would feel happy if no system
bothers them about their age. In criminal investigation, information extracted from
speech of a suspect could lead to verify his identity. Estimating the age group in case
of criminal investigation could reduce the scope of suspects. It helps to narrow down
the age range of suspects.

The reason why speech based research has remained an active area of study is mainly
because of its versatile applications. Its applications cover speech recognition,
speaker recognition, speaker age recognition, speaker emotion recognition, speech
analysis, speech synthesis, speech enhancement, speech print (voice print) and more.
A breakthrough in speech processing research can boost many sectors of our modern
life style. So far much has been done in speech recognition and a significant
development is also carried out in speaker recognition too. Unlike these two areas
much more effort is needed in specific areas such as age, emotion and accent
recognition from speech utterances. Natural language processing (NLP) is another

major area of research which attracted the attention of a significant number of
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scholars. We cannot ignore the efforts that have been delivered in the two decades

since the new millennium.
1.2. Speech Generation and Perception

The motivation for identifying the age of a speaker from his/her voice comes from
the fact that the vocal tract anatomy changes as the person gets older. There must be
a way that can be used to find out important features which associate people of the
same age. Not only a feature, but we also need a well-designed classifier for this task.
Age classification is a crucial issue in the twenty first century as online activities
such; as online shopping, online advertising, electronic commerce, retail, etc. are
getting increasing importance. One way to recognize a person’s age is through
speech. Speech is one of the ways which enable us to estimate age of a person in
addition to appearance. Age recognition together with gender, accent and emotional
recognitions has got a wide range of applications in language learning, remote
advertising (tele-marketing), criminal investigations, automated health, education
and human-computer interaction(HCI) [31].For all these application areas, systems
can be customized based on speaker age category. This will highly improve user
satisfaction level. Games can be designed based on age group central requirement,
commercials can be broadcasted for specific age category, and medical diagnosis can

be carried out according to speaker’s age [32].

Speech production from its inception at Esophagus to its delivery at the tip of tongue
and lips passes through different acoustic changes. This anatomical region undergoes
some changes throughout the life time of a person. The movement of the tongue, lips,
jaws and other organs in the articulatory system produces sound. These organs create
pressure which eventually leads to acoustic signals [33]. The movement of the organs

is incredibly quick, delicate as it is controlled by brain and complex in its nature[34].

When we speak we push air out of our lungs all the way to our mouth via the vocal
tract which basically involve throat heavily. Different sounds are produced through
the movement or vibration of the vocal cords along with our tongue and lips which
changes the air flow. A perceptible change in the sound we hear is possible with a

slight change in the position and movements of the organs. Below are some of the
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most important parts (organs) of this system. Figure 1.1 depicts the articulatory

system after the discussion [35] .

The lungs are part of the articulatory system where sound production begins. When
we breathe, air moves in and out of these two bag-like organs in our chest. When we
speak, our lungs push air up past the vocal cords and through the rest of the vocal
tract, the space in the throat, mouth, and nose where sound is produced.

The vocal cords or vocal folds are two small membranes found in our throat which
produce sound. When the vocal cords are stretched tight and close together, they
vibrate rapidly more than 100 times per second. As a result, the sound that comes out
Is louder. At a relaxed state of the vocal cords, the sound that comes out of them is
quieter, like a whisper. Pitch is affected by the vocal cords. It is a measure of how
high or low the voice is at a particular instant of time; which fundamentally means
high or low in the sense that a musical note is high or low; it does not mean a high or
low volume or loudness. When the vocal cords are stretched out longer, the sound
has a lower pitch. When they are shorter, the sound has a higher pitch. The space
between the vocal cords is called the glottis. The vocal tract moves to change the
shape and size of its opening. This movement helps to produce varieties of

articulations in different languages.

The lips are involved in the production of numerous consonants or voiced sounds: /p/,
/bl, Im/, Iwl, Ifl, and /v/. Certain ways of lip movements such as —making them

rounded, unrounded, or stretched a bit wide—also affects the sounds of vowels.

The teeth are greatly engaged when we try to say the consonant sounds /f/ and /v/,
with the upper teeth touching the lower lip, and also /6/ and /0/, with the tip of the
tongue touching the upper teeth. These sounds are commonly known as fricative

sounds in acoustics.

The alveolar ridge is the slightly rough area just behind the top teeth. It can also be
called the tooth ridge or the gum ridge.

The tongue touches or almost touches the alveolar ridge when a speaker says the
sounds /t/, /d/, Is/, Iz/, I/, and /n/. In addition with a collaborative effort with teeth it
produces /th/ sound which is extremely hard for non-native English speakers. In fact
the tongue is involved in producing almost all the sounds of English, both consonants
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and vowels. We can also refer to different parts of the tongue: the tip of the tongue,
the blade of the tongue, and the back of the tongue.

The hard palate is the hard part at the top of the mouth, beginning just behind the
alveolar ridge. It can also be called the roof of the mouth. When we close our mouth,
our tongue is probably flat against our hard palate. The tongue touches or almost
touches the hard palate when we say the sounds /f/, /3/, I/, /d3/, and ly/.

The soft palate is the softer part of the roof of the mouth, farther back than the hard
palate. It is also called the velum. If we touch the roof of our mouth with our tongue
and then keep moving our tongue farther back, we will find that softer area. The back
of the tongue touches the soft palate when we say the sounds /k/, /g/, and /1/.

The nasal cavity is the space inside the nose where air passes in and out when we
breathe through our nose. In some occasions it is referred to as the nasal passage.
This area is important in producing the nasal sounds /m/, /n/, and /y/ [36]. These
sounds are especially important in speaker recognition. For these sounds, the air
stream moves up and out through the nose instead of the mouth. The articulatory
system organs that play roles in generation of speech signal are shown in Figure 1.1

below.

The mathematical model of speech generation is displayed in Figure 1.2 below. In
this model, the cross-sectional area of the oral cavity A(x,t), from the glottis,
at x = 0, to the lips, atx = L, is determined by five parameters: tongue body height,
anterior/posterior position of the tongue body, tongue tip height, mouth opening and
pharyngeal opening. In addition, a sixth parameter is used to additively alter the

nominal 17-cm vocal tract length [36].

The pressure created during a certain speech session p(x,t), the volume
velocity u(x, t), the cross sectional area A(x,t), position x and time t satisfy the
following pair of partial differential equations given in (1.1) and (1.2) which
basically express newton’s law and conservation of mass respectively. The symbol ¢
is the speed of light in equation (1.2).

o _ _p u (1.2)

_ax - A(x,t)a
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Each individual phoneme in speech production in any language can be categorized as

voiced and non-voiced sounds. The non-voiced sounds in the English language

consists of the sounds (a, €, I, 0 and u) commonly known as vowels whereas the

voiced sounds consist of the majority of the consonants. These sounds have their

own typical characteristics which makes them possible to identify during speech

recognition problems. The speech wave is conceived at the far inner end of the vocal

tract with a great deal of assistance by lung, diaphragm and other breathing system

organs. It finally emerges at the outer end with the help of our lips, nose, tongue and

teeth as an acoustic wave. So basically speech is a result of a series of vibrations due
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to the pressure created during collision of organs in our articulatory system. The
pattern of our speech goes through gradual changes as we get older because these

organs undergo certain changes over the years we lived.

A simplified model of the vocal tract assumes the vocal passage as a tube of non-
uniform and time varying cross section. As the air in this cavity varies in pressure it
creates unique and distinct speech sounds. The vocal, glottal and radiation models
consider soft walls, effect of friction and thermal conditions. The source and
radiation models try to present the mathematical descriptions of the phenomenon that
occur at glottis and lips during a speech session respectively. The glottal model is
involved only to describe the voiced sounds. A random noise replaces the glottal
transfer functions during unvoiced sounds. The glottal [37], vocal tract, radiation and
the general speech models are given in equations (1.3), (1.4), (1.5), (1.6) and (1.7)
respectively. In fact equations (1.3) and (1.4) are used to compute the glottal model.

0.5 (1 — cos (Z—")) 0<n<hN, (1.3)
1
gln] = cos(%) N, <n<N;+N,
2
0 otherwise

This glottal approximation model is proposed by Rosenberg [36]. In the z-domain the

glottal pulse model for voiced speech is approximated as

5(2) - (1.4)

- (1-z—1)2

Whereas, G(z) = 1 for unvoiced speech.

The shape and size of the vocal tract tube undergoes gradual changes. This non-stop
change affects the models that are being discussed here. Age class and gender based
models are necessary to address these changes. The nature of the tube shown in
Figure 1.2 determines the characteristic feature of the speech uttered It is not only the
size and shape of the tube that affects the nature of the speech produced but also the
inner surface of this tube matters much. It is not only the size and shape of the tube
that affects the nature of the speech produced but also the inner surface of this tube

matters much.
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Figure 1.3. Speech production model

Equation (1.5) above approximates the majority of sounds with all-pole vocal tract
model. The speech radiation at the outer end of the vocal cavity by the lips, teeth,
tongue and nose is approximated using a transfer function with a zero slightly inside

the unit circle as:

R(z) = 1- 271 (1.6)

Typical values of « include 1 and 0.98 in equation (1.6). Finally the overall transfer

function for speech production is given by

% = AyG(2)V (2)R(2)

(1.7)

Where, S(z) and E(z) represent the produced speech wave and the initial excitation

in z-domain respectively.

Our ear has got 3 sections namely; the outer, middle and inner ear. These sections
constitute the auditory system. The perception process begins with filtering and
converting the audio wave in to neural signal. Neural transduction is performed

between the inner ear and the neural pathway to the brain. Recently a variety of
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models that can simulate our auditory and perception capabilities are proposed. With
the re-emergence of the neural networks, these models have considerably improved.
Spectral signals coming from the medium, mainly the air (atmosphere) are converted
in to neural activity signals in basilar membrane. Finally the neural activity is

converted to language code in our brain
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Figure 1.5 below summarizes the whole synthesis to interpretation of speech. The

Figure 1.4.  Speech perception process

origin of every speech is the human brain and its eventual destination is also brain

where the original message is interpreted and understood.
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Figure 1.5. Inception, generation, propagation and interpretation
of speech

The message conceived in the brain is converted to language codes. Prosody (syntax
or rhythmic aspect of language), markers denoting duration of sounds, loudness and
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pitches are included in the codes. The next step is to initiate neuro-muscular

commands to provoke the vocal cords in order to vibrate at suitable circumstances.

1.3. Procedural and Rule-based Classical Programming versus Artificial

Intelligence

Classical and traditional programming paradigm needs inputs and a set of rules to act
upon these inputs to produce intended outputs. But artificial intelligence makes it
possible to train a machine to learn rules based on a huge amount of data attributes.
The subclass of a machine learning discipline called Deep learning works much more
like a human evolution [29]. When humans were few they had a very simple and
uncivilized way of life. As time goes on the human population grows exponentially.
As a result, the rules and ways of life started to be more complex than before. People
started to learn new rules to make their life better and easier. Complex rules have
been developed. Rules that have been accepted as the best were changed by new
rules as humans learn new ways, new philosophies and new societies as well as new
world. Similarly, a deep learning system creates poor rules over few data. But as our
data grows, the system automatically gets better and better. Data is very important

for a deep learning system to be all inclusive.

As we have tried to see the analogy between a human evolution through thousands of
years and the machine learning process since its first invention, they have both
shown a better progress in terms of simplicity and speed of task execution. This
progress comes due to training with variety of data and better philosophy. For a
human evolution, life philosophy could be a good aspect to explain the rules and
procedures man has followed through the years. Whereas, computing machines
exploit algorithms and/or methods to produce an output based on input attributes

given to them.

Since the beginning of the second decade of this millennium researchers have been
attracted to neural networks. Neural networks did not give good results during the
first attempts. It was hopeless when the first perceptron was proposed to anticipate
the human neuron. But some dedicated scientists have not given up on their study to
find successful results. They kept on believing that a neural network eventually

works out. Recently artificial neural networks connected in a successive manner have
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been designed and applied to various classification problems and found to deliver
amazing results. However a big question lies in every research that researchers could
not give an answer to the question “why neural nets start giving amazing results?”” In
fact there is no question about how it works. Major part of our research incorporated
deep neural networks (DNN) [29].

The diagram shown in Figure 1.6 below clearly explains the difference between
classical programming and machine learning. Deep learning is a sub category of
machine learning where initial weights of all synapsis connecting neurons of hidden
layers as well as terminal layers gets updated every time a feature is given to the
input layer based on the corresponding label. In Figure 1.6 rules basically stand for
algorithms or a set of procedures based on which a machine gives an output. Data in
our case stands for feature matrices or vectors extracted from speech frames and
output stands for age classes or actual age values. The top block in this figure
represents supervised learning in Al which needs labels to create suitable models.
The PLDA and CDS in our study are among these algorithms.

A great many of Al algorithms however, train models without labels. These
categories of models are said to be unsupervised learning algorithms. GMM is one of
them. This class of algorithms also includes several deep learning models.
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Machine Learning, Deep
Learning and Al Rules
> Algorithms
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Figure 1.6. Classical programming versus machine learning paradigm
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1.4. Literature Review and the Research Dynamics

Books, journal and conference articles, lecture notes, git-hubs, google forums, and
internet resources are exhaustively used to proceed on this research study. The vast
majority of our references are specifically related to speaker age estimation or
classification. Among these literatures most of them also include gender detection or
classification. Speaker recognition and verification studies come at the second top in
our list of resources. Books on machine learning, pattern recognition, speech
processing and programming paradigms are highly used in the process of this

research.

We believe that looking at the brief history and developments of signal processing
gives more insight in to speech processing and eventually brings us to speaker age
estimation more specifically. It goes as far back as the 17th century, where we find
the contribution of signal processing principles in the classical numerical analysis
techniques according to Alan V. Oppenheim and Ronald W. Shafer renowned
scholars in the signal processing discipline. In addition, digital control systems of the
1940s and 1950s consist of these principles in their operation according to Wikipedia
sources. Speech is the most popular if not dominant among all signals which has
been exploited, dealt, analysed, processed, transformed, made storable and used for
communication more than any other signal. These operations made transmission and
receiving audio signals through wired or wireless channels a lot easier. The half
century old speech processing discipline was not and will not be all pretty easy and a
free ride. It has always been challenging ever since its inception back in the 1950s. It
went through several periods of intense promises. One of the most popular
applications of speech processing; speech recognition began with the invention of
Audrey, which is a digit recognizer, by bell Laboratories’ researchers in 1952 [38].
The long and arduous desire for humans to design machines capable of mimicking
human behaviors inspired researchers to devote their time and effort in the field of
speech processing. The age old aspiration is to create a human-like machine able to
recognize and synthesize speech. In its modern sense artificial intelligence played a
vital role in many areas in the 21st century. Al emerged in the 1950s and has been
being employed repeatedly in automating tasks otherwise performed by humans [29].

It was first coined at the Dartmouth conference in 1956..1t is a general discipline
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which encompasses machine learning and deep learning. Symbolic Al, the dominant
paradigm in Al from 1950s to the late 1980s, is having sufficiently large set of
explicit rules and procedures for manipulating knowledge. Speech recognition,
speaker recognition, speaker emotion recognition, accent recognition, speaker age
estimation and many other speech research disciplines have been benefiting from Al
subsets such as machine learning and deep learning.

The Latin phrase “annus mirabilis™

which means “marvelous year” originally used
to refer the amazing works of Sir Isaac Newton for his laws of motion [39]. The year
1948 is widely regarded as the miraculous year (“annus mirabilis”) of signal
processing with the emergence of a breakthrough research work entitled a
mathematical theory of communication by Claude Shannon [40].

! “Annus mirabilis (pl. anni mirabiles) is a Latin phrase that means “marvellous

year”, "wonderful year”, "miraculous year" or "amazing year". This term was

originally used to refer to the year 1666 (of Isaac Newton), and today is used to

refer to several years during which events of major importance are remembered.

Prior to this, however, Thomas Dekker used the phrase mirabilis annus in his
1603 pamphlet The Wonderful Year.” as quoted from Wikipedia [39].

The initial sign of speaker recognition solely based on speech goes as far back as the
biblical era in history where Isaac , who was unable to see because of old age, trying
to recognize his two sons Esau and Jacob to give his blessings according to the book
of genesis in the bible (Gen. 27:22-23) . The story tells a lot about age and identity
information that exist in a human speech [41]. Speech similarity occasionally exists
in family members of the same gender.

Speaker recognition and verification are undoubtedly the most widely dealt area of
speech processing next to speech recognition. While the former is finding out who is
speaking among many available candidates, the later compares a person’s speech
with a given template [42]. Speaker recognition or otherwise known as identification
is one to many mapping whereas speaker verification or authentication is a one to
one mapping [43]. These two studies contain the speaker’s age information among
others. While some depend on it, the majority of speaker recognition and verification
researches do not relay on speaker age. Some are text independent whereas the

majority still remains dependent on text.
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The first attempt to deal with speaker age emerged in 1959 where the pitch and
speech duration characteristics of older males are analyzed [44]. Three age groups;
with average age of 47.9 years ranging from 32 to 62 years consisting of 15 adult
individuals, with mean age of 73.3 years consisting of 12 elders ranging from 65 to
79 years designated as elder group | and with mean age of 85 years consisting of 12
senior individuals ranging from 80 to 92 years designated as elder group Il are
involved in this study. The study found out a rising mean fundamental frequency

with age.

The British broadcasting corporation (BBC) in its “100 year life “section published
an article entitled “The age you feel means more than your actual birth date” written
by David Robson in 19th of July 2018 [45]. According to the article, most people
feel younger or older than they really are and this feeling of subjective age has a big
effect on their physical and mental health. This may also impact our speech patterns.
It affects the way we speak psychologically. However, the actual age is
unchangeable just like our height and shoe size. According to some scientists,
subjective age could be the reason for some people to appear to flourish as they get
older — while others fade. It has also been indicated in this article that, people
become less extrovert and less open to new experiences. In conclusion, people tend

to mellow as they get older according to the article.

Gender recognition is dealt in its own and along with speaker age in various studies.
Results of a certain gender based study suggests that cross-gender acoustic
differences are partly language dependent and could be socially constructed [31].
Gender recognition is a lot easier compared to speaker age recognition mainly due to
the differences in average fundamental frequency (f,), f, range, pitch period,
phonation type and speech rate. For instance, the fundamental frequency (f,) for
children, female and male speakers, ranges 200-400, 150-200 and 50-200 Hz

respectively.

Non-linguistic information such as speaker age can be extracted from speech signals
using cognitive operations [46]. Speech rate can be considered as one source of
information by which listeners use to extract speaker age information, particularly

when listening to older speakers. Obviously, speech rate is not the only speaker age
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tip, and when the speaker is relatively young. In spontaneous speech context listeners

primarily relay on other sources of information such as acoustic and linguistic.

The first attempt to address the problem of age classification was made in the early
1950s [47], however this problem was supported by computer aided systems dealt
based on information obtained from speech only recently[48]. Speakers of two
databases, the Japanese speech corpus for large vocabulary (JNAS) and
S(senior).JNAS, were divided into two groups by listening tests [48]. The speakers
whose speech sounds so aged were put together. The other group has the remaining
speakers of the two databases. After that, each: speaker group was modeled with
GMM. Experiments of automatic identification of elderly speakers showed the
correct identification rate of 91%. To improve the performance, two prosodic
features were considered. These features are speech rate and local perturbation of
power. The identification rate has been improved to 95% using these features. Using
scores calculated by integrating GMMs with prosodic features, experiments to
automatically estimate speakers' age have been carried out. Accordingly, high
correlation between speakers' age estimated subjectively by humans and

automatically calculated scores of 'agedness' was reported [47].

Acoustic feature sets were developed for speaker age estimation in a study conducted
a decade ago [49]. MFCCs extended by a set of prosodic features, pitch, fundamental
frequency, and first four formant frequencies are used as baseline feature sets. 220
features were obtained when these features are combined. Then, the 220 features are
reduced by selecting the best feature subsets. Selection is done by maximizing the R2
variance with R as correlation using multiple regression/correlation analysis.
Eventually a mechanism is designed in their study to select the best subset composed
of one feature, two features, and continues until there is no better subset. University
of Florida VVocal Aging Database (UF-VAD) has been employed to test this approach.
This database contains 5 hours of speech for 150 different speakers and 1350
utterances spoken in English. It has 3 age classes equally divided between males and
females for young, middle-aged, and old elder. They generate a constant high-
dimensional feature vector that is independent of the length of the utterance and of
the extracted features for each speaker in the database and is represented by a
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Gaussian model. Adding prosodic, pitch, and formant features to the MFCCs feature
sets improved the results by reducing the mean absolute error between 4-20%.

Background noise, accent variation, speech duration, text-dependent or text-
independent control variable, recording device variation, channel and space
variability, and other related factors make speaker age classification as one of the
most challenging tasks in speech processing research. Fusion of acoustic and
prosodic level information offered weighted and unweighted accuracies of 49.5%
and 52% respectively for speaker age classification. It also offered 88.4% and 85%
accuracies for gender recognition likewise [50]. Speaker age classification consists of
feature extraction and classification. A carefully designed feature extraction
technique is not only able to extract age related features from the speech but also
combats the effect of background noise as the noise coming from the surrounding is
unavoidable. Classification in this context, is grouping training samples in discrete
categories and to develop models for each category.

The modulation cepstrum coefficients instead of the cepstral coefficients for age and
gender classification is proposed [51]. They extracted smooth information of the
cepstral over a period of times for extracting frames from the speech utterance. The
discrete cosine transform (DCT) was used over a fixed duration window. The speech
utterance in modulation cepstrum domain has been filtered by decomposing the
utterance cepstral trajectories into groups of low and slow frequencies. And then, the
mel cepstral modulation spectrum (MCMS) features are extracted. The low
modulation frequencies of MCMS (3-14 Hz) have the efficient information needed
for age and gender classification as reported. A comparison of these features with the
conventional MFCC was made and an accuracy of 50.2% using the MCMS features

was reported.

Three novel systems which combine short-term and long-term cepstral features for
speaker age recognition have been proposed and compared [52]. Pitches extracted
from span of speech correlation clearly with the speaker age despite the fact that
common successful systems such as GMM models and multiple phone recognizers
that utilize such features have less performance than other features based on their
acoustic analysis. Looking at independent performance of these two feature types,
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short-term features are observed performing better than long-term ones with the feed
forward DNN classifier in a certain study [53]. While a combined GMM/DNN
classification scheme over short-term features offered 74.22% classification accuracy
for female Turkish database, it showed more than 8% deficit for a DNN applied on

long-term features with the same dataset according to this study.

In a 2016 speaker age estimation study, it was shown that the use of phonetically-
aware i-vector extractor, could improve speaker age estimation performance
compared with the GMM-UBM based counterpart [54]. Accordingly processing i-
vectors through an LDA transform trained with discrete age labels dramatically sped-
up the SVR training process in addition to improving speaker age estimation
performance. DNN senone posterior based i-vectors method achieved speaker age
estimation performance with a mean absolute error (MAE) of 4:7 years for both male
and female speakers on the NIST SRE 2010 telephony test set. Basically the use of
x-vectors for speaker age estimation is not the earliest development in speech
research as x-vector embedding had been used for speaker verification (SV) before
they were applied for speaker age estimation [55]. Robust speaker recognition was
implemented using these state of the art embedding. The model was proposed by
David Snyder for speaker verification (SV) [56] and later extended in 2018 [57].
Speaker verification project [55] exploited and has been built on top of kaldi recipe
[58].

The question why estimating speaker age keep on being challenging remains one of
the top areas of research in speech processing until an accurate or precise method is
devised. Age estimation remotely has become more important than ever due to the
emergence of violent and sensitive contents on the internet. These contents are
unpleasant and harmful to children and young people. In addition it can be employed

future technologies to settle possible tensions due to ageism.

The effect of aging on speech production patterns has been studied using two
hundred Czech speakers whose age spans from 20 to 80 years old [59]. This study
confirmed variations in temporal intensity and fundamental frequency domains
across different age groups as well as genders. Based on the experiments carried on

200 Czech speakers, adult men are the fastest and most stable across utterances.
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Supervised non-negative matrix factorization method is used for speaker age
estimation and gender detection [18]. The method used hybrid architecture of
weighted supervised non-negative matrix factorization (WSNMF) and general
regression neural network (GRNN). Applying this approach on spontaneous read
speech corpus in Dutch offered a mean absolute error rate of 7.48 years for age
estimation and an accuracy of 96% for gender detection.

Information, such as speaker identity, gender, age range, and emotional state, are
termed as paralinguistic information. Automatic recognition of this information can
guide human computer interaction systems to automatically understand and adapt to
different user needs. Several studies indicate that automatic age recognition could be
a breakthrough in behavioral studies and health care as well. Much focus is given to
the acoustic and prosodic level approaches for speaker age and gender identification
[50]. Two baseline systems: Gaussian mixture model (GMM) on short-time spectrum
based mel-frequency cepstral coefficient (MFCC) features, and support vector

machine (SVM) on GMM mean super vectors have been considered in this study.

Scholars applied Utterance modeling with i-vectors to estimate speaker age [60].
This model has been used in conjunction with within-class covariance normalization
(WCCN) and least square support vector regression (LSSVR) to address speaker age
estimation which has achieved a Pearson correlation coefficient and mean absolute
error of 0.772 and 6.08 respectively. Telephone utterances of NIST 2010 and 2008
are used for evaluation. The effect of some major factors influencing the proposed
age estimation system, namely utterance length and spoken language are analysed in
this scheme. Language, the communication channel at which the speech is recorded,
and environmental conditions could affect the process of age estimation among other

factors.

A comparison of human and machine estimation of speaker age conducted by Mark
Huckvale and Aimee Webb showed that both human and machine automated
approaches have difficulty in accurately predicting the age of elderly speakers [61].
The comparative study showed that human and machine accuracy is more similar
with average errors of 9.8 and 8.6 years respectively. However the human estimation

accuracy was believed to improve to 7.5 years if panels of listeners were consulted.
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Both the age of speakers and listeners impacts the result. Children and young people
do not have much experience compared to adults and older people to make relatively
better estimation. Machines can also be thought analogously in a similar perspective
as more data is fed to them they would improve their estimation capability. More
experience observed in adults and elderly people is equivalent to more training data

to machine estimation.

A mean absolute error (MAE) of 4.9, which is 14% better than the i-vector baseline,
is achieved applying x-vector neural network architecture on NIST SREO8 dataset
for training and NIST SRE10 for evaluation [62]. This architecture uses a series of
time delay layers (TDNN) followed by a temporal pooling layer which summarizes
the feature sequence into a single fixed dimension embedding. The embedding is fed
into a series of feed-forward layers to predict the age value. The x-vector alone
outperformed the i-vector baseline by 14%. In addition combining both the i-vector
and x-vector improved the i-vector baseline result by 9%.

Support vector machine (SVM) is employed for speaker age estimation using the
Gaussian radial basis function (RBF) as a kernel on MFCC and perceptual linear
predictive (PLP) features as input sequences [63]. The gamma parameter on the RBF
shows an improvement in speaker age estimation with smaller values but eventually
starts degrading with a rise in gamma values. Speaker age estimation is proved to be
better with 39 MFCC feature sets compared to 13 and 24.

Another interesting study on speaker age estimation includes a neural network back
end used in an effort to replace classical classifiers and regression techniques which
is carried out in 2015 [64]. The neural net is applied on i-vectors to generate speaker
age values on test set speakers after the network is trained with a set of data reserved
for training. According to this study carried out on national instate of standards and
technology (NIST) database 2008 and 2010 conventional MFCCs with short term
cepstral mean and variance normalization (CMVN) [65], worked best as the features
for i-vector extraction; WCCN, and treating speakers as classes helped. However
linear discriminant analysis (LDA) did not help considerably. To make it more
understandable, no clear benefits were obtained with two-layer structure. The study
suggested that a network with a single hidden layer trained with stochastic gradient
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descent (SGD), is the recommended choice [66]. Eventually the artificial neural
network (ANN) back end has reduced the MAE by 4.5% compared to support vector
regression SVR [64]. Fedorova et. al indicated that the back-end may not have so

much effect when the already compressed i-vectors are used as input features.

An attempt was made to use long short-term memory (LSTM) recurrent neural
networks for speaker age estimation and explore its performance over 3 speech
durations (3s, 5s and 10s) [67]. However, the emphasis was on backend mechanisms
rather than the nature of the speech. LSTM is a neural network which has the ability
of learning order dependence in sequence prediction studies. A similar attempt has
been made to investigate effect of utterance length mismatch in training and test

datasets using an end-to-end DNN approach [62].

A doctorate research carried out back in 2017 emphasized on generating new feature
sets and deep neural network architectures for speaker age and gender classification
[68]. Transformed mel-frequency cepstral coefficients (T-MFCC) are generated
using DNN methods in [68]. This scheme has offered accuracies of 56.13%, 58.98%,
59.59% and 61.16% with T-MFCC with i-vectors as a class models based, T-MFCC
with DNN as class models based, T-MFCC with DNN as speaker models based and
fusion respectively.

It is reported that a certain DNN based classification experiment offered better
speaker age and gender classification performance compared to traditional machine
learning algorithms [69]. The researchers pointed out that age alone and a joint
classification with gender offer different figures as 48.41% and 57.53% jointly with
gender and age alone classification respectively. The gender classification
performance is reportedly 88.8%. The joint gender and age classification is the most
challenging task followed by age alone whereas gender classification is a lot easier
compared to the other two tasks as the speech characteristics of males and females is
distinct and separable.

Most recently, a multi-modal age corpus which can alleviate the challenges arising
due to shortage of balanced and sufficient data has been established using the
VoxCeleb2 database suitable for age estimation [21,70]. This database is used along
with aGender and the Turkish database in our study [20]. It is reported in certain
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studies that speaker age estimation is more challenging than facial age
estimation.[21]. These studies also indicate that facial age estimation can be more
robust. Another study which aims at estimating gender and age from speech signals
applying state of the arts x-vector and transfer learning used Age-Vox-Celeb
database [71].

Recently, age dependent insensitive loss has been used to estimate speaker age and
short duration speech data has been employed for speaker profiling [72], [73]. The
former study reported improvements in the mean absolute error (MAE) value ranging
3.1% to 5.2% using the NIST SRE 10 database as an evaluation set. And the later
achieved MAE values of 5.2 years, and 5.6 years for male and female speakers

respectively.
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2.  ADAPTED AND PROPOSED FEATURE EXTRACTION
TECHNIQUES

2.1. Introduction

Speech is inherently regarded as a concatenation of discrete and finite set of symbols
called phonemes. As stated in chapter 1 the main purpose of speech is
communication. And the communication potential of speech can be characterized
using the idea of the famous information theory proposed by Shannon [40]. Signal
processing is obviously fundamental to feature extraction computations. The major
part of it involves signal representation and transformation. Generally speaking,
information processing and manipulation begins with identifying the source of
information. Obviously a human speaker is our source when the information needed
is embedded in speech. Therefore recorded audios organized as databases in gender
and age classes are our source. Feature extraction is a distillation process. The values
generated in this process, are believed to represent certain attributes of the signal.

Figure 2.1 below shows general procedures in feature extraction operations.

Speaker
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A 4

Speech
representation
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Information Extraction,
Manipulation and Utilization

Figure 2.1. General block diagram of pre and
post signal processing operations

32



The original representation size of the signal is reduced at the end of the process. A
characteristic of large data sets is a large number of variables that require a lot of
computing resources to process. Feature extraction is the name given for methods
that select and/or combine variables into features, effectively reducing the amount of
data that must be processed, while still accurately and completely describing the
original data set. It reduces redundant values and focuses on unique values. For
instance noise is a common characteristic of speech signals, therefore feature
extraction works very hard to remove or reject it. But it should be noted that, losing

important or relevant information must be avoided during the process.

The following subsection presents preliminaries to feature extraction; mainly time
and frequency domain analysis of speech signal. This discussion will pave the way to
the various feature extraction methods and operations as all of our experiments need

these prerequisite computations.
2.2. Time and Frequency Domain Analysis of Speech Signal
2.2.1. Pre-emphasis

The majority of spectral energy of speech is concentrated at the lower end of spectral
plots. At the higher frequencies however, the energy is much weaker. It is normally
assumed that spectral energy roughly drops 2 dB for every 1 kHz of frequency
increase (i.e. 2dB/kHz). This potentially causes practical problems in implementation.
To compensate for such inaccuracies during implementation a pre-processing tool is
required. A pre-emphasis finite impulse response (FIR) filter can play crucial role in

amplifying spectral components at higher frequencies.

Excessive pre-emphasis however, would cause problems to fricative sounds as they
have more energy at high frequencies. Therefore, the decision on how much pre-
emphasis is needed depends on application and implementation details. Generally
pre-emphasis filter serves to achieve the following objectives:

1. to amplify high frequency components

2. to balance the frequency spectrum

3. to avoid numerical problems during discrete Fourier transform (DFT) operations

and

33



4. to improve the signal to noise ratio (SNR) of speech utterances [74]

Given a discrete speech sequence x[n] accessed using a Matlab
command,{ [x, fs] = audiored(wavFilePath); }, the outcome signal y[n] after
applying pre-emphasis filter is defined as:

y[n] = x[n] — ax[n — 1] (2.1)
where the constant parameter o determines the cut-off frequency of the single-zero

high pass filter through which x[n] passes and usually assumed to be 0.94.

2.2.2.Windowing

The speech signal is extremely dynamic which changes its statistical properties
within short period of time. For a stable and static analysis splitting up sentence level
speech signals in to pieces good enough to represent a phoneme is needed. For non-
stationary signals like speech spectral features in short segments rather than entire
signal are of great importance for a great deal of applications.

Speech utterance of length Ly seconds sampled at f; Hz contains Ly * f; number of
samples. For instance a 3 second utterance sampled at 8 kHz is represented by 24000
discrete samples. This 3 second speech is not stationary in its statistic properties.
Therefore cutting the 3 second speech in to smaller frames of length Lgseconds is
carried out in order to get a new signal whose contents are capable of representing
phonemes and maintain statistical properties stationary. The disadvantage of
representing speech as a concatenation of independent and relatively stationary
pieces of smaller frames is discontinuity. One way to avoid such discontinuity is by
introducing overlap during framing. We shift the framing window so as to involve
25%, 50% or 75% of the previous frame which basically creates continuity between
consecutive frames. We choose 50% in our experiments; however it can also be
researchable parameter.

In the next subsections and entire unit we used x[n] notation to represent a signal for
a single frame, but to make it clear the full duration signal X[n]is a superposition of
all the frames in it. The following equation displays the mathematical description of
speech using frames obtained through the process displayed by Figure 2.2 below

X[n] = %7, x;[n] (2.2)
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The upper summation limit N¢ represents number of frames which can be computed
from the length or duration of speech L, , length of frames L, and overlap length or

hop duration M as shown below.

N, l Ls—M J (2.3)
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Figure 2.2. Framing and feature extraction using windows

A number of framing windows have been proposed for the purpose of splitting
dynamic signals in to smaller and static enough for further processing. The four most
popular windows in signal processing are rectangular, Hanning, Hamming and
Bartlet whose discrete time functions are given in the following equations

respectively [75].

0, otherwise

(2.4)

w(n] = { where My = Ly * f;

Where the product,Ly = f;, gives the number of discrete samples in a certain frame.

Infect every frame consists of equal number of samples as the duration of every

frame is equal.
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) (25)
Lf*fs

0, otherwise

The Hamming window is the most commonly used window for the sake of reducing

0.5 — 0.5cos(2n—n 0sn<Lg=f;
w[n] =

harmonics and leakage. Its function is given below

0.54 — 0.46c0s(222), 0<n<Lp+f (2.6)
wln] = Ly*fs
0, otherwise
Mathematical description of the Bartlett or triangular window is given below
= 0<n< it @)
J Lf*fs 2
wn] =<, _ _2n  Lr*fs
I2 Lpxfs’ 2 sSn=<Lpxfs
k 0, otherwise
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Figure 2.3. Framing windows
Finally the rarely used Black man window is given by
(2.8)

Lgxfs Lgxfs
0 otherwise

2nn 4mtn
— <n<
w[n]={0'42 0.5COS( f>+0.08cos( f), 0<n<lLfxfs
The waveforms of the five framing windows discussed so far, are shown in Figure

2.3 above for a window length of 20 milliseconds.
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2.2.3. Time domain analysis

The time domain analysis fundamentally assumes the speech signal x(t) as dynamic
and its properties change relatively slowly with time notably (5-10 sounds per
second). It exhibits uncertainty due to small amount of data. Thus time domain
processing of speech signal begins with a suitable representation and framing with
one of the windows discussed in the above section to get stationary segment. There
are basically two major choices for this task; waveform and parametric
representation. The parametric speech representation is further classified as
excitation and vocal tract parameters. The speech synthesis described in equation
(2.1), is converted to analysis equation using product operation to get mathematical
representation of each frame as shown in equation (2.9) below.

xi[n] = X[nlwnh—-({—-1) %] (2.9)

Where My represents number of samples in the framing window which can be
computed as a product of the sampling frequency f; and frame duration Lf
(M; = f;Ly), x;[n] denotes the discrete time representation of the i*" frame, and the

index i runs from 1 to the number of frames Ny in the utterance (i = 1,2,3, ..., Nf).

Figure 2.4 below shows framing with a Hamming window of 50% overlap where
every preceding frame consists of half unique and the other half similar contents with

the current frame.

Amplitude

0 240 480 720 960 1200 1440 1680 1920
Time index m in seconds

Figure 2.4. Framing with 50% overlap
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Popular time domain speech computations following framing include:
e  Zero crossing rate

e Level crossing rate

e Energy

e Autocorrelation

e Pitch range

e Average magnitude difference function (AMDF)

The zero crossing rate counts the number of sign changes for each sample in the

entire frame. It is computed as:

Zee = Xi=10.5(sign(x[k]) — sign(x[k — 1])) (2.10)

It basically answers the question “how many times the speech signal crosses the time
axis in a given frame. It is a reflection of frequency and high Z.. value indicates high

frequency.

Energy of a speech frame x[n] is computed via adding all the squared samples in an

entire frame as

Es = Yn{x[n]}? (2.11)

where N is the length of a certain speech frame x[n]. The short energy can also be
computed from the frequency domain representation of the signal using Parseval’s

theorem which will be shortly discussed in the next sub section.

Combined with short time energy can be used to detect voiced and unvoiced sounds
as high energy E, and low Z.. values indicate voiced speech whereas low energy
and high Z.. values usually represent unvoiced ones. We recall that vibration of
vocal cords is caused during voiced sound generation; on contrast unvoiced sounds
do not need any vibration of the vocal cords. The voiced phonemes tend to be louder
like the vowel sounds (/a/, /e/, /il, lol, lul) whereas the unvoiced phonemes are abrupt
like the sounds /p/, /t/ and /k/ [35]. These characteristics can be exploited in speech

recognition applications.

Correlation function is commonly used in speech processing applications to show the

difference between random variables. In quasi periodic signals such as speech we use
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autocorrelation computation to uncover the distinction between a speech signal and

its delayed version by k samples mathematically described as shown below

¢ (k) = = IN=¢ x[n]x[n + k] (2.12)

This equation is depicted in a block diagram shown in Figure 2.5. For a delay of k
samples the average magnitude difference function (AMDF) which serves a similar

purpose as autocorrelation function is given by

$(k) =~ TNZ31x[n] — x[n + k]| (2.13)

Compared to autocorrelation AMDF may be less intensive to implement on some

processor architectures.

Pitch period is another metrics which can be calculated in time domain as the inverse

of the fundamental frequency of speech frame for voiced sounds. Pitch range is used

Close switch when n=N

S[n]—> 2 7’ —>

—> (k)

=~

Delay

Figure 2.5.  Autocorrelation function
2.2.4.Frequency domain analysis

It is fundamental to understand that all frequency domain analysis arise from the
Fourier analysis of a certain signal. Fourier transform converts the time domain
representation in to frequency domain in which we can visualize the magnitude and
phase components of spectrums. For a discrete signal x[n] the dual equations that
compute frequency and time domain representations aka analysis and synthesis duo

are given in equations (2.14) and (2.15) respectively.

X(e/®) =YY" _ x[n]e /@ (2.14)

And the synthesis equation also called inverse Fourier transform is given as
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x[n] = ifan(ej“’)ej“’”dw (2.15)

Equation (2.15) is commonly known as discrete time Fourier transform (DTFT).
Properties of DTFT can be found in numerous academic resources [75]. The
properties made complex computations a lot easier. Although the signal is discrete in
time domain, it remains continuous in frequency domain which makes it difficult for
digital hardware to further process. Hence we need to sample the frequency domain
and represent the signal in finite samples in frequency domain too. Periodicity and
symmetry are the most important properties. Since DTFT computation is angular and
conterminal angles offer the same spectral value, unique values occur only for a unit
circle whose angular range is [0 2].

X[k] = Sk x[m]wlm]e /w*™ (2.16)

Where w[m] is a framing window of length Land k is a frequency index which spans
to a discrete Fourier transform (DFT) point N. Usually the DFT point is equal to the
discrete sequence size L (i.e. N = L). In this sense, the spectral values are calculated

only for discrete and finite angular frequencies given by

_ 2mk
Wy = T

Hence: X[k] = X(e/?)| _zm .
L

If N is greater than L, zeros are padded to the discrete sequence x[m]. Whereas if N
is less than L, L — N samples that occur from time index N to L will be discarded
from the sequence.

The DFT computation consists of a series of complex addition and multiplication
operations. For an L-point DFT there are L complex multiplications and L — 1
complex additions for a single frequency index. Each complex multiplication
consists of 2 real multiplication and 2 real additions. Therefore, a single frequency
component of speech frame takes a total of 2[(L—1)+L]=4L—2 real
mathematical operations. As we have a total of L frequency components for an L-
point DFT, the total operation makes up L(4L — 2) real operation which makes the
complexity of the DFT computation to the order of L? and designated as o(L?). As
the DFT point increases the complexity rises dramatically. Hence it makes it

computationally inefficient to carry on these operations traditionally. Due to the
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2T
symmetric and periodic properties of the radix factor e’/ n efficient algorithms
collectively termed as fast Fourier transform (FFT) have been proposed over the

years. FFT reduces the computation complexity from o(L?) to o(L * log}).
2.3. Filter Bank Based Features

After spectral analysis the next major step in most speech processing applications is
applying filter banks to attenuate the components differently and recombine them
into a modified version of the original signal. Filter banks are arrays of bandpass
filters that split a certain spectrum of speech frame into multiple components, each
one carrying a single frequency sub-band. They come in various shapes and the
spacing between consecutive filters can be linear or mel scale. The mel scale is the
most commonly used spacing as listeners judge the melody and loudness of sounds

in a logarithmic scale rather than a linear fashion.

Magnitude and filter bank based spectral feature sets used in our research are; mel-
frequency cepstral coefficient (MFCC), rectangular filter cepstral coefficient (RFCC),
inverted MFCC (IMFCC) and linear frequency cepstral coefficient (LFCC). After
carefully examining the performance of these feature sets we proposed a new
technique called parabolic filter mel-frequency cepstral coefficient (PFMFCC) [76]
to generate features and contributed for publication. RFCC offered an impressive
performance for an experiment aimed at detecting replay or spoofing attack [77].
MFCC and PFMFCC use mel scale to split the range of frequencies between the
minimum and the maximum while LFCC and RFCC use linear scales in our

experiments.

Since the features considered here in this note are frequency domain features, the
discussion so far is common for all the features. The DFT is the standing point for all
the features. Some features use the magnitude and others use the phase component.

Further procedures make each feature extraction technique unigue from the other.
2.3.1. Mel-frequency cepstral coefficient (MFCC)

Filter bank based spectral feature extraction techniques including MFCC vary only in
the choice of the filter bank shape and spacing between adjacent filters we use. Some
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of these techniques use the mel scale whereas others use the linear scale. Linear
scale means that the frequency bands are linearly divided. On the other hand, mel
scale is a frequency scale commonly found in psychoacoustics, i.e. it reflects how
our ear detects pitch. The filter banks are approximately linear below 0.5
kHz and approximately logarithmic above that. MFCC is one of these features. It is
well known and widely used in the speech processing community. And it is believed
that encouraging results have been obtained in using this feature. MFCC uses the
Mel scale for linearly spacing the filter banks. Mel is a term taken from melody
which supposedly is inspired by the human hearing or perception system. Since our
auditory system uses a decibel or logarithmic scale, the above determined DFT either
power spectrum or phase need to be redefined in a log scale. In addition to the filter
bank spacing scales, we also categorize feature extraction techniques based on the
type of filter banks used. Some use triangular and others use rectangular. MFCC uses
Mel scale to space triangular filter banks.

The first step in MFCC feature extraction is to determine the short time Fourier
transform (STFT) of speech signal. The STFT to be determined the sampled audio
signal is first grouped in small overlapping frames of about 20ms size. This can be
easily done using windowing techniques. The hamming window is chosen
conventionally in most applications. Once framed, the STFT can efficiently be

computed using the FFT algorithm.

Then, DFT values are grouped together in critical bands and weighted according to
the triangular weighting function shown below. These bandwidths are constant for
centre frequencies below 1 kHz and increase exponentially up to half the sampling

rate.

Before the mathematical analysis of MFCC we need to explain about the Mel Scale
which relates perceived frequency, or pitch, of a pure tone to its actual measured
frequency. Humans are much better at discerning small changes in pitch at low
frequencies than they are at high frequencies. Therefore the mel scale makes our
features match more closely to what humans hear. This is basically motivated by the
human perception mechanism which is done in a human cochlea. It doesn’t perceive

acoustic waves in a linear basis rather it uses a logarithmic scale in decibels. Below
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Is the formula for converting a conventional frequency measured in hertz to mel scale

which is best expressed as human hearing scale:

Mel(f) = 1125In(1 + %) (2.17)
Mel~1(m) = 700(exp(—) — 1)

1125
mel(i) = 401.25 + 243.3740 = i fori=20,12,..,10
mel(i) = 401.25, 622.50, 843.75, fori=0,i=1 andi=2
mel(i) = 2392.49, 2613.74, 283499 fori=7,i=8 andi=9

Obtaining all the mel scale points helps us to calculate the frequencies at which the
filter bank functions begin and end. We use the inverse of equation (2.17) to compute
the corner frequency values after partition in mel scale. Accordingly we have the
following list of frequencies for the filter bank functions to be determined: f(i)= 300,
517.33, 781.90, 1103.97, 1496.04, 1973.32, 2554.33, 3261.62, 4122.63, 5170.76,
6446.70, and 8000. At low frequency these functions are spaced closely while they
are sparsely spaced at high frequency showing the same behaviour as human hearing

nature.

The Major steps in MFCC and other filter bank based feature extraction

implementation are [78]:

1. Apply pre-emphasis filter to the speech utterance before splitting it up in to
pieces

2. The signal has to be framed in short frames of duration 20-30 ms.

3. Periodogram estimate of the power spectrum has to be calculated for each frame.

4.  Apply the mel or linear filter bank to the power spectra, sum the energy in each
filter.

5. The logarithm of all filter bank energies need to be calculated.

6. The Discrete Cosine Transform (DCT) or inverse FFT of the log filter bank
energies has to be taken.

7. Only 2-13 DCT coefficients has to be kept, and the rest has to be discarded.

Following these procedures the delta MFCC which can also be called as dynamic
feature and the delta delta MFCC or the acceleration feature can be calculated from

the above 13 MFCC coefficients. Calculate the dynamic coefficients from the 13
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static coefficients and similarly calculate the acceleration coefficients from the
dynamic coefficients.

In order to apply the mel scale and generate the filter bank functions we need to
determine the lowest and highest frequencies. Assuming a lowest frequency of 300
Hz and the highest frequency of 8000 Hz for instance, converting these
measurements to mel scale based on equation (2.17) yields 401.25 mels and 2834.99
mels. The next step is dividing this range in to linearly spaced filter banks based on
the desired number of filter banks which in this case is assumed to be 10 filter banks.
The range will be 2834.99 - 401.25 =2433.74 and the linear spacing yields
2433.74/10 =243.3740.

Therefore, we need to define the filter bank function V;[k] that plays
important roles in signal processing. They are used in many areas, such as speech
and image compression, and processing. The main use of filter banks is to divide a
speech frame in to several separate frequency domains. The triangular bandpass filter

bank functions are mathematically defined as:

(o, k< fli—1) (2.18)
| k-r(i-1) . .
wm]={mymﬂ>'f0 D<k<f@
, fA<k< f@i+1)

fli+1)-k
| Far0-r
0o, k> f(i+1)

The corner points of each distinct triangle f(i — 1), f(i) and f(i + 1) denote the
lower, center and upper edge of the it" filter bank respectively in equation (2.18).
Once we determine these corner frequencies for filterbanks, the next step is
converting these frequencies in to frequency bins k using the sampling frequency and
the number of FFT points. For 512 — point FFT and 8 kHz sampling rate the bins
will be computed as in equation (2.19).

ki = l(N+1)*Zlel‘1(i))J (2.19)

Here k; is a frequency bin and i is the mel index at which we convert to frequency

and eventually to bins.
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MF[i] = 3,1, IVi[kIX(n, k)] (2.20)
A= B 0L, ViK1 (2.21)

MFCC[m] = %Z’f:l log(MF[i]) cos [Zan (i + %) m] (2.22)

The filter bank energy is designated by A; as in equation (2.21). In addition R and m
stand for number of filter banks and number of features respectively in equation
(2.22). While the m static features are extracted in the above procedures, the
dynamic a.k.a. delta and acceleration a.k.a. delta-delta or double delta features can be
computed using the following two equations. The m dynamic features are generated

as in equation (2.23):

(2.23)

T2 n(MFCCiyn = MFCCi_p)
2 Zgzl n2

delta[t] =

, Q=2
The m acceleration features are computed applying equation (2.24) shown below.

(2.24)

Zg=1 n(deltagsn — deltai—y)
2 Zgzl n2

double_delta[t] = , Q=2

All the mathematical computations presented above equally apply for the other
feature extraction techniques with a modification on the bandpass filter bank

functions according to their shape and spacing.

2.3.2.Rectangular filter cepstral coefficient (RFCC)

This feature is similar with MFCC in its filter bank spacing scale. Both use the Mel
scale. However RFCC as its name implies uses rectangular filter banks before
calculating the cepstral coefficients. And the filter banks are computed using
trapezoidal membership function. The Matlab inbuilt function trapmf(x, parameter)
is used to determine the filter channels where x defines the domain and ‘parameter’
assigns the corner values of the trapezoid. Since we have four corners in a trapezoid

a one by four array need to be assigned to the parameter.

for i=1:M
fft_matris(i,:)=trapmf(fft_fr,[F_mel(i),F_mel(i),...
F_mel(i+2),F_mel(i+2)]);
End
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This piece of code fragment constructs M filters spaced regularly in a Mel scale. This
way it computes values for all the rows in an iterative way and accumulates in the
fft_matris(i,:) matrix. All procedures after this code fragment remain the same as
MFCC method

2.3.3.Linear frequency cepstral coefficient (LFCC)

Triangular filter banks are employed both in MFCC and LFCC however; LFCC uses
linear scale frequency spacing as opposed to the Mel scale in MFCC. The Matlab
code fragment to compute the M filter banks is given below. It is exactly the same as
the MFCC code fragment. The difference lies in the values of the lower, center and
upper frequency values in each filter bank. All these corner frequencies are spaced

linearly in LFCC where as a mel scale is used in MFCC.

Algorithm 2.1:
fori=1:M
fft_matris(i,:) = ...
(Fft_fr > lower(i) & fft_fr <= center(i)).* ...
filt_height(i).*(fft_fr-lower(i))/(center(i)-lower(i)) + ...
(fft_fr > center(i) & fft_fr < upper(i)).* ...
filt_ height (i).*(upper(i)-fft_fr)/(upper(i)-center(i));
end

Where lower(i), center(i) and upper(i) stand for lower, center and upper frequencies
respectively. In the linear filter cepstral coefficient (LFCC) we take the minimum
and maximum frequencies and divide the length in to M equal length small
segments. In the MFCC case the minimum and maximum frequencies are converted
in to Mel scale first and we use these values to divide the length in to M small

segments. The conversion is shown below.

Algorithm 2.2:

F_max_mel=(1000/1og10(2))*log10(1+F_max/1000);
F_min_mel=(1000/log10(2))*log10(1+F_min/1000);
F_mel=linspace(F_min_mel,F_max_mel,M+2);

Then we need to convert these individual corner frequencies for all the M filters back

to frequency scale (Hz).
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Algorithm 2.3:

F_Hz=1000*(-1+10.~(F_mel.*log10(2)/1000));
lower=F_Hz(1:M);

upper=F_Hz(3:M+2) ;

center=F_Hz(2:M+1);

Note that, LFCC does not need mel conversion as its scale is already linear.
2.3.4. Inverted mel-frequency cepstral coefficient (IMFCC)

This technique is also similar with MFCC in most procedures. It uses triangular
filters and mel-frequency scaling to space the filter banks just like MFCC does. But
the filter banks are inverted. To make it clear, the filter banks are narrowly spaced at
low frequency and the spacing gets longer and longer as frequency increases in
MFCC whereas the spacing length gets shorter and shorter as frequency increases in
IMFCC. After calculating the filter impulse response functions (fft_matris) in a
similar way as MFCC using code fragments shown above, these filter bank impulse

response values will be flipped using fliplr(). .
LFBE=10*log10((fliplr(fft_matris) * spectrum)+eps);
2.3.5. Parabolic filter mel-frequency cepstral coefficient (PFMFCC)

Inspired by all the four filter bank arrangements discussed above, we proposed a
similar type of filter banks but parabolic in shape to get a different result. Every
individual passband filter except the first one begins rising from the center of its
previous filter. The center of the filter bank is the point at which the impulse

response scores is maximum value.

We made a unique contribution at the filter bank stage in this study which resulted in
a different set of features. The most commonly used triangular band pass filter banks
in MFCC are replaced by parabolic filter banks inverted down and shifted to the right
based on mel scaling of range of frequencies. The general description of the it" filter

bank function H{[i, k] is given in a compact form as in equation (2.25):

Vilk] = =A@k - f()* + B (2.25)
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In order to obtain the maximum and the vertical line of symmetry of this function a
first derivative with respect to k must be applied and equated to zero. This leads to

the equation given in (2.26):

(Vi[k])' = =240 (k- f@)) =0 (2.26)

which in turn leads to the point where the maximum of the function occurs. The
vertical line k = f(i) is the line of symmetry at the same time the maximum value
of the i parabolic function occurs here. And the maximum point is (£ (i), B). The
intercepts to the horizontal axis are determined based on the values of the partition
made on the frequency range(fiin, fmax)- The minimum frequency is set to be 0 and
the maximum is half of the sampling frequency used in the speech database which
can be written as  (finin fmax) = (0,4000Hz) for the aGender database [20].
Whereas (finin, fimax) = (0,8000Hz) is used for the Turkish database as the

utterances are sampled at 16 kHz.

The intercept values determine the parameter A(i) in each parabolic function. The
value of the function below the minimum and beyond the maximum intercept should
be set to zero. The maximum value B remains the same in all the band pass filter
bank functions. The number of filter bank functions is set to be 30 in our
experiments. Once the entire range of frequencies is converted in to mel scale using
equation (2.17), this range is partitioned in to 30 smaller band of frequencies. It is
known that the mel scale relates the perceived frequency to the actual measured
frequency. The human ear is better at identifying small changes in speech at lower
frequencies. The converted minimum and maximum frequency pair in mel scale is
(0, 2146).

The filter bank functions in (2.25) above need to be redefined considering the
intercept points of the functions at the corner frequencies. The value of each filter
bank function is made to vanish out of the ranges of the intercepts. Substituting the
right edge of each filter f(i + 1) in the values of k and equating it with zero results
in A(D) = (f(i + 1) — f(i))2, which eventually give the relation described in (10).

Since the parabola in each function is symmetrical with the line k = f(i), the

distance from the center to both edges is equal.
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—fG 2 . . .
- (f(i’:l’;f}’c(i)) +1, fi—1)<k<f(i+1) ,i=123..,30 (2.27)

0, otherwise

Vilk] =

Where the left most edge f(0) and the right most edge f(31) of all the filter banks
are 0 and 4000 Hz respectively in equation (2.27). The conventional triangular filter
bank functions V;[k] employed for MFCC given in equation (2.18) above differ from
the parabolic ones in having a sharp corner at the center of each function as a result
each filter needs two line functions to define the entire sub band. The graphs of both
triangular and parabolic filter banks are shown in Figures 2.6 and 2.7 respectively. In
both cases the spacing is uniform until the thousandth frequency, and then it

increases in each succeeding filter bank.
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Figure 2.6.  Triangular filter banks for MFCC

Filter impulse response

Figure 2.7. Parabolic filter banks for PFMFCC

Table 2.1 below summarizes the computation of filter bank functions presented so far
in this sub section. In linear scale uniform partitions are made while splitting the
frequency band between the minimum and maximum frequencies. Whereas, the mel
scale uses logarithmic scale. First the maximum and minimum corner frequencies are
converted in to mel scale and these values are used to determine the corner
frequencies of each partition. Finally the corner frequencies of each partition are

converted back to actual frequency in linear scale. At low frequencies below 1000
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Hz the partitions in linear as well as mel scale are uniform. After 1000 Hz the mel

scale partition starts increasing as the frequency increases.

Table 2.1. List of filter banks in magnitude spectral feature extractions

Features Filter banks used
MFCC '
k(_)f(i,_l) k<f(l_1) ””“:Wl T |‘|I T H‘\“““ T " "v\ ‘,“\\ ‘ ‘
fo-ran ¢ JE-D<k<f@ s ‘ AV YV
vl = {70 : “' f] TR R
fenog SO <k<f@+1D £ ‘“ VAR RAN AN Y
O 4 k > f(i + 1) |'|'H' H. I IHI XD‘\‘ 1"‘2“\}:0(". ‘ 'ZSD:‘ “f A"){!\Cl'l “\ JSO; -'CIOII
PFMFCC :
Vilk] =
-F@ )2 ) )
~(EEG) +LfG-D <K< fGE+D)
0, otherwise
RFCC
We used trapezoid functions 1T | T
fft_matris(i,j)= trapmf(fft_fr(j),[F_mel(i),F ' | ‘ “ l (‘ [ ‘ ’ ‘ 1 H
mel(i),... F_mel(i+2),F_mel(i+2)]); H | m ] ‘ } | ‘l
LFCC
Functions are the same as MFCC but the

spacing is linear rather than mel scale as in
MFCC.

IMFCC MR LARARAREAERN
Vi imrcc k1= lip(Vi_mpec[k]) A 'H\'H’\ ““ ““
P l
AR

fft_matris = fliplr(fft_matris)

2.4. Phase and Sub-channel Based Features

In this sub section phase and sub-channel based as well as the old relative spectral

transform-perceptual linear prediction (RASTA-PLP) are presented briefly [13].

2.4.1.Sub-band spectral flux coefficients (SSFC)

Spectral flux measures the spectral change between two successive frames and is
computed as the squared difference between the normalized magnitudes of the

spectra of the two successive short-term windows is given by equation (2.28) as:

Fligioty = Zi=1(Ei(k) — E;_1 (K))? (2.28)
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where (E; (k) is the k™ normalized DFT coefficient at the i frame which is given by
equation (2.28) above.

oy = Xi®) 2.29
El(k)_zf-:lxi(j) (229)

And here X; (k) denotes the k™ DFT of frame i, and L is half of the DFT point N in

. 2
equation (2.29). Spectralg,x. = |N0rmalizedspectmm - Previousspectmm| Spectral

flux is the average variation value of spectrum between the adjacent two frames
computed as:

Sf = (N— 1)(K 1)2 K log(X(n, k) + &) —log(X(n — 1,k) + 6)]? (2.30)

where Sf is spectral flux, X (n, k) is the discrete Fourier transform (DFT) of the nt"
frame of speech signal x[m] in equation (2.30), N is the total number of frames, K is
the order of DFT and § is a very small value to avoid calculation overflow in
equation (2.30) above [79].

2.4.2.Sub-band centroid magnitude and frequency (SCMF)

SCMF combines spectral centroid magnitude (SCM) and spectral centroid frequency
(SCF) [80]. Given the frequency spectrum of a speech frame x[n] as its Fourier
transform X(w) we divide the spectrum into M sub-bands. Each sub-band consists of
a filter frequency response of Hy(w) with a lower frequency fj, and an upper
frequency f,, both the centroid magnitude and frequency are computed using (2.31)

and (2.32) respectively as:

_ Pk FXCOHK) (2.31)
- f
qujlﬁzk
) zﬁu’;lk FXCOHE(S) (2.32)

B X(DH()
where my and Fy. denote centroid magnitude and centroid frequency.

2.4.3.Relative spectral transform perceptual linear prediction (RASTA-PLP)

Spectral transform (RASTA) is a separate technique that applies a band-pass filter to
the energy in each frequency sub-band in order to smooth over short-term noise

variations and to remove any constant offset resulting from static spectral coloration
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in the speech channel e.g. from a telephone line [13]. RASTA-PLP achieved 98%
and 95% gender classification accuracy for clean and noisy speech using robust
GMM classifiers [81]. RASTA method of speech processing is a generalization of
cepstral mean subtraction (CMS). The RASTA algorithm uses auditory masking
principle in reducing the perception of noise. It addresses the problem of a slowly
time-varying linear channel (i.e., convolutional distortion) in contrast to the time
invariant channel removed by CMS. The essence of RASTA is a cepstral lifter that
removes low and high modulation frequencies and not simply the DC component, as
does CMS. The fixed infinite impulse response (1IR) band pass filter for all time
trajectories given by transfer function in equation (2.33) is used by RASTA for noise
reduction.

H(z) = 0.1z~ + 32 22" (2.33)

1-0.94z~1

2.4.4.Cosine phase

Cosine phase is one of the two phase spectrum based features used in our research
work during the speaker age classification experiments. It is extracted from the phase
envelope of speech frames. phase spectrum information is normally ignored in most
applications [82]. It is used in our study for age classification for the first time and
found to perform poorly compared to most of the other features used in our
experiments. The base phase feature {;,_,.[k] for frequency channel k due to the
phase dependence interference introduced by the cosine of the phase difference
between two signals ¢.[k] and ¢;_,.[k] at two different times t and t— At

respectively is given by equation (2.34) below
{te-aclk] = cos(@clk] — @i_aclk] — %TIAT + 6k) (2.34)

where 6, a phase shift created by feedback loops.

2.4.5.Modified group delay (MODGD)

The MODGD feature is the negative rate of change of the phase spectrum 6(w) with
respect to frequency w as defined in equation (2.35) below. This feature is used in
[83] for speech recognition. It is used for speaker age classification for the first time

in this study and the best result is achieved in the female test set.
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r(w) = — 26D (2.35)
dw
0(w) is taken from X(w) written in its magnitude and phase components using polar

representation as |X(w)|e /¢
2.5. Feature selection, Feature Fusion and Dimensionality Reduction

Simple models are only able to describe data with fewer dimensions in a robust
manner. As dimension increases the complexity emerges to be the curse of obtaining
a feasible model to fully explain what underlies in data. Therefore, we need more
rigorous methods to uncover knowledge from data. Contrary to this if we can explain
certain data with less number of features; it is a lot easier to understand what
underlies within data. Hence knowledge can easily be extracted from such data. Data
can also be plotted and analyzed visually if it can be represented with fewer features
such as hidden and latent factors without loss of information. Both principal
component analysis (PCA) and linear discriminant analysis (LDA) are linear
projections mainly used in dimensionality reduction processes however they are
unsupervised and supervised respectively. PCA resembles much very much like

factor analysis and multidimensional scaling.

For a 2 second speech, sampled at a sampling rate of 8 kHz the number of discrete
values representing it would make up 16000 real numbers. It contains speech
phonemes, noise and silence of course. The silence and noise contribute nothing if
not negatively impact speaker age estimation efforts. With one of the methods
discussed so far in this unit this dimension can be reduced to a much lower
dimension assuming decompositions can be constant statistical characteristics. This 2

second speech will be decomposed in two 200 frames each containing 160 samples.

The number of samples in a frame multiplied by number of frames (160 * 200 =
32000) does not fit with the original 16000 samples as there is 50% overlaps
between adjacent frames. This would even make the dimension higher. However we
carry out a series of operations to reduce the 160 samples in to 42, 28, 14, 39, 26, or
13; depending on our choice of feature types, as static, dynamic, or acceleration; with

or without energy components. If we choose the highest dimension here i.e. 42, 200
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frames would make up 8400 discrete sequences which is a reduction of 42.5% from
the original 16000 discrete sequences.

This reduction dramatically reduces the complexity of operation assuming the huge
size of typical data. Therefore feature extraction is one of the dimensionality
reduction methods along with feature selection [84], subset selection and others
which reduces a ddimensional data to k where k < d and discard the irrelevant

d — k dimensions.

Dimensionality reduction

/\

Linear Projections Norf-lm'ear
Projections
— PCA —— [sometric feature mapping
— LDA —— Locally linear embedding
—— Subset selection “— Laplacian eigen maps

Figure 2.8. Dimensionality reduction methods

Figure 2.8 above depicts some linear and non-linear dimensionality reduction
methods. Details on these dimensionality reduction methods and other search

algorithms can be obtained in Ethem Alpaydin’s introduction to machine learning
book [85].

We applied PCA, LDA, and subset feature type selection methods in our study. We
adapted 2 phase and 7 magnitude based spectral features to our research study and
proposed parabolic filter based feature extraction method which offered best results
with certain classifiers. Combined effect of these ten features is investigated in this
study. The following subsections present these dimensionality reduction methods

briefly.
2.5.1.Union selection of feature sets

Subset selection is the process of finding the best subset among the set of features
usually conducted in forward or backward search fashion using greedy algorithm
[86]. The forward search begins with empty set and adds features to the subset

depending on their performance, minimum mean absolute error (MAE) for
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regression or maximum accuracy for classification. The process continues until there
IS no more improvement in performance or the improvement is insignificant. On the
other hand, backward search starts with the complete set and removes the feature that

gave the poorest performance until the improvement saturates.

We used the subset selection method in our experiments in a different approach.
Rather than a single feature, we considered feature set types as we applied 10 kinds
of feature sets. Before we make a subset of these feature types their performance is
evaluated for three machine learning models; cosine distance scoring (CDS),
Gaussian mixture model (GMM) [87] and probabilistic linear discriminant analysis
(PLDA). Each feature type consists of 42 features. Therefore, a tradeoff is needed to
minimize the cost of complexity as we perform subset selection of these feature types.
Unless a significant improvement is made, feature types will not be padded to the
existing subset in forward search algorithm. In case of backward search algorithm, a
feature type will be discarded even if it only offers a slight change in performance to
keep the complexity lower. The forward search approach is preferable as it goes
from low complexity to high, whereas the backward search starts with high overhead

in complexity and reduces as it removes low performing feature types.

Mathematically, the subset selection method with backward and forward search can
be expressed with equations (2.36) and (2.37) respectively.
j = arg min; MAE(F — f;) (2.36)

The established subset is denoted by F and f; represents a feature type to be

removed from the subset.
j = arg max; acc(F — f;) (2.37)
Remove f; if acc(F — f;) = acc(F), for complexity reason it includes the equal sign

and those feature types which cannot change the performance significantly.

Although the order of complexity is the same between the two search algorithms,
forward search algorithm is more preferable as it emerges from simple to complex.
And it is mathematically described as the addition of feature types one by one in a

greedy manner in equation (2.38).
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Jj = arg min; MAE(F + f;) (2.38)

For classification we use equation (2.39) as shown below.

j = arg max; acc(F + f;) (2.39)

Add f; to the subset F if acc(F + f;) > acc(F)

In order to make the process more visible to readers, we took a simple example
briefly explained in Ethem Alpaydin’s machine learning book [85]. Using the nearest
mean [88] as a classifier on the Iris dataset [89] with single feature, the accuracies
were 76%, 57%, 92%, and 94%, for sepal length, sepal width, petal length and petal
width respectively. We pick the single feature which showed the highest accuracy i.e.
petal width and add one more feature to see their combined effect. Assuming
{F,,F,, F;,and F,,} represent the four features, Figure 2.9 below shows the

accuracies of the classification using two features combined.

87% classification accuracy 92% classification accuracy 96% classification accuracy
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Figure 2.9. Classification of Iris data with two features using nearest mean

As we can observe from the graphs in Figure 2.9 above, combining F;and F, has
improved the accuracy by 2% compared to the best single alone feature. This process
however, takes considerably large amount of time and processing complexity for
multi feature and large data. It takes d+d—-14+d—-2+d—-3+--.+d—k
training and testing sessions which makes the order of the complexity o(d?) to

reduce the dimension d to k and obtain better classification accuracy.
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2.5.2. Principal component analysis (PCA)

With minimum loss of information data can be represented in d —k fewer
dimensions than in its original d dimensions [90]. This process is named as principal
component analysis (PCA) and it projects an original data X in to the direction of
Wto generate new feature sets Z with new dimension k , where k < d. PCA does not
depend on output information to maximize the variance between observations as
defined by equation (2.40).

Z=wTx (2.40)

The aim of PCA is to maximize variance and create reparability between data and
eventually make the difference between sample points become apparent. For a
unique solution the magnitude of the principal component W need to be unity i.e.
IWi]l = 1. If we want to maximize the separability we need to maximize the
variance Var(Z;)of the newly transformed matrix VarZ,using Lagrange multipliers

problem solving techniques using equation (2.41) below [91].

Var(Zy)) = W,"Sw, (2.41)
With the constraint W," W, = 1 we maximize the variance with the following
approach defined in equation (2.42):

male{Wszwl - a(WlTW1 - 1)} (242)
The partial derivative w.r.t. W, leads us to visualize the local maxima when the
slope is zero as described in equation (2.43)

owiTywy—a(wyTwy-1)}

3 _ (2.43)
- =0 =23W, — 2aW,

Therefore, YW, = aW;, which clearly shows that W;is an Eigen vector and a is a
corresponding Eigen value [92] that can maximize the argument in equation (2.42).

Hence, W]_TZW]_ = anTwl = .

The transformation matrix W is formed from the k Eigen vectors
Wy, Wy, Ws , W, ,Ws ......., W, } concatenated based on the order of their

corresponding Eigen value {4,, 15, 13, 44 , 45 ..., 41} Where 4 = a.
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2.5.3.Linear discriminant analysis (LDA)

Unlike PCA linear discriminant analysis (LDA) involves a supervised dataset to
reduce the dimension of feature sets used to represent each observation of a data
sample from d to N — 1, where N is the number of classes. LDA begins with a two
class problem and generalizes it for multiple classes more than two. Therefore, the
dimension reduction is from d to 1.

Again vector W transforms observations X drawn from two classes C; and C, to
reduce their dimension to 1. The transformation is on to the direction of W where the
reduced observations will be Z = WTX. Given the sample observations X = { x¢, rt},

such that ¢ = 1 if xt isdrawn from class 1 and ¢ = 0 if xt is drawn from class 2.

Let us assume M,and m,represent means of our data drawn from class 1 before and
after dimensionality reduction respectively. Like wise M,and m, represent means of

class 2 C, and given by equation (2.44) below.

5, wTxtrt 2.44
L= tZtrt = WTM1 ( )

The mean after transformation for class 2 is
_ ewTxtrt (2.45)

— T
M2 = S - WM

After projection the scatter of samples S;%and S,*from class C;and C,respectively
are given by:
S5 =Y. (WTxt —m,)?rt (2.46)

The scatter in class 2 is:

522 = 2(WTxt —my)?(1 —r") (2.47)

In order to make the two classes well separated, we need to maximize the difference
between the means of the two classes after projection. To make the two classes easily
separable the means should be as far apart as possible, but scattered in as small
region as possible. Using Fisher’s linear discriminant, the function to achieve both

requirements can be stated as in equation (2.48) below:
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(my—m,)* (2.48)

$1%+5,2

Jw) =

When we explicitly express the numerators and denominators of the above equation

in terms of original data means and other parameters;
(my —my)> = W'M; — WM, )?

=WT'(My —M)(My — M;)™W

= WTS;W

Where Sz = (M; — M, )(M; — M, )T represents between-class scatter matrix [93].
When we look at the denominator in equation (2.48), the scatters can be expressed

with original data as:

S5 =Y, (WTxt —m,)?rt
=Y WT(xt — M) (xt —M)TWrt
= WT{Z(x" — M) (x* — M) r' 3w
=wTs,w

Where S; = Y, (xt — M;)(x* — M;)Tr® represents within-class scatter matrix for
class 1. Similarly S, = ¥, (xt — M,)(xt — M,)Trt expresses the scatter matrix for
class 2. Finally the total within-class scatter matrix S,, is the sum of the scatters in the

two classes S; + S, which can be expressed as in equation (2.49):

248, = WTS,W + WTS,Ww (2.49)
== WT(Sl + Sz)W

To compute the transformation matrix W, we need to maximize the function J(W).

Hence after taking the partial derivative of J(IW) w.r.t W we set it equal to zero.

W) _ n _ WMy —M;) _ WMy —My) (2.50)
ow —0=2 wTSyw {(Ml M) wTSyw SWW}
T -
Given that, the mathematical expression w is a constant, we have:
wTsyw
W=CSy '(M, —M,) (2.51)
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The constant C shows the magnitude. However, we are more interested in the
direction instead. Hence the constant can be assumed to be 1 and the transformation
matrix will be well computed as W = S, *(M; — M, ) with C=1. For normal

distribution p(x|C;) ~ N(;,Y.), the transformation matrix is expressed as W =
XM —H2).

For multiple classes kK > 2, the linear transformation can be generalized by
redefining the between-class and within-class scatter matrices. The dimensionality
reduction is from d to k removing d —k less relevant dimensions. The

transformation matrix W becomes d X k instead of d x 1.

We compute the scatter matrix S;for each class C;, wherei = 1,2,3 ... ... ,k and k the
number of classes using equation (2.52) below.
S; = Xerif(xt — M) (x* = M)T (2.52)

The class label ;¢ = 1 if the observation x¢ is drawn from class C; otherwise r;* = 0.
Hence the total within-class scatter is the superposition of all the individual within-

class scatter matrices in each class as defined by equation (2.53).
Sw =TS (2.53)

Between-class scatter matrix S determines how far apart are the means of each class

from the overall mean of the data.

Sp = Nz Ne,(M; — M)(M; — M)" (2.54)

The term N, = Y. ;¢ denotes the total number of observations in each class C; in

equation (2.54) above. The k x k matrices WTSzW and WTS, W represent
between-class and within-class scatter matrices after projection respectively. Again
we need to formulate a function that maximizes the between-class and minimizes
within-class scatter simultaneously in order to make the data easily separable
between classes. If we put both matrices in a rational function at the numerator and
denominator as shown in equation (2.55) respectively, then maximize this function

can successfully achieve the two objectives at the same time.

WTSBW} (2.55)

maxy, [ (W) = maxy, {WTSWW
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Taking the partial derivative of the function /(W) and set it equal to O leads us to
find the optimal solution W. The largest eigenvectors computed from the product

Sw 'S provide the optimal solution to both problems stated above simultaneously.
2.5.4.Feature fusion

We used simple concatenation of the ten feature sets in an intertwined manner. In
fact the result was not better compared to a single feature best performance.
Therefore, we reduced the least performing feature sets until we finally obtain
encouraging performances from our classifiers in a subset backward search feature
selection manner. Accordingly, we obtained the best performance after removing the

three least performing feature types.

The feature types eventually dropped from the fusion include IMFCC, cosine phase
and SSFC which are described in this chapter. The fusion combined three classes of
feature types; filter bank based, sub-channel based and spectral phase-based features

to form a vector with higher dimension for each frame.

We used different form of concatenation to combine elements of each feature set.
Iterative algorithms instead of the traditional vertical or horizontal concatenation are
implemented to arrange each element of feature sets in an intertwined manner one
after the other. The pattern of 7 feature sets obtained in such a manner has improved

the accuracy of speaker age classification using the cosine distance scoring (CDS).
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3. EMBEDDING WITH MACHINE LEARNING AND DEEP LEARNING
MODELS

Acoustic word embedding (AWE) in speech processing applications is a fixed-
dimensional representation of variable-length utterances in an embedding space [94].
Therefore embeddingis a relatively low-dimensional space into which high-
dimensional vectors can be translated. Machine learning classification, regression or
any approximation models on large inputs like sparse vectors representing words are
made easier mainly due to embedding. Two embedding schemes namely; i-vector
and x-vector are employed in our research. These vectors are briefly presented in the

following two sub sections consequently [55-57].
3.1. i-Vector Embedding

A vector of fixed dimensions from variable length utterances is generated via four
major steps depicted in Figure 3.1 below.

Baum- .
Feature i-vector
) > welch >
Extraction | __ L extractor
l I" statistics '1 ,_’
Development set
Required to generate the Total
universal supervector UBM UBM variability
and TV matrix space
Uit st Feature Baulr'r;; i-vector
Extraction wg C_ extractor
statistics
Baum- .
. Feature i-vector
Evaluation set . > welch >
Extraction o extractor
statistics .
Figure 3.1.  i-Vector extraction
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Any of the feature sets presented in Unit 3 can be used in the generation of theses
vectors. The i-vectors are defined alongside with a factor analysis which uses a linear
model to compute feature matrices. They are basically sets of vectors generated
based on factor analysis in which the acoustic features (typically MFCC and log-
energy plus their 1st and 2nd derivatives) by a Gaussian mixture model (GMM).
Suppervector (UBM) M and total variability (TV) T are determined from the
development set using expectation maximization algorithm [95]. Therefore each
utterance X;from a dataset X = {X;, X, X3, ....., Xy} is written in terms of a global
mean M, a low-rank R X D matrix T, D-dimensional latent factor w; which
eventually represents i-vectors with prior density N(w|0,I) and residual noise ¢;

following a Gaussian density with zero mean and covariance matrix 2.

Xi =M+ T(A)i + €; (31)

The marginal distribution of X is given by.

p(X) = [ p(X|w)p(w)dw 3.2)
Substituting the normal distributions in the above equation:
p(X) = [N(X|M + Tw,2)N(w|0,dw (3.3)

Assuming the above equation as the convolution of Gaussians it finally leads to the

following mathematical expression.

p(X) = N(X|M,TTt + %) (3.4)

Determining the parameters M, T , and £ needs an iterative method called
expectation maximization which consists of two steps: the expectation E-step

computes parameters and the maximization M-step maximizes these parameters [96].
3.2. Deep Learning-Based Embedding
3.2.1. Introduction to deep learning

Deep learning is the 21% century’s most exploited subset of artificial intelligence (Al).
Most tech giants such as Google, Intel, Microsoft, Facebook, Apple, Twitter and

others extensively apply deep learning models in their daily activities [97]. The deep
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learning concept re-emerged long after Rosenblum’s perceptron proposed in 1958
failed to recognize multiple classes. A perceptron is a single layer artificial neural
network capable of learning linearly separable patterns. Therefore, it could not live
up to its expectations. For this reason, the neural network research had stagnated
until it finally showed a resurgence in the 1980s with the emergence of multilayer
feed-forward neural networks which showed significant improvement in processing
power over perceptron. But most kept faith in it and recently it has become a trend in
the research community due to additional hidden layers introduced to it in order to

make it able to learn from complex data distribution [29].

Transformation and extraction of features are usually associated with deep learning
algorithms whereas neural networks use neurons to fire data in the form of input and
output values via connections. Section 4.4 in the next chapter briefly discusses DNNs
in detail. It compares the biological nervous system with artificial neural networks
(ANNS).

The deep neural network (DNN) structure shown in Figure 3.2 below depicts how
each of the input components, the neurons in hidden layers and outputs are connected
to each other. DNN algorithms basically filter out attributes associated with labels or
actual values in what exactly resembles as a data distillation process. The
mathematical details will be presented in-depth in the next chapter but in the
meantime the number of connections between two adjacent layers is a product of a

number of neurons (the circular structures in the figure) in the two layers.

Input layer Hidden layer 1 Hidden layer 2 Hidden layer 3

Output layer

Figure 3.2. Multilayer deep neural network structure
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The weights associated with each connection or synapses as in the biological nervous
system are stored in an N X M matrix where M stands for the number of neurons in
the layer found at the left and N represents the number of hidden units (neurons) in

the layer closer to the output at right.

Deep learning algorithms apply the Keras toolkit to classify supervised data. The
Keras deep learning framework is a model-level library, providing high-level
building blocks for developing deep-learning models. It runs on top of Tensorflow,
Theano or Microsoft Cognitive Toolkit (CNTK) backend.

3.2.2.x-Vector embedding

The number of frames in each utterance makes a random variable that might not be
expressed using known distributions. The Xx-vector architecture converts these
variable length feature sequences in utterances into a fixed-dimension embedding
which contains the relevant information of the utterance. The x-vector embedding is
extracted by a temporal pooling layer in time delay neural networks (TDNNSs) which
summarizes information along the time axis [98]. This kind of network is starting to
outperform the state-of-the-art i-vector embedding in tasks like speaker and language
recognition. Its reputation is believed to be mainly due to context level processing.
After getting this embedding, utterance level labels, such as speaker identity, age,
and gender, can be used for discriminative network training. Thus, end-to-end
training becomes possible, jointly optimizing both feature extraction and prediction
[62].

During the processing of a wider temporal context, in a standard DNN, the initial
layer learns an affine transform for the entire temporal context. Affine transform is a
geometric transformation which preserves lines and parallelism but not necessarily
distance and angles. However in TDNN architecture the initial transforms are learned
on narrow contexts and the deeper layers process the hidden activations from a wider
temporal context. Hence the higher layers can learn wider temporal relationships.
Each layer in a TDNN operates at a different temporal resolution, which increases as
we go to higher layers of the network. Each of the neurons in the subsequent layers

learns from a sampled set of neurons in the previous layer. Contexts increase as the
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process goes deeper in to higher layers. This shows the neurons in the higher layers
get a wider context than those in lower layers as is shown in Figure 3.3 below [98].

The transforms in the TDNN architecture are tied across time steps and for this
reason they are seen as a precursor to the convolutional neural networks. During
back-propagation, due to tying, the lower layers of the network are updated by a
gradient accumulated over all the time steps of the input temporal context. Thus the
lower layers of the network are forced to learn translation invariant feature

transforms [99].

The input contexts of each layer required to compute output activation, at one time
step define the hyper-parameters which describe the TDNN network. x-Vector is a
greedy approach that can only perform better than i-vector with large amount of data.
Hence we incorporated additional data from MUSAN database consisting of music,
speech and noise [100]as well as the simulated room impulse response (RIRs) data
base for augmentation [101].
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Figure 3.3.  Time delay neural net (TDNN) Computation with sub-
sampling (red) and without sub-sampling (blue+red)

The above figure shows the time steps at which activations are computed, at each
layer, and dependencies between activations across layers. It can be seen that the
dependencies across layers are localized in time. In addition table 1 below describes

layer-wise context specification, corresponding to the TDNN shown in fig. 4 above.

66



Hence the first neuron in the second layer connects with two neurons forward and
two neurons back ward in the first layer forming a symmetrical triangle. Therefore
the context will be [-2,2] at the first layer for instance. If the forward meaning future
frame index and back ward previous frame indices are not equal the triangle formed
will not be symmetrical rather its apex moves towards the lower index in absolute

value.

Once the frame level computation is done the statistics pooling layer continues and
all the proceeding layers until the softmax layer including the statistics layer process
on segment level data [56]. Table 3.1 below shows the context size in each layer and
the total context size from the apex.

Table 3.1. Context specification of the TDNN shown in fig. 4 above

Layer | Input context(the red lines) at every layer | Total context size
1 [-2, +2] ={t-2,t, t+2} 5

2 [-1, +2] ={t-1,t, t+2} 8 = {t-3, t, t+4}

3 [-3, +3] = {t-3, t, t+3} 14= {t-6, t, t+7}

4 [-5, +4] = {t-5, t, t+4} 23={t-11, t, t+11}
5 {0} this means at frame t 23= {t-11, t, t+11}

The fixed dimensional x-vectors which uniquely represent the age characteristics of a
speaker can be extracted at any layer after the statistics pooling layer but before the
softmax layer. The complete end-to-end flow of the whole age estimation approach is
depicted in fig. 5 below.

Algorithm 3.1 below presents the sample command creating the DNN layers which
all perform TDNN. It is an excerpt taken from our Kaldi code series. Accordingly it
specifies the input dimension as the dimension of the MFCC feature set which is, 42
for a frame of speech. With these terminal inputs it creates 3 frame level and 2
segment level layers. x-Vectors are pulled out at the fourth or fifth layers then fed to

a softmax or other classification model.

At the input layer, we provide frames each of which consists of a set of a fixed set of
features. In our experiments each frame consists of 13 MFCC, 13 dynamic, 13
acceleration and one more feature as an energy component from each of the static,

dynamic and acceleration MFCC features.
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Algorithm 3.1
# the frame-level layers implemented using python 3.6

input dim=${feat_dim} name=input

relu-batchnorm-layer name=tdnnl input=Append(-2,-1,0,1,2) dim=512
relu-batchnorm-layer name=tdnn2 input=Append(-2,0,2) dim=512
relu-batchnorm-layer name=tdnn3 input=Append(-3,0,3) dim=512
relu-batchnorm-layer name=tdnn4 dim=512

relu-batchnorm-layer name=tdnn5 dim=1500

| Estimated age or age class I

-
Softmax Layer mb_ﬁl
embedding b OOO O segment-
)  level
Statistics Pooling

TDNNs
[OOO - Of;
el |

Xx-vector {

-/

X1,X2,.00 o XT

Figure 3.4. TDNNSs to softmax end-to-end speaker
age estimation

Hence a total of 42 features are used to represent a given frame. The DNN
establishes the context and learns important traits from connecting all these
subsampled clusters of frames in the frame level processing at the higher layers. The
network eventually generates a set of fixed dimensional feature sets that can
represent all the frames in a condensed manner. This set, of features are widely

known as x-vectors in the speech processing community recently.
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4.  CLASSIFICATION AND REGRESSION MODELS

Due to its ease of implementation and superiority of its applications, most of our
experiments give relatively better focus to speaker age classification rather than
regression. However, regression studies are also carried out to some extent. Plenty of
human desires come categorically which fundamentally consider age groups. Some
services, ads, online contents, entertainments etc. are unpleasant to a certain age

group while others could enjoy them greatly.

Classification is a decision process which employs relatedness or closeness to
categorize observations in to different labels based on parameters determined from
collected data. It is also a process of learning patterns [102]. For instance we can
decide whether a student fails or passes his examination based on criteria collected
from a wide range of experiences. These criteria are the factors affecting student’s
ability to pass examinations. To list a few factors: the number of hours studied, the
number of hours slept, health status, the broadness of the content studied, the
difficulty of the exam and others. Putting all these factors in to numbers and
generating new parameters such as mean and variance or covariance we could be
able to classify students’ ability before the results are displayed. Similarly a business
plan could be predicted whether it is risky or reasonable based on factors such as
market condition, initial investment and so on [85]. The same holds for age
classification in which we train our model with a training set speech dataset.
Extracted features with their respective labels (ages) will be used to learn the model
we develop. A brief discussion has been made on some of the famous classification

models.
4.1. Gaussian Mixture Model (GMM)

The Gaussian mixture model (GMM) is a collection of weighted multivariate
Gaussian distributions. This model assumes there is a certain number of clusters in
unsupervised data that tend to show Gaussian distribution with district parameters. It

is a superposition of all independent and identically distributed random variables
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(i.i.d.) which satisfy Gaussian distribution with each of them having their own
parameters scaled by different weights. The Gaussian distribution is the most
common probability distribution in statistics. The graph of the Gaussian distribution
as shown in Figure 4.1, is a bell shaped curve where the highest probability occurs
when the value of the random variable is equal to the mean value (u). The
distribution is commonly called as the normal distribution.It is designed in such a
way that 68% of the populations or samples are included in one standard deviation
range i.e. the probability of finding the random variable x between p-ctopu + o is
0.68. Similarly the probability of finding x in two standard deviation ranges which is
between p - 2o to p + 2o gets higher and is 0.95. Increasing the range to three
standard deviations makes the probability of finding the random variable in this
range to 99.7% (0.997). This clearly shows most of the observations accumulate
around the mean. The mathematical computation of the Gaussian distribution is
given in equation (4.1) below.

1 —G-w? (4.1)
p(x) = ozt

Where x is independent and identically distributed (i.i.d.) random variable and in this
case it is a continuous variable, e is a natural exponent whose value is agreed to be
2.71828, u is the mean of the random variable and o2 is the variance of the random

variable . The variance is the square of standard deviation (o).

Gaussian distributions

Gaussian mixture
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Figure 4.1. Gaussian distributions and mixture
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When there are more distributions with different parameters; u; and o; where
i=1,2,3,...,N here N is the number of mixtures all the Gaussian distributions
should be scaled with corresponding weights based on which distributions dominate
and which ones have less influence and finally superposition is applied to the
distributions to provide the model called Gaussian Mixture model. The scaling
factors are given by weight variables; w;. The mathematical expression for the
Gaussian mixture is given in equation (4.2) below.

e (4.2)
p(x, 1) =YV . wi—=e 2

V2ma?

For data expressed with d features, the multivariate Gaussian normal distribution is

expressed as shown in equation (4.3) below.

_ x — X~y (X -p) (4.3)
N(X|u,x) = Tadils A

The mixture of k clusters would form the probability distribution given by equation (4.4)

[103]:
1 “Lx- IS (X —wp) (4.4)
P(X|w,u,3) = ’-‘_{w.—ez Hi) 2 :
Xlw, %) = Liz Wi 9%
The expectation-maximization (EM) algorithm is employed to compute the Gaussian

parameters A; = {Wi, [T } for each cluster C; [104]. This helps to develop the GMM
that predicts the cluster of a certain observation using posterior probability P (C;|X)
from incomplete data with missing attributes called latent variables

[105].The EM algorithm has been exploited for a variety of application areas and

continuously upgraded to perform faster [106].
4.2. Cosine Distance Scoring with i-Vector (CDS)

The cosine distance scoring (CDS) is a score given to a test speech sample after
determining the cosine distance between the test sample and target class [14]. The i-
vectors are determined for each utterance. Then the average of i-vectors is calculated
for each target class as in equation (4.5). Every test i-vector is scored against target

class i-vectors as shown in equation (4.6).

71



(4.5)

_ 1M
wtarclass_i - E2k=1 a)train_k

wtest_kT*wtarclass_i (46)

” wtest_k” ”wtarclass_i “

cos_scorey ; =

In the above equations, w,qin k IS i-vector for training sample k in the i™ target class,
i is the specific target class, = {1,2,3, ... N}, w¢arciass i 1S the average i-vector for
target class i and N is the number of target classes in equations (4.3) and (4.4). And
M; is the number of training samples in target class i. In addition, cos_scorey ;

stands for cosine distance scoring between test sample k and target class i.
4.3. Probabilistic Linear Discriminant Analysis with i-Vector (PLDA)

Probabilistic linear discriminant analysis (Probabilistic LDA, a.k.a. PLDA [107]) is a
generative approach that tries to create data instances for a given class with Gaussian
distributions[108]. LDA is deterministic and models intra-class and inter-class
variations as multidimensional Gaussians while PLDA is a probabilistic approach
and assumes data instances come from Gaussian distributions [109]. The relationship
between PLDA and LDA is analogous to that of factor analysis (FA) and principal
component analysis (PCA). While the former ones are supervised PLDA being
superior to LDA in modeling data instances coming from unseen classes, the later are

unsupervised.

When we say PLDA is generative it means it captures or learns the joint probability
distribution p(x,, x,) of observations assumed as data instances from a mixture of
distributions without labels. Unlike PLDA, discriminative models capture the
conditional probability of outcomes given data instances p(y|x) commonly known
as posterior probability. The distribution of the latent variables y usually invisible
but most powerful in representing outcomes of a given model for a certain class can
be generated using the famous Gaussian distribution with mean p and semi-definite

between-class covariance ;.

We use a non-singular transformation matrix V to convert the between-class };;, and
the definite within-class )}, covariance matrices in to diagonal matrices in order to
transform data instances from their original feature space to a dimensionally reduced

latent space. As well discussed in section 2.4 above, the objective of this
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transformation is to reduce dimensionality and to create separability between classes.
The advantage of PLDA over LDA is that it allows making inferences about classes
that are unseen during training sessions [109]. The two covariance matrices
apparently expressing definite scatters within classes Y,,and semi-definite scatters
between classes Y, can be diagonalized with generalized eigen problem

simultaneously as:

ViY,V =1 (4.7)
VTZDV =y

where I and 1 are identity and diagonal matrices that can be computed with eigen
matrix decomposition in equation (4.7) above.

Observed variables x and y in the feature space can be expressed with latent
variables u and v in the latent space which is the transformed domain with normal
distributions, u~N (. |v,I) and v~N (. |0, ) respectively as:

x=u+Au (4.8)
y=u+Av

/7 N(@|0,¥)

\, Latent space
N 2\ y=m+ Av
3 / x x=m+Au

"\+

i, N(le)' (l; é \
I
‘ N(X||.V D) . Feature space

1 N(ylm,(t),)

Figure 4.2.  Projection of observed features in to latent space

where, the matrix A can be computed from the non-singular matrix V as A=V*(-
T)and the latent variables v and u represent class and data instances of the class in
the projected domain in equation (4.8) shown above. This is demonstrated in Figure

4.2 above. The figure is taken from a website named as “towards data science”.
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The i-Vectors are used as observed variables both in the CDS and PLDA classifiers.
They are identity vectors extracted from a joint factor analysis (JFA) expression of
an utterance [110]. A super-vector M consisting of speaker and channel or session

subspaces. The speaker dependent super-vector is defined as shown in (4.9).

M=m+Vy+Ux+Dz (4.9)

In equation (4.7), m denotes session-independent speaker super-vector generally
obtained from UBM, V and D represent eigen voice matrix and diagonal residue of
speaker subspace respectively, and U denotes session subspace (Eigen channel
matrix). The vectors x,y,z are assumed to be random variables with a normal
distribution N(0,I) . They are speaker, channel and residual factors in their
respective subspaces [111]. A new space referred to as “total variability space,” that
contains speaker and channel variability simultaneously is proposed in [110]. It is
defined by the total variability matrix that contains the eigenvectors with the largest
eigenvalues of the total variability covariance matrix[112]. Accordingly for a given

utterance the new space redefines the GMM super-vector M as:

M=m+Tw (4.10)

where m is the new speaker channel-independent universal super-vector, T is the
rectangular total variability matrix of low rank and w is an identity vector commonly

known as i-vector in equation (4.10) above.

I-Vector Extraction

Transformation
to latent space
with LDA

I-Vector Extraction

[ I PLDA Score

Cosine Score

Age classes

Figure 4.3. Overall process diagram of CDS and PLDA
Classifiers
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The overall block diagram of CDS and PLDA classifiers is shown in Figure 4.3
below. The development, training and test sets are all common to both classifiers.

Procedures applied to the test set are identical until the scoring execution.

The development set is used to generate the total variability space matrix and the
UBM super-vector which is common in all the three classifiers is used. The training
set undergoes a similar process until i-vector extraction phase. After this phase it is
directly used by the cosine score whereas it will be transformed using LDA in the
PLDA classifier.

4.4. Deep Neural Network (DNN) Based Classifiers

Neural networks formally known as artificial neural networks (ANN), were initially
proposed by psychologist Frank Rosenblatt in 1958 to imitate the processing power
of the human brain. They were called perceptrons and mainly used to process visual
data and learn to recognize objects. They were not successful at the beginning and
therefore most scholars were not patient to wait while very few kept faith in their
performance. Eventually neural networks began to outperform what can be done with

traditional machine learning models.

<
e B
G = Y2
,\'/n
1 P
Outputs
Myelin sheat
\_» Myeli
R yelinated axon >
Inputs
Figure 4.4. Biological neural network

The nodes in modern day neural nets represent biological neurons in the nervous
system mostly located in our brain. The connection lines (edges) connecting nodes
are analogous to the synapsis in the biological brain as depicted in Figure 4.4 taken
from Wikipedia. These connections transmit signals from it input to neurons or from

one neuron to another where all the signals arriving at a neuron are summed up and
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fed to a non-linear activation function. All the connections are associated with

randomly picked initial weights which get updated as training proceeds.

Activation functions determine the outcome of a given neuro based on a set of inputs
and weights associated with the connections to the neuron. The most popular
activation function is the sigmoid activation function also known as logistic
activation function in its other name. Logistic or sigmoid or else soft step activation

function is defined as in equation (4.11) below.

0@ == @1

1+ e~¢

The Greek symbol ¢ represents the sum of all the inputs to a certain neuron multiplied
by their respective weights and a bias parameter b on top of it as computed in
equation (4.12) below. The bias is not associated with any input variable or

intermediate neuron output.

{=b+XN xuw (4.12)

The parameters N, and w; represent the number of synapses connected to the neuron
and the weight of the i*® connection respectively while x; denotes input feature or an
output from a node in the previous layer associated to the connection. Figure 4.5
below presents the entire network consisting two layers with five hidden units or

neurons each.

Let us assume a simple 4 input and 2 output single layer neural network. The input
dimension is 4 and consists of two neurons at the output layer. Therefore, the input is
represented as X = [x; x, x3 x4]7and the weights associated with the first and

second output neuros are

W, = [wyg Wy Wiy wag]TandW, = [wy, Wy, way wa,]T respectively where the
total weight matrix can be expressed as WT = [W; W,]. Then the output value
Y = [y; v,]Tof each neuron can be computed by applying an activation function to
the product WX.

Wi1 Wz, W31 Wyq
w=| |

Wiz Wy W3y Wy
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For a generalized artificial neural network with N inputs and M activation functions,
the weight matrix associated with each input to activation function pars is given by:

r W11 Waq W31 Wap....
W12 W2 W32 Wyz ... Wpp
Wiz Wa3 W33 Wy3
W =| Wis W24 Wzg Wyy....Wpny

Activation Activation
Sum up function Sumup  function

Act

X1

X2 Act

X3 Act
Act
Act

X Ne¢

Input Weight matrix Weight matrix
Features Layer1 Layer2

Figure 4.5.  Deep neural network sample with two layers

The next major step in DNN algorithms is computing the error incurred for every
training entry as a difference between predicted (estimated) and actual values. After
obtaining the error values the weights will be updated to compensate for the error
incurred in a backpropagation process. If we assume the output of the neurons after
the first layer as f(.) and the second layer as g(.) then the eventual output is
computed using the chain rule g(f(x)). Given the input features X = [x;, x;, X3,
xy.] and the weight matrices in the two layers as W and W' respectively the
predicted values are g(W'f(WX)). The weight matrices follow the size of the input
features and number of hidden units where the number of columns are equal to the
size of input features or the number of the hidden units to the left of the synapses
whereas the rows are equal to the number of hidden units in the layer pointed by the
connections to the right. The sigmoid activation function is given by equation (4.13).
Its range spans from zero to one as the independent variable goes from — co to + oo.
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fO) = —e (4.13)

The output at the second layer is defined as shown in equation (4.14) below.

() =—A— @19

+ e W (F)"

Once predictions are made by the network, the next crucial step is to compute the
error incurred by subtracting the prediction from actual values as given by equation
(4.15) below.

e=Ymn)-Yn) (4.15)

The loss function L(w)is determined as the square of the error in equation (4.15)
above. It is a function of the input data, the weight and the bias parameters and
defined as in equation (4.16) below. As we do not have much control over the data,
we can in fact manipulate the weight and bias parameters to minimize the loss in
order to obtain a prediction close to the actual value. Obtaining suitable weight and
bias parameters would reduce the error ideally to zero. However, this is not possible
to do it trivially using brute force optimization process as it would definitely take
millions if not billions of years for an average processor [113]. In addition, the curse

of dimensionality would make it unimaginable.

L(w) = e? = (Y(n) — Y(n))? (4.16)

The optimality criteria are solving the partial derivative of the cost function
L(w)with respect to the weights w and obtain the weights that make the derivative

zero (local minimum).

aLw) _ 4.17
W = VL(w) =0 (4.17)
The gradient operator V represents partial derivatives with respect to each weight as
given in equation (4.18) below.

d a a8 a8 a a 1t (4.18)

The updated weights are determined depending on the direction of the gradient
whether it is decreasing or increasing which can be visible on the sign of the gradient

value. Positive and negative values of the gradient show increasing and decreasing
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slopes respectively [114]. Therefore, the new weight parameters w (n+1) are
computed as:
wn+1) =wn) + nVL(w) (4.19)

where, n is a positive constant best known as the learning rate parameter or
sometimes as step-size parameter in equation (4.19) above. This way all the weights
get updated from output to input layers.

4.4.1.x-Vector deep neural network architecture for classification

Figure 4.6 below describes the complete process from audio inputs to accuracy

computation carried out with the x-vector neural network architecture.

Data preparation Accuracy
‘l' Evaluation and scoring
MFCC Extraction 7y
\
Dowr?load'speech, Train PLDA
music, noise and
reverberation from 4
MUSAN and RIRS
noises for
augmentation
v
Augmentation Extract x-vector

v 1
MFCC extraction from

the augmented data
|

A 4
CMVN and remove N .
very short utterances » Train DNN
Figure 4.6. General block diagram for x-vector

architecture embedding

The acoustic features MFCC and the DNN based embedding x-vector, necessary and
intermediate inputs to speaker age classification as shown in Figure 4.6 above are
briefly presented in Unit 2 and 3 respectively. We used the Kaldi speech recognition

toolkit to implement the setup [115].
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4.4.2.Long short-term memory (LSTM) networks for classification

LSTM neural network is a type of recurrent neural network (RNN) that can learn
long-term dependencies between time steps of sequence data. The main components
of LSTM are a sequence input layer and LSTM layer. Sequence input layer feeds
sequence or time-series data into the network. This network was introduced to the
machine learning world by Hocheiter and Schmidhuber in 1997. It is called short-
term memory because it preserves the error that can be back-propagated through time

and layers.

Figure 4.7 shown below illustrates the architecture of a simple LSTM network either
for classification or regression setups. The network starts with a sequence input layer
followed by an LSTM layer. To predict class labels, the network ends with a fully
connected layer; a softmax layer, and a classification output layer. The regression
outputs are taken at the fully connected layer. Hence the softmax layer is

unnecessary for regression.

There does not exist feedback connection in Standard feedforward DNNs [116], on
the other hand, LSTM has feedback connections. It can not only process single data

points (such as images), but also entire sequences of data (such as speech or video).

Seguence 5 LSTM > Fully > Regression
input connected output
Softmax

A

Classification

Figure 4.7. Classification and regression with LSTM

For example, LSTM is applicable to tasks such as unsegmented, connected
handwriting recognition, speech recognition and anomaly detection in network traffic
or intrusion detection systems (IDSs). A cell, an input gate, an output gate and a
forget gate are required to compose a common LSTM. The cell remembers values
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over arbitrary time intervals and the three gates regulate the flow of information into
and out of the cell.

4.5. Regression Models

Regression is the process of estimating the dependent variable from a test dependent
sample based on parameters obtained during the training phase. For a good
regression we need a good model and a large number of supervised data. The
dependent variables are often called as outcomes whereas the independent variables

are called as features [13].

Alternative names for independent variables include predictors and covariates. These
variables can be one or more than one and based on their number the regression is
called either single variate regression or multivariate regression respectively. Linear

regression is the most common and widely used kind of regression.
4.5.1.Linear regression

As it can be well depicted in Figure 4.8 below, linear regression is an effort of
determining the equation of a straight line that passes through the data points.
Possibly an infinite number of straight lines can pass through the data points but only
one of these can show the lowest mean error. The mean error is the sum of all the
distances between the true data point and the straight line or hyperplane in the case of
multiple feature types whose equation is determined through the training process.
The straight line becomes a hyperplane when we have more than one independent

variable (feature types).

For a single variated regression analysis the two parameters determined from a
training database are the slope and the vertical intercept or y-intercept in basic
mathematical terms. The process of determining these parameters mainly considers

plans on how to minimize the error. The ideal case is making the error down to zero.

The mathematical model is setup as shown in equation (4.20) below. Once the
estimation equation is computed the error is calculated by subtracting these estimated
values from each actual data point. Since we are interested in minimizing the error

we deal with strategies on how to find out those parameters which can minimize the
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error. In the following equations all the actual values are represented by symbols
without bar and those symbols with bars are used to represent estimated values.

Y, =AX;+C = f(X) (4.20)

.,

260 10 | 10 20 30 a0 s0 60
Figure 4.8. Linear regression (Picture credit to
Wikipedia)

In fact the actual value of the outcome variable is a little more or a little less than the
value obtained through mathematical computation using a straight line equation as it

incurs an irreducible error €; for each data point computation (X;, ;).

Vi=AX;+C+ ¢ = f(X;) +¢€ (4.21)

Apart from irreducible error a regression model suffers from a residual error e; which
can be reduced and managed to make it as small as zero or close to zero as indicated
in equation (4.22) below. And the irreducible error ¢; is part of the residual error e;

in equation (4.21) above.

e, =Y, — T, (4.22)

Now mean value of all the individual errors e can be made minimum by optimizing
the selection algorithm of the slope and the intercept parameters. Therefore, we need
to calculate the mean of these errors as shown in equation (4.23) below and then
compute its derivative to find out the minima equating it with zero. At the minima or
maxima point of any function the slope becomes zero because the straight line

passing through these points is horizontal making no angle with x-axis.
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mean(e;) = % N e (4.23)

But only this cannot guarantee a good model as positive and negative error values
could cancel each other and wrongly provide minimum error value. Therefore, it is
advisable to focus on either on absolute error or sum of residual error squared value
(RSS) as shown in equation (4.24).

RSS = TN . (e)? (4.24)
Hence, the values of the slope parameter A and the intercept parameter C which offer
the minimum RSS value can be obtained using equation (4.25).

argmin 40 T, (Y; — AX; — € )? (4.25)

To compute the minimum of this RSS value first we take the partial derivative of the
RSS function with respect to the parameter C and equate it with zero as shown in
equation (4.26).

d(RSS) _ d(BIL (Yi—AXi=C)?) _ 0 (4.26)
ac dc r

This can be explicitly expressed as shown in equation (4.27).

23, (A%, — C)=0 »» I, (Y -AX) = XL, C (4.27)

And finally, we compute the optimal intercept parameter as shown in equation (4.28).

C = mean(Y) — Amean(X) = Y — AX (4.28)
Hence the y-intercept is computed by subtracting a product of the slope A and the

average of the input features X from the mean of the outcomes Y.

The next step is to determine the slope A of the straight line equation. For this
purpose we need to take the partial derivative of the RSS equation with respect to

(w.r.t) the slope parameter A as in equation (4.29).

dRSS) _ dEL(izAXi=C)?) _ o (4.29)
da dA -

Similarly this can be expanded as in equation (4.30).

—2¥N (Y, —AX;— C)X; =0 (4.30)
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Finally, it gives the mathematical relation shown in equation (4.31).

DX — AT XX, —C XN X =0 (4.31)

Substituting the expression for C in equation (4.28) above we can compute the
formula to determine the slope parameter A following the mathematical relations

described in equations.

L)X —AYL XX, — (Y —AX) YN X, =0 (4.32)
LiODX + AX I, X -2 XX) —YEL X =0 (4.33)
AXZIL, X -2, XX) =Y 3L, X — TN, ()X, (4.34)
A= YL, Xi— B, (V)X (4.35)
X3 x-S XX,
A= %Zli\]:1yi2{v=1Xi_E?’=1YiXi _ NXY-3N, vix;
B %ZlivleiZé\lei_z?ilxiXi TONE)Z2-EN (x)?

And finally we can substitute the formula of the slope parameter A obtained in
equation (4.35) in to equation (4.28) to compute for the optimal vertical intercept
parameter as shown in equation (4.36).

C= 7 — NEV-ZL, VX (4.36)
B N(X)2-ZI, (X;)?

Another fascinating derivation of these regression parameters A and C shown in
equations (4.35) and (4.36) respectively above can be done using Bayesian rule by
assuming the straight line passes through the origin. Therefore a straight line
equation passing through the origin doesn’t have a constant term or its intercept is
said to be zero. Hence the line equation is expressed as y; = wx; + noise;. Here the
noise signals are independent, and normal distribution with zero mean and unknown
variance of 2. The probability distribution p(y;\w,x) has a normal distribution
with mean wx and variance ¢? . Having the data points (x;,v;) ,
(x2,¥2) » (%3,¥3 »eeeer (X5, Vi) 5 ..., (xy,¥n) @S evidence we can find out the
parameter w using Bayes posterior rules. The posterior distribution is given by:p(w\
X1, X2, X3, 0, XNo Y1, V2, Y30, ¥Yn) - This is commonly known as Bayes linear
regression [103]. The next step is to work for the maximum likelihood estimation.
This includes answering the following questions:
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1. For what value of w

P(V1, V2, V3reer Y \X1, X2, X3, o, Xy, W) IS Maximized?
2. For what value of w
[T, p(y;\x;, w) is maximized?
3. For what value of w
1Yi=WXiy2

N e20 % ) is maximized?

4. For what value of w

N _1 (Yi_Wxi

5 .
=175 )* is maximized ?

o
5. For what value of w
>N (y;i — wx;)? is minimized ?
6. For what value of w
N (D% —2wx;y; + (wx;)? is minimized?

N -2wXl xiy; + (W2 IR, (x:)?

And this is the final form and easy to see that it has a quadratic form. Therefore the
minimum of this function occurs at the bottom of the parabola where the slope of the
line tangent to the graph of the function is zero. Meaning the tangent line is
horizontal. Hence taking the partial derivative of this function with respect to w and
then equating it with zero helps to determine the expression for w value that

minimizes the quadratic equation above.
—2 Zyﬂxi}’i + 2WZP=1(X1)2 =0

N
Yi=1 XiYi

W= SN )2

The regression model presented so far does not show the reality in nature. Outcomes
depend on more than one factor in nature. For instance the price of a house depends
on the location of the house, the number of rooms, the distance between the nearest
supermarkets, the quality of the road connecting it with public centers, the nature of
the neighborhood and so on. Some of these factors can be quantized and numerically
expressed and others are subjective which cannot be described mathematically. The
next section discusses the regression process consisting of multiple input variables

(independent variables) determining the outcome.
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Multivariate Linear Regression

This is a regression process incorporating multiple features or covariates to
determine the outcome. The choice of this regression technique depends on the
relationship between each feature and the outcome variable too. As a particular input
sample involves vectors or matrix possibly a multivariate regression is carried out
using a matrix computation. The multivariate regression model can be approached in
the following ways:
Let us assume the following notations for simplicity of our approach
v" Input vector assumed to be x € R%

Output value assumedtobey € R

v
v' Parameters 8 = (By, Bi B2 B3 -n By)' € RETL
v' Then we set up the model as in equation (4.37)

f(x) =B+ Z?=1 Bix; = x'B (4.37)

Given the training data D = {(x;,y,)}\_,the least square cost or loss L() is defined

as in equation (4.38).

LB) = X, — fi(x)? = Zi (i — xiB)?* = |lY — XBII (4.38)
Here

t
xl (1, xlll, xllz, . xl’d\ yl
. 1, X2]1, lez, ey led Vo
. | 1, x]"l, x]"z, vy xj,d | lJ
leVJ kl' XN1» XN2s weeo xN,d} YN

xjt ={1, x4, Xj2, - Xjq}

In addition N and d are the number of samples in our training set and number of
features in each sample respectively. To find a minimum loss an optimization
technique is applied and optimal parameters ,Bjthat could lead to a linear model are
obtained. For this purpose we need to take the first derivative of the loss function in
equation (4.39) with respect to 5.

04 =58 = 20y —XRTX © 04 = XTXB— XTY (4.39)
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Solving for the parameter 8 gives the equation shown in (4.40).

= (XTX)"1xTy (4.40)

4.5.2.Non-linear and least square support vector regression (LSSVR)

When a statistical data does not fit in linear models a non-linear model is defined
which replace the independent variables x; in equation (4.37) above with a non-linear
function ¢(x;) € R*and these functions are named as non-linear features hereafter.
The new estimation function f(x) is expressed similarly in equation (4.41)
below. Nonlinear regression provides the most flexible curve-fitting functionality.

However it can take considerable effort to choose the nonlinear function that creates

the best fit for the particular shape of the curve.

fO) =Xii0(x)B = e()'B (4.41)

The expression for optimal parameter 3 remains the same as shown in equation (4.40)
above except the independent variables ijare replaced by non-linear features cp(x]-T).

These features depend on the choice of the model attempt to apply. Selected non-

linear models will be briefly discussed in this section.

Therefore
(p(x)"
X=< ' .r ¢ fornon-linear models or kernels
P (x;)
(o))

One of the most widely used non-linear models in acoustic modeling is the radial
basis function (RBF) which is briefly discussed below. In addition a list of other

kernel functions ¢ (x) for univariate dataset is presented below.

Linear : o(x,0) =xTw

Polynomial : o(x,w) =0+ xTw)?

Radial basis function (RBF) : px,w) = e‘%

Splines : f(x) = X211 B;g;(x), where k is polynomial

order, and m is number of polynomial kernel
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function g;(x) . The approximation f(x) is a

fitting functions whileB;’s are coefficients.

wavelets: Wi = @;(x) where, x; :% ,
i=123, ......,n
String — kernel : It measures similarity of pairs of strings [32].

Let strl and str2 be two strings, the kernel
@(strl, str2) would provide a higher value for

higher similarity between str1 and str2.
Radial Basis Function (RBF)

Neural Networks are very powerful models for classification tasks. But we used them
for regression in our study to develop the least square support vector regression
(LSSVR). We used our training dataset and we projected the training trend into the
test set to make predictions. Regression has been discussed earlier at the beginning of
this section and has many applications in a wide range of areas including finance,
physics, medicine, meteorology, biology and many others. Radial basis function
(RBF) is a neural network architecture commonly used in non-linear regression as
well as function approximation in addition to their popular application in
classification [117]. An RBF network is a 2-layer network apart from the output
layer. We have an input that is fully connected to a hidden layer. The output of the
hidden layer is taken to perform a weighted sum to get our final output. Hence its
architecture is not deep. Unlike the neurons in conventional neural networks and
deep neural networks (DNN) the neurons in RBF networks contain Gaussian RBF.

And hence the Gaussian RBFs are used as the activation functions.

Figure 4.9 below shows some Gaussian densities with different parameters and their
combined effect. These Gaussian densities make up the radial basis function. As it
can be clearly observed in the figure, the values of individual densities are bound to
[0,1]. The resultant density depends on the means and variances of all the individual
densities. The individual densities follow normal distribution whose mathematical
expression for univariate and multivariate random variables is given by equation
(4.42) and (4.43) respectively.
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Figure 4.9. Gaussian mixtures and kernel functions

1 _mw? (4.42)
N(xl,u,a)zme 202

With dimensionality changes on the dataset as well as the parameters modification in
equation (4.42) is required in the case of multivariate data. Assuming each sample is
d dimensional, equation (4.42) is rewritten as:

o3 X-wTE L (X-p) (4.43)

Here \/(X—M)TZ‘l(X—u) is the Mahalanobis distance and )| is the

determinant of the covariance matrix of the dataset X.

In either univariate or multivariate cases the shape, center and steepness of the bell
shaped curve shown in Figure 4.9 above. The mean u determines the center of the
symmetrical graph where half of the whole dataset lays to the left of this vertical line
and the other half remains to the right of the symmetrical vertical line representing
(x = w). In Figure 4.9 above, the Gaussians have different colors and are weighted
differently. Taking the sum of all the probability densities gives a continuous
function. The parameter which indicates the closeness of individual data sample is
the variance a2 or in some literatures is the standard deviation ¢ which is the square
root of the variance. Accordingly a large variance shows a wide variation between

data samples therefore the resulting bell curve is shorter in height, flat and wide open.

89



On the other hand a small variance results in a long, steep in shape and indicates very
close individual data samples.

Technically, the probability density function (pdf) described in equations (4.34) and
(4.35) is used to determine the probability of observing an input x or X in
multivariate case given that specific normal distribution. However the bell-curve
properties of the Gaussian are more important than the fact that it represents a
probability distribution for the application of radial basis function (RBF). It is logical

to observe an inverse relation between the maximum of the probability density

function which occurs at (x = u) and evaluated as (V2rno2)™! = ﬁﬁ since the

total area covered by the bell curve is supposed to be unity. A linear combination of
Gaussian density functions with varied centers and a wide range of variances can be

used to approximate any function.

The number of Gaussian density functions needed in function approximation
depends on the number of bases or kernels used in our network. The structure of the
network is shown in fig. 3 below. K-mean clustering can be used to formulate and
place the continuous function created due to the superposition of the individual
kernels. The center of each basis function is the means of each respective cluster.
The weights w = {w;, w,, ws,... , wg} where K stands for the number of
clusters or bases, multiplies the output of the basis functions unlike conventional
neural networks in which the weights multiply the input features before computing

the activation functions.

The centers c;for each kernel function ¢;(.) of the RBF are determined using k-

mean algorithms. The regression process begins with clearly setting the necessary

variables and parameters.

The input at the very beginning is a set of features for each sample speaker in our
study which is given by X® = {x,, x,, x3,.. . , x4} Where is the dimension of
the input or number of features representing each speaker. The approximation
function which produces the estimate age Y = {}71,372, Vare + ,le} where
N represents the number of utterances in the specified dataset, is given by equation
(4.44) below:
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Figure 4.10. Least square support vector regression (LSSVR)
F(x)= XX wipi(x, ¢) +b (4.44)

where w; are the weights, b is the bias, K is the number of kernels or clusters or
centers of bases in equation (4.44) above. The function approximation is depicted in
Figure 4.10 above. The basis functions ¢;(.) are the Gaussian RBFs given by
equation (4.45).
o) ¢) = e—ﬁ(nx—q 0% (4.45)
The sum of the squared error between the actual value of individual data points and

the values generated by the approximation function is given by the cost formula
shown in equation (4.46).

error = YN (y® — F(x®))? (4.46)
Now we apply optimization algorithms step by step to find optimal weight
parameters w; and the bias b. For this purpose we take the partial derivative of the
error function with respect to w; and bias b separately to compute optimal weights

and optimal bias in equations (4.47) and (4.48) respectively.

d(error) _ d(error) OF (4_47)

awj OF aw]-
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d(error) 9 - o) 2 4.48
7o - LT (O -FGO)) L i wex )b 4

The new weights will be updated considering the error they have incurred in the
previous iteration using the learning rate n. The result of the partial derivative is

given by:

V(error) = —(Z, (0@ - F(x®))). (X, 9;(x, ¢;)) Then we deduce the
updated weights are w; « w; + n(y P — F(x@))g;(x, ¢).

Similarly for the new bias parameter we take the partial derivative of the error
function with respect to b.
d(error) __ d(error)dF _ 0 N i N\ 9 ok

s = T = s EL (O - FGD) - e, o) +b]

a(eg;or) = (y(i) —F(x(i)) Giving b« b + n(y(i) —F(x(i)))

The technique derived to update the weights and the bias parameters is commonly
called as the backpropagation in conventional neural networks. This can be
converted to pseudo code and eventually to actual code using either python or Matlab.
We used Matlab in our experiments [118]. Algorithm 4.1 describes the schematic
implementation of LSSVR depicted in Figure 4.10 above.

Algorithm 4.1
Step .1.  Define the radial basis function RBF:

def rbf(x, c, s):
return np.exp(-1/ (2 * s**2) * (x-c)**2)
Step .2.  Define the approximation function using superposition of weighted radial basis functions
(RBFs)
def predict(self, X):
y_pred =]
for i in range(X.shape[0]):
a = np.array([self.rbf(X[i], c, s) for c, s, in zip(self.centers, self.stds)])
F = a.T.dot(self.w) + self.b
y_pred.append(F)
return np.array(y_pred)
Step .3.  Compute the error subtracting values generated by approximation function from actual
values
Step .4.  Update the weights and bias parameters
Step .5.  Continue the process until the error reach a specified level.

The perpendicular (the shortest distance between the univariate variable x and its
center c; in the exponent of the kernel functions described in equation (4.45) above
changes to Mahalanobis distance in the case of multivariate data. Hence the new

basis function is given by equation (4.49).
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p;(X:p) = e_%(x_”j)TZj_l(X_ﬂj) (4.49)

4.5.3.LSTM for speaker age regression

We used LSTM for estimating the age of speakers from MFCC features as well as
power spectrum of frames in addition to speaker age classification shown in sub
section 5.4.2. As stipulated earlier in this research book at the classifiers list LSTM is
suited to classify and predict from patterns based on similarities in a time series data.
There exists a cell at the heart of the LSTM network that memorizes previous error

values in addition to the three important gates; input, output and forget gates.

Given input features x,, the weights {W;, W; , W, and W.} associated with
connections from input frames and the weights {V, V; , V, and V,} associated with
connections from the cell at the center to forget, input and output gates as well as the
cell itself respectively, the operation of an LSTM network can be described using the
following flow diagram and the mathematical expressions are listed below the
diagram consecutively. The bias parameters by, b; , b, and b, in the equations
represent the biases directed to forget gate, input gate, output gate and the cell at the

center respectively.

Output
Gate

oW Forget Gate

Figure 4.11.Peephole connections in LSTM cells

Figure 4.11 above is commonly referred to as the peephole connection LSTM unit in
recurrent neural networks (RNN). Peephole connections stand for the three synapses

originating from the cell and terminating at the input, output and forget gates i;, o,
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and f; respectively. The chain of equations (4.50) to (4.55) can be used to determine

the outputs of the three gates and the cell shown at the middle of the LSTM.

ft = Gsigmoia Wrxe + Vehe_y + by) (4.50)
it = Gsigmoia Wixe + Vihe_1 + by) (4.51)
0t = Jsigmoid Woxe + Vohe—q + by) (4.52)
Ct = Gnyperbolic Wexe + Vehe_y + be) (4.53)
= Qciq + it QE (4.54)
he = 0r @ Grannyperbotic(Ct) (4.55)

The cell contributes the estimated value h;_;at time step for the current time ¢t
prediction h,.The operation @ represents element-wise multiplication between two
operands in the above equations. The initial values c, and hyare assumed to be both

zero and the subscripts t denotes time step.
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5. EXPERIMENTAL SETUP
5.1. Databases

The age and gender annotated telephone speech database (aGender) is exhaustively
used to train and test performance of several feature-classifier pairs [14-15, 17, 20,
119]. The database consists of 47 hours of prompted and free text [20]. It includes
seven categories: Children (7-14 years old) for both genders, young female (YF, 15-
24 years old), young-male (YM, 15- 24 years old), adult-female (AF, 25-54 years
old), adult-male (AM, 25-54 years old), senior-female (SF, 55-80 years old), and
senior-male (SM, 55-80 years old). Due to commercial concerns and considering that
it is easier to classify compared to the other classes, most studies avoid the children
class in their researches [17, 60, 67, 119]. Children’s speech both in male and female
contains relatively higher fundamental frequency F, which makes it easily separable
and more classifiable compared to young, adult and senior utterances [28]. Therefore,
we limited our focus on speakers older than 15 years in order to compare our
approaches with past and ongoing studies. Young, adult and senior classes are treated
separately in their respective genders. This database is prepared to help in
overcoming the low compatibility of results, by addressing three selected sub-
challenges namely; age, gender and affect sub-challenges [14]. A total of 184 male
and 190 female speakers are used in the training set. The development set consists of
130 male and 131 female speakers. 15 male and 14 female speakers are selected for

testing performance as summarized in table 5.1 below.

Table 5.1. Distribution of speakers along development,
training and test sets in each class of the aGender database.

Development set | Training set | Test set | Total
Female | 131 190 14 335
Male 130 184 15 329

The audios in the aGender database were recorded over cell phones and landline
connections in 8000 Hz, 8 bit alaw format. The male and female datasets are further

classified in to three categories as young (ages: 15-24), adult (ages: 25-54) and old or
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senior (ages: 55-80). A total of 852 German speakers (at least 100 speakers in each
class) have participated in the audio recording which accounts for 47 hours of speech
[120]. All the seven classes including children class ranging from age 7 to 14 are
considered to evaluate the overall performance of fusion of features in one scenario
[76]. The distribution of utterances in each class for development, training and test
sets is presented in table 5.2 below. Due to the lack of labeling on the test set of the
original dataset we received the training dataset is split in to training and test sets.
Once the path to each speech utterance in the three datasets is established Matlab
commands are exploited to trace and pick for processing. A total of 9644, 12985 and
1150 audio samples are used as development, training and test sets in the female
speaker age classification experiments respectively. Similarly 8508, 12906 and 1079

utterances are used in the male gender respectively.

Table 5.2.  Distribution of utterances along development,
training and test sets in each class of the aGender database.

Age Classes Development set | Training | Testset | Total
set

Child 7-14 2397 4000 407 6804
Female 15-24 | 2722 4254 384 7360
Female 25-54 | 3361 4187 386 7934
Female 55-80 | 3561 4544 380 8485
Male 15-24 2170 3631 388 6577
Male 25-54 2512 4051 366 7295
Male 55-80 3826 5224 325 9700
Female Total | 9644 12985 1150 23779
Male Total 8508 12906 1079 22493
Grand Total 20549 29891 2636 53076

Age-Vox-Celeb database consists of YouTube recordings of celebrities. For this
reason, it contains a large number of utterances in the adult class for both genders.
This class is well represented in terms of speaker and utterance diversity. However,
young and senior classes lack this luxury [21, 70-71]. Table 5.3 below shows the

distribution of utterances in this database for the three speaker age classes.
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Table 5.3.

and test sets in each class of the Age-Vox-Celeb database.

Distribution of utterances along development, training

Age Classes Development set | Training set | Test set | Total
Female 15-24 | 1820 3710 699 6229
Female 25-54 | 2594 6738 2000 11332
Female 55-80 | 2810 3770 999 7579
Male 15-24 2549 4013 900 7462
Male 25-54 3526 7497 1209 12232
Male 55-80 3857 7022 1200 12079
Female Total 7224 14218 3698 25140
Male Total 9932 18532 3309 31773
Grand Total 17156 32750 7007 56913

provided in table 5.3.

We had fewer speakers and more number of utterances in the Turkish database
compared to aGender and Age-Vox-Celeb. The aGender is the most balanced among
the three databases. Each speaker contributed several utterances in the Turkish
database although their number was quite a few. The sampling rate used in the
Turkish and English databases is 16 kHz. The details of the Turkish database are

Table 5.4.  Distribution of speakers along development, training
and test sets in each class of the Turkish database.
Age Classes Development set | Training | Testset | Total
set
Female 15-25 | 6 10 41 57
Female 26-40 | 6 10 107 113
Female 41-100 | 6 10 33 49
Male 15-25 6 10 31 47
Male 25-40 6 10 77 93
Male 41-100 6 10 0 16
Female Total 18 30 181 229
Male Total 18 30 108 156
Grand Total 36 60 288 384

5.2. Classification and Regression Experimental Setups

All our experiments begin with establishing well organized databases to each audio
sample. Then our subroutines pick the sample utterances from this path before it
commences to other operations as shown in Figure 5.1 below. Details are presented

in the experimental setup section mean while our databases are organized in gender,

age classes, training, test and development (UBM) sets.
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of experiments in this study

A hamming window of length 20 ms with 10 ms overlap is used for framing
utterances [121]. 512 DFT point and a total variability dimension of 200 are applied.
13 static, 13 dynamic and 13 acceleration features are extracted from each frame.

This makes up a total of 42 features including an energy component for each of the

three feature sets.

......................... —

Feature

extraction

For speech duration analysis we used the setup displayed below.

General block diagram that shows the overview

Figure 5.2.

Speech length in terms of number of frames for age estimation
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After extracting the acoustic features we stored these values in a matrix variable and
adjust the duration according to selected sizes from the shortest being 0.5 second (50

frames) long and the longest as 10 seconds (1000 frames) long.

Several network architectures of DNN and LSTM have been attempted in order to
raise the accuracy of prediction and reduce the mean absolute error. However, DNN
failed to deliver up to our expectation. On top of that it takes longer to complete even
20 epochs. LSTM on the other hand, has a comparable performance in the female
aGender dataset with MFCC feature and the best end-to-end prediction accuracy
compared to CDS, GMM and PLDA with this dataset. The network setup includes 7
layers; an input layer with input dimension 42, three bidirectional LSTM layers with
128, 32 and 32 hidden units (neurons) respectively, a fully connected layer with 3
neurons, a softmax layer and an output layer with cross-entropy. Sigmoid activation
function is applied in most of the neurons. For end-to-end setting, the same number
of layers is used with the same hidden layers except for the input dimension which is
increased to 257. The input dimension is determined from the DFT point N we
applied in the FFT algorithm. Hence, the input dimension is half of the DFT point N
plus 1. Stochastic gradient discent (SGD), a maximum epoch of 20 and minimum
batch size of 27 are implemented.

Two metrics are used to evaluate the performance of the LSSVR and LSTM
regression algorithms. The majority of our experiments have dealt with speaker age
classification rather than regression especially at the beginning of our research. But
later regression approaches are included for speaker age estimation. The famous
mean absolute error (MAE) and Pearson correlation coefficient (p) are used to
evaluate the performance of linear and non-linear regression approaches. These two
parameters are defined using actual and estimated speaker age data as shown in
equation (5.1) and (5.2) below.

MAE = —3N,|(y: — 7)) (5.1)
p= o El, (M) (22 (52)

Where y; and §; are the actual and estimated age of the i‘" utterance respectively. In

addition_uy and _oy; are the mean and standard deviation for the predicted ages of

99



the test set; and u,and o,, for the true ages. Higher correlation coefficients and lower

mean absolute error values are better. The performance evaluation of our approaches

Is presented in section 5 below.

Similar approaches are followed in pre-processing of the audio signal during feature
extraction. However, instead of writing the features on to a text file we created a
matrix that accumulates all the features in each frame immediately after extraction is
completed. The usual hamming window of size 20 milliseconds and 10 milliseconds
overlap is applied for framing each audio file [17]. Most of the features we used and
designed are inspired by an article that investigated several features (magnitude as
well as phase-based) for replay spoofing attack detection [18]. We have also
contributed a new feature set called parabolic filter mel-frequency cepstral
coefficient (PFMFCC). Our experimental result for the new feature is published in
[76].

For speaker age classification schemes, accuracy is used as a measure of
performance metrics in our experimental results. The usual way to do this is to
generate the confusion matrix. This matrix is a square matrix, whose order is
equivalent to the number of classes in a classification problem, consisting of correct
and misclassified number of utterances. The rows in a confusion matrix stand for
actual classes whereas the columns represent predicted classes. The elements placed
along the diagonals convey the number of correctly classified utterances for each
class as it goes down the diagonal. On the other hand, those elements found off the
diagonal represent the number of utterances wrongly classified. The misclassification
mostly occurs in the adult speakers in large numbers; misclassified as either young or
senior (old) speakers as it shares boundary with both classes. Hence the accuracy can
be computed as the average of the elements along the diagonal if the classes are
evenly distributed. If there are irregularities in the number of utterances in each class,
then the accuracy is computed as the sum of correctly classified utterances divided
by the total number of test set utterances given by the equation (5.3) below:

#correctly classified utterances (53)

Accuracy =
Y #test set utterances

where the hashtag # represents number of something.
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6. RESULTS AND DISCUSSION

This chapter is presented in 2 subsections. The first one presents experimental results
with using tables and figures. Short discussions are provided right after each table
and figure. The second subsection gives in-depth analysis and discussion on selected

results and unexpected outcomes.
6.1. Results

Experimental results of the research study are presented graphically as well as using
tables and a short discussion follows in this subsection. However, in-depth analysis
and discussion is provided in section 6.2. The results are presented in 4 categories;
the first category is matched-language scenario carried out on German and Turkish
databases, secondly performance evaluation of bilingual, multilingual and cross-
language evaluation results which consists of utterances from English, German and
Turkish languages, thirdly regression results for the least square support vector
regression (LSSVR) model and speech length (duration) analysis for selected feature

sets and finally performance evaluation of deep learning based classification models.

6.1.1. Performance evaluation of CDS, GMM and PLDA classifiers on matched-

language baseline scenarios

This subsection presents the performance evaluation of three classifiers and ten
feature sets for the German and Turkish databases. Table 6.1 presents speaker age
classification performance in terms of accuracy for; CDS, GMM and PLDA
classifiers over the female dataset of aGender database by applying VAD with an
energy threshold of -55dB to remove non-speech and silent frames. If the maximum
energy among all frames is greater than -25dB, the threshold is raised to 30dB below
the maximum energy. The former follows absolute criteria whereas the latter uses a
relative approach to remove non-speech frames. The table also presents evaluation

results for non-VAD scenarios in which silence and noise frames are kept.
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Table 6.1. Comparing the proposed PFMFCC in
female datasets of the aGender database with and

without VAD

33i cheorE?I\i AD Accuracies in %
CDS GMM PLDA
MFCC 56.436 |57.033 | 57.033
IMFCC 46.632 | 43.904 |50.127
" LFCC 52.783 | 57.739 | 52.956
§ RFCC 53.565 | 58.522 |53.367
o | PEMFCC 50.440 |[52.740 | 58.140
% SCMF 51.321 |52.173 |51.321
$ | Cosine_ph 53.623 |49.616 | 44.245
SSFC 52.429 |50.639 |51.15
MODGD 56.947 | 57.971 |50.724
RASTA-PLP | 46.717 |53.367 |55.413

b) Female with VAD Accuracies in %
CDS GMM PLDA
MFCC 56.265 | 57.033 | 46.973
IMFCC 53.793 | 51.577 | 29.497
LFCC 52.941 |52.429 | 42.966
g RFCC 54.305 |51.832 | 44.330
o | PEMFCC 50.350 |55.390 |(52.170
% SCMF 57.033 | 53.623 | 44.586
& | Cosine_ph 47.058 |44.842 |39.471
SSFC 53.878 | 51.065 | 38.704

MODGD 50.895 |50.127 | 35.720
RASTA-PLP | 47.826 | 50.639 | 47.996

A maximum of 57.03% accuracy using SCMF on CDS and MFCC on GMM
classifier is achieved applying voice activity detection (VAD)[122] for all feature
extractions over the female dataset of the aGender database. However, PLDA
generally delivered poor performances in this regard. It offered accuracies below 50%
with all feature sets except PFMFCC which showed 52.17% and 51.3% accuracies in
correctly predicting the age classes for female and male test samples respectively.
Similarly a maximum of 47.729% accuracy using RFCC on cosine scoring, 47.358%
using RASTA-PLP on GMM classifier and 46.987% accuracy using IMFCC on
PLDA classifier is achieved for male dataset. Table 6.2 below presents speaker age
performances of the three classifiers; CDS, GMM and PLDA over male dataset of
the aGender database using the 10 feature sets discussed in chapter 2. The table

presents for both with VAD and without VAD scenarios.
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Table 6.2. Comparing the proposed PFMFCC in
male datasets of the aGender database with and

without VAD
a) Male without Accuracies in %
VAD CDS GMM PLDA
MFCC 41.797 |42.632 |55.144
IMFCC 41.149 | 40.963 | 54.587
LFCC 47544 | 46.339 |[52.641
2| RFCC 43.837 |40.963 [56.348
g PFMFCC 51.060 |56.010 |57.230
,g SCMF 43.466 |41.334 |[52.641
2 | Cosine_ph 39.295 [33.271 |31.417
SSFC 37.256 | 37.905 | 48.656
MODGD 46.153 |51.159 | 45.319
RASTA-PLP | 43.188 | 40.685 |48.285

b) Male with VAD Accuracies in %
CDS GMM PLDA
MFCC 43.929 |42.354 |43.651
IMFCC 40.871 | 41.797 | 46.987
LFCC 42.354 | 42.910 | 39.851
g RFCC 47.729 |41.705 | 38.832
o PFMFCC 45320 |42.170 |51.300
% SCMF 45968 | 44.763 | 45.783
P Cosine_ph 35.866 | 33.827 | 39.202
SSFC 37.998 | 39.573 | 33.456
MODGD 36.793 | 35.495 | 40.500
RASTA-PLP |42.724 | 47.358 | 42.910

Without VAD, CDS classifier offered 56.95% with MODGD feature and 51.06%
with the PFMFCC feature for female and male test sets respectively. Similarly the
GMM classifier achieved a maximum of 58.52% and 56.01% with RFCC and
PFMFCC features for female and male test sets respectively. The phase-based
feature MODGD also impressed with accuracies of 57.97% and 51.16% using this
classifier over female and male datasets respectively. These results are shown in
Tables 6.1 and 6.2 as well as in Figures 6.1 and 6.2 for female and male test sets with
and without VAD respectively. PLDA performed better without VAD in all the
features except the cosine phase feature for male test set. The best performances
without VAD for this classifier are 58.14% and 57.23% using PFMFCC for female
and male test sets respectively. Figures 6.1 and 6.2 below present the results
graphically for female and male test sets respectively in order to make the

comparisons visually clear.
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Accuracy A) Cosine Score evaluation for female set
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Figure 6.1. Graphic representation of evaluation results for female test set
in a) cosine score b) GMM and c¢) PLDA classifiers with aGender database
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Accuracy A) cosine score evaluation for male test set
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B) GMM evaluation for male test set
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Figure 6.2. Graphic representation of evaluation results for male test set in a)
cosine score b) GMM and c) PLDA classifiers with aGender database

In summary, the proposed PFMFCC and the adopted RFCC feature sets offered the
best performances with PLDA and GMM classifiers for male and female datasets
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respectively. They offered 57.23% and 58.52% correct predictions respectively.
PFMFCC also offered 58.14% accuracy with PLDA classifier for the female dataset.

A brief comparison of this feature set with MFCC is presented in section 6.2.

The male dataset of the Turkish database generally showed poor performance in all
setups comparatively. This is obviously because of imbalance in the database where
it presents a large number of adults but, relatively very few senior male speakers.
This has also been observed in a previous study with the same database where the
confusion matrix shows 0 correct classifications for senior male speakers [53]. The
female dataset on the other hand, performed well as it constitutes diversity not only
in utterances and speakers but also in age classes comparatively in a balanced
manner. Selected experimental results are depicted in Table 6.3 for both genders of
the Turkish database.

Table 6.3. Comparing the proposed PFMFCC for female and male datasets in
the Turkish database

Female accuracies in % Male accuracies in %
CDS GMM |PLDA |CDS GMM | PLDA
MFCC 62.24 | 70.45 51.98 47.44 34.16 |47.56
LFCC 64.70 | 70.42 29.29 42.31 37.46 | 28.76
RFCC 62.98 | 70.60 30.83 47.19 41.65 |49.42
PFMFCC | 57.18 69.50 49.30 4412 38.74 | 49.85
MODGD |36.14 |36.47 34.75 37.04 37.68 |50.25

Feature sets

6.1.2. Performance evaluation of CDS, GMM and PLDA classifiers on bilingual,

multilingual and cross-language scenarios

The essence of this study is to find out the effect of language in speaker age
estimation along with other factors such as number of speech frames involved in
training and test sets. Table 6.4 presents experimental results of multilingual
(bilingual) training setup for speaker age classification tested with female and male
datasets of the German (aGender) and Turkish databases. This table presents
performance evaluation of the three models; CDS, GMM and PLDA trained with
data composed of audio data in German and Turkish languages.
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Table 6.4. Bilingual training tested with German and Turkish
female and male datasets for speaker age classification

Test sets (accuracies in %)
German Turkish

a) Female CDS | GMM ([ PLDA | CDS | GMM | PLDA

MFCC 37.22 | 55.22 | 47.65 [62.24 |70.45 |48.94
< 2| LFCC 54.26 [52.17 [37.3 |65.03 [70.16 | 48.68
£ £ | RFCC 36.00 |57.30 |35.48 |62.68 |70.93 |44.87
@ = | PFMFCC | 44.00 |54.00 |45.65 |54.84 |68.99 |49.23

MODGD | 35.65 | 36.09 | 32.35 |36.03 | 34.53 | 21.59
b) Male

MFCC 35.22 | 30.31 40.41 |48.52 |32.37 |56.43
S 2| LFCC 33.64 |33.18 [34.66 |[4569 |37.46 |[30.02
E’% RFCC 34.57 |32.44 30.95 | 4757 |41.65 |49.42
= = | PFMFCC |34.29 [36.70 |37.81 |44.12 |38.74 |51.13

MODGD |35.87 [30.03 |3577 |37.04 |37.68 |51.48

The multi-language training with only German and Turkish utterances a.k.a.
bilingual scenario degraded the matched performance significantly for the aGender
database with few exceptions in the GMM classifier over the female dataset. Notable
deficits in accuracy include 28.57% and 25.4% decline with PLDA classifier applied
on PFMFCC and RFCC features for female and male datasets respectively. This
could partly be due to the differences in an audio recording devices and sampling
rate. The German audios are recorded from telephone conversations with a sampling
rate of 8 kHz whereas the Turkish utterances are recorded with a computer at a
sampling rate of 16 kHz. More discussion on what caused these degradations is
provided in subsection 6.2 and compares it with multilingual for three language and
cross-language scenarios. On the other hand, the performance remained not much
affected on the Turkish database compared to matched-language scenarios. The
PLDA classifier performed even better with MFCC, PFMFCC and MODGD feature
sets especially for the male gender. This could possibly be due to the nature of
phoneme sequences in the training utterances that made these features more
classifiable than others with the PLDA classifier. It indicates addition of German
utterances to the training has contributed for the performance improvement for the

PLDA classifier with these features.

Effect of adding a third language to the multi-language (multilingual) training setup

is investigated and the results are presented in Table 6.5 below. In this table the
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columns represent the language of test sets used for performance evaluation whereas,
the training constitutes three languages; German from the aGender database, Turkish

and English from Age-Vox-Celeb database.

Table 6.5. Multi-language training performance evaluation for female and male
datasets with German (aGender), Turkish and English (Age-Vox-Celeb) databases

Test sets (accuracies in %)

a) Female datasets German Turkish English
CDS | GMM | PLDA | CDS | GMM | PLDA | CDS | GMM | PLDA

MFCC 4496  46.17 3522 | 6528 65.07 47.98 | 36.93 42.67 36.58
LFCC 35.13  48.17 31.57 63.75 70.12 30.06 29.76 42.42 3171
RFCC 30.61  49.04 30 64.08 70.13 27.97 30.79 42.58 31.00
PFMFCC | 39.74 4722 3452 65.10 66.31 50.26 | 31.27 45,92 36.17
MODGD 32.17 34.52 34.17 | 4751 53.08 27.46 34.55 26.56 22.48
b) Male datasets
MFCC 37.16 35.59 32.34 | 5410 3247 44.88 | 36.50 4485 4213
LFCC 33.73 39.48 29.19 51.22 44.00 38,50 | 37.53 4476  43.25
RFCC 32.07 38.27 34.94 | 53.65 43.59 37.56 38.99 4433  43.67
PFMFCC | 35.03 36.89 29.84 | 39.31 42.03 35.84 | 36.27 4754  37.29
MODGD | 31.88 31.05 26.14 | 4575 3641 45.07 ] 34.36 36.66  36.81

Multilingual
Training

Multilingual
Training

Adding English to the multi-language scenario has improved performance of some
feature sets on certain classifiers for some datasets notably; MFCC and RFCC
features on CDS classifier for male Turkish and German dataset. In addition, the
GMM classifier showed a slight improvement in LFCC, RFCC and PFMFCC feature
sets. Significant increase in accuracy is scored for all the three classifiers on MFCC
feature over the German female dataset. Likewise, the MODGD feature also offered
significant improvement for the female dataset of the Turkish dataset with addition
of the Age-Vox-Celeb database to the multilingual setup. Major degradations in
performance most likely due to addition of the English dataset occur in the PLDA
classifier for the male Turkish dataset with the exception of the LFCC feature which

improved the prediction accuracy by 4.87% in this regard.

On the contrary to the multilingual scenarios, language mismatches between training
and test sets have been investigated to degrade the performance dramatically and
results are presented in Table 6.6 below. In this table the cells located along the
diagonal are accuracies of matched-language setups whereas, the cells off-diagonal
are language mismatch (cross-language) performance evaluations the rows and

columns being training and test sets respectively. The performance has been affected
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dramatically for language mismatches in most of the cases compared to matched-
language and multilingual scenarios. However, quite few evaluations surprisingly

showed better performances than matched-language scenarios.

Table 6.6. Cross-language and matched language performance evaluation for
female and male datasets trained with German, Turkish and English databases
tested with German, Turkish and English test sets

Test sets (accuracies in %)

a) Female datasets German Turkish English
CDS | GMM | PLDAJCDS | GMM | PLDA | CDS | GMM | PLDA

MFCC 56.44 57.08 57.03 | 5341 2364 2555 | 3818 4134 2413

g £ | LFcc 5278 5774 5296 |41.13 37.72 19.90 | 2330 4202 2432
£ £ | RFCC 5357 5852 5337 |5198 2643 3167 | 2679 3301 27.62
& = | PFMFCC | 5044 5274 5814 | 4439 5301 2119 |3939 3290 2357

MODGD | 56.95 57.97 50.72 | 4505 5279 4501 |]3277 3796 2549

MFCC 3496 3565 3017 | 6224 7045 5198 | 2468 2165 1948
% £ | Lrce 3157 3357 3348 | 6470 7042 29.29 |20.73 20.08 2027
< £ | RFCC 3061 3357 3348 | 6298 7060 3083 | 2002 1989 20.13
£ = | PFMFCC | 3435 3704 3061 |57.18 6950 4930 |2135 2273 1967

MODGD | 3461 3278 34.26 ] 36.14 3647 3475 | 28.73 2427 23.00

MFCC 3356 29.22 2591 | 4183 3794 57.63 |43.26 4581 4586
LFCC 3209 26.00 3157 | 3471 4083 52.02 |39.23 4291 43.70
RFCC 30.52 2400 26.43 | 3787 40.84 5356 | 37.58 4337 4359
PEFMFCC | 32.69 2478 2530 | 4351 28.99 6056 | 4294 46.27 4578
MODGD | 34.17 3261 33.22 | 3523 2551 4289 | 3279 3542 39.04

English
Training

b) Male datasets

MFCC 41.79 42.63 55.14 25.72 30.24 29.80 40.62 40.47 35.60
g cgn LFCC 47.54 46.34 52.64 22.32 13.43 34.92 34.48 38.29 36.41
£ % RFCC 4384 4096 56.35 | 1573 2655 29.86 | 3237 4059 34.06
R} — | PEMFCC | 51.06 56.01 5723 | 2358 3375 1731 |3578 3478 3318

MODGD | 46.15 5116 4532 ] 2698 19.78 3356 | 3666 36,60 35.96

MFCC 26.41 30.70 33.92 47.44 34.16 47.56 34.75 30.70 27.26
ﬁ CED LFCC 29.01 28.82 33.36 42.31 37.46 28.76 31.64 27.14 33.24
< % RFCC 30.02 26.32 36.61 47.19 41.65 49.42 29.50 26.90 34.48
|3 ,: PFMFCC 30.31 32.53 34.19 44.12 38.74 49.85 30.70 29.07 28.08

MODGD | 2827 17.05 30.77 ] 3704 3768 5025 | 3264 2759 32.16

MFCC 3216 2428 4273 | 5465 3290 3425 | 4745 4597 5144
LFCC 3596 33.64 3411 | 4012 4305 3465 | 4439 4403 4932
RFCC 3049 32.07 39.30 | 4257 4285 2885 | 4131 43.64 4772
PFMFCC | 31.14 2790 3411 | 4321 3855 3433 | 4588 4699 50.68
MODGD | 3577 3346 36.15 ] 3409 2971 2793 | 3403 3506 33.73

English
Training

For instance, it is quite strange to see 57.63% and 60.57% accuracies for MFCC and
PFMFCC for PLDA model trained with English utterances of the female dataset
tested with Turkish female datasets respectively. PLDA generally showed better

performance.

The extent of performance degradation due to language mismatch can go as low as
accuracy levels of 19.89% and 13.43% in the female and male datasets. These lowest

accuracies are recorded for RFCC feature on Turkish trained GMM classifier tested
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with English utterances and LFCC feature set on Turkish trained GMM classifier
tested with German utterances respectively.

With the Turkish male dataset for instance, a maximum of 32.54%, 37.92% and
33.64% accuracy gains are recorded over a cross-language performance against
German trained model using matched-language, multilingual and bilingual training
setups respectively. These improvements are made with a feature-classifier pairs of
PFMFCC-PLDA, RFCC-CDS and RFCC-CDS in their respective order. Likewise,
22.32%, 11.66% and 16.11% maximum accuracy improvements are made over
cross-language evaluation of English trained MODGD-PLDA, MODGD-CDS and
MODGD-PLDA feature-classifier models respectively. Table 6.7 presents a
comparison of best performances in each 6 dataset for the marched-language training
setup with Multilanguage and cross-language scenarios. In addition the performance
evaluation of a bilingual setup is also included for German and Turkish databases.
These figures should only be compared horizontally as they represent evaluation of
the same feature-classifier pair along a certain row. However, if we look at vertically

down for a given column the values may not be from the same model.

Table 6.7. Performance comparison of best matched-language classification
accuracies with multilingual and cross-language scenarios

Training setups (accuracies in %)
Fe_ature-classifier Cross_|anguage
airs

P Matched | Multilingual | Bilingual | English | German | Turkish
Turkish male MODGD-PLDA 50.25 45.07 44.04 33.56 27.93
Turkish female RFCC-GMM 70.60 70.13 70.93 26.43 40.84
German male PFMFCC-PLDA 57.23 29.84 37.81 34.11 34.19
German female RFCC-GMM 58.52 49.04 57.30 24.00 33.57
English male MFCC-PLDA 51.44 42.13 32.70 24.13 27.26
English female PFMFCC-GMM 46.27 45.92 25.60 32.90 22.73

The bilingual training setup is composed of utterances from German and Turkish
databases. English test sets are applied to this scenario to see how the absence of a
language can affect the performance. Indeed it showed 20.32% and 9.43% decline in
performance compared to the multilingual setup with the three databases for female
and male English datasets respectively. The PLDA classifier failed to make a
positive contribution in the German male test set for bilingual and multilingual
scenarios. It even performed worse than the cross-language setups. This could be due

to the imbalance in the Turkish male dataset and differences in sequence of
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phonemes in test and training samples which might have played a negative role the
performance. However, some features made improvements with this classifier. For

example

6.1.3. Regression results and speech duration analysis

LSSVR results are presented in Tables 6.7 and 6.8 for male and female datasets of
the aGender database. Two scenarios are considered; LSSVR applied on i-vectors of
5 spectral feature sets and directly on the acoustic feature sets concatenated to form a

supper vector. The unit f stands for frames which basically contain 20 milliseconds

of speech.

Table 6.8. Performance evaluation in a) MAE b) p of
feature+i-vector+LSSVR method for male dataset

a) Mean absolute error (MAE) for male dataset

Male frames | PFMFCC | MFCC | RFCC | LFCC | MODGD
50f 7.598 7.842 | 7997 |8.272 |8.189
100f 6.809 6.733 | 7.288 | 7423 |7.284
200f 6.340 6231 |7.131 |6.969 |6.776
400f 6.142 6.027 | 7.458 |6.955 |6.570
800f 6.130 6.022 |7.072 ]6.925 |6.515
1000f 6.129 6.015 |7.046 |6.924 |6.501

b) Pearson correlation coefficient p for male dataset

Male frames | PFEMFCC | MFCC | RFCC | LFCC | MODGD
50f 0.601 0.578 0.558 0.528 0.543
100f 0.682 0.690 0.632 0.620 0.578
200f 0.724 0.731 0.650 0.666 0.679
400f 0.748 0.757 0.609 0.671 0.696
800f 0.747 0.758 0.652 0.674 0.701
1000f 0.746 0.746 0.654 0.674 0.702

Table 6.9. Performance evaluation in a) MAE b) p of
feature+i-vector+LSSVR method for female dataset

a) Mean absolute error (MAE) for female dataset

Female frames | PFEMFCC | MFCC | RFCC | LFCC | MODGD
50f 8.004 8.369 | 8.643 |8.520 | 8.535
100f 7.103 7.615 | 7.415 |7.462 |7.297
200f 6.633 7.222 | 6.731 |[6.804 |6.862
400f 6.411 6.836 | 6.348 | 6.547 | 6.610
800f 6.363 6.825 |6.247 |6.460 | 6.604
1000f 6.363 6.816 | 6.219 | 6.457 | 6.583

111



b) Pearson correlation coefficient p for female dataset

Female frames | PFMFCC | MFCC | RFCC | LFCC | MODGD

50f 0.653 0.619 | 0.601 | 0.618 | 0.603

100f 0.721 0.674 |0.701 | 0.700 | 0.698

200f 0.763 0.722 | 0.765 | 0.771 | 0.736

400f 0.779 0.753 | 0.790 | 0.791 | 0.752

800f 0.782 0.753 | 0.797 | 0.796 | 0.753

1000f 0.782 0.753 | 0.799 | 0.797 | 0.755
MAE
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Figure 6.3. MAE of LSSVR expressed along increasing number of

frames for male aGender dataset
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Figure 6.6. p as frames increase for LSSVR over female aGender dataset

In addition, Figures 6.3 and 6.4 above present the MAE and p graphically for
different speech durations expressed in terms of number of frames for the male

dataset. Figures 6.5 and 6.6 present for the female dataset likewise.

Tables 6.9 and 6.10 below, show the performance evaluation of the LSSVR
regression algorithm on i-vector sequences for different combination of mismatch in

length of utterances in speech segments assuming 200, 500 and 1000 frames as short
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medium and long utterances respectively. The values located across the diagonals
represent matched and the bold values show best mismatch performances.

Table 6.10. i-Vector  followed by  LSSVR
performance evaluation for utterance length mismatch
in terms of MAE for female dataset. (Rows are
training and columns are test frames)

a) PFMFCC-ivector-LSSVR b) MFCC-ivector-LSSVR
Test frames Test frames
200 500 1000 200 500 1000
200 | 6.6330 | 6.4602 | 6.4346 | 7.2220 | 6.8266 | 6.7969
500 6.7843 | 6.4467 | 6.4255 | 7.2520 | 6.8224 | 6.7935
& [ 1000 [ 6.8052 | 6.4717 | 6.3630 | 7.2793 | 6.8467 | 6.8160
:
g c) RFCC-ivector-LSSVR d) LFCC-ivector-LSSVR
= Test frames Test frames
£ 200 500 1000 | 200 500 1000
£ 200 | 6.7310 | 6.3952 | 6.3650 | 6.8040 | 6.4187 | 6.3945
500 6.6540 | 6.2619 | 6.2190 | 6.6744 | 6.3622 | 6.3350
1000 ] 6.6500 | 6.2607 | 6.2190 | 6.6514 | 6.3380 | 6.4570
Table 6.11. I-Vector followed by LSSVR

performance evaluation for utterance length mismatch in
terms of MAE for male dataset. (Rows are training and
columns are test frames)

a) PFMFCC-ivector-LSSVR b) MFCC-ivector-LSSVR
Test frames Test frames
200 500 1000 200 500 1000

200 6.3400 | 6.1726 | 6.7498 | 6.2309 | 6.1849 | 6.1544
500 6.4308 | 6.1736 | 6.1982 | 6.1500 | 6.0680 | 6.0424

§ 1000 | 6.3770 | 6.1555 | 6.1285 | 6.1354 | 6.0387 | 6.0147
[«5)

IS

E ¢) RFCC-ivector-LSSVR d) LFCC-ivector-LSSVR
g’ Test frames Test frames

% 200 500 1000 200 500 1000
=

200 7.1306 | 7.0903 | 7.0717 ] 6.9685 | 6.9723 | 6.9873
500 7.1092 | 7.0687 | 7.0480 | 6.9442 | 6.9328 | 6.9380
1000 | 7.0919 | 7.0715 | 7.0459 | 6.9337 | 6.9219 | 6.9243

Performance comparison of LSSVR model on direct acoustic spectral features and i-
vectors as a second tier feature extraction for utterance lengths of 3, 5 and 10 seconds
as short medium and long speech utterances respectively is made and presented in
Table 6.11 below. The input sequences used in acoustic feature sets with LSSVR
regression model are extremely long as they are a result of concatenation of several
frames. Hence the performance is not only poor but also slow due to the length of

sequences.
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The LSSVR is not only ineffective, but also slow when applied to the super-vector
acoustic feature sets directly before i-vectors are generated from them as the
concatenation of all the frames in the entire speech segment makes the dimension of
observations extremely large. If we look at the shortest speech segment, i.e. 3
seconds containing 300 frames for instance, each frame consists of 42 feature values

which would make up a super-vector of dimension d = 300 x 42 = 12600.

Table 6.12. Performance of LSSVR model on short, medium and long utterances
for female and male datasets

Feature set Feature set
Duration Female used and Male used and
MAE/p : MAE/p :
Improvement |mprovement
3s
Egasf‘\*/r; ¥ 11.704/0.580 | RFCC, 11.093/ 0.500 | MECC,
o 44.98% 44.77%
LssvR 6.439/0.781 | improvement | 6.127/0.746 | improvement
5s
E‘gg}g * 11.628/0.592 | RFCC, 11.063/0.504 | MFCC,
— e — 46.15% 45.15%
LSSVR 6.262/0.796 Improvement | 6.068/0.7526 | improvement
10s
E‘;astg/rg ¥ 11.555/0.594 | RFCC, 11.012/ 0.506 | MECC,
——— 46.179% 45.38%
LSSVR 6.219/0.799 | improvement | 6.015/0.746 | improvement
Note: Feat = {MFCC, RFCC, LFCC, PFMFCC, MODGD}

The complexity of regression increases and the speed of operation dramatically
decreases compared to the regression applied on a fixed 200 i-vectors. The order of
complexity is crucial especially when we are working with a large data. We need to
consider every possibility to reduce the hurdles on our computing machines. In this
regard the i-vector LSSVR approach has made 98.4% dimensionality reduction

cutting the 12600 long, vector to only 200 identity vectors.
6.1.4. Performance evaluation of deep learning based classifiers

Performance evaluation of speaker age classification for both the Turkish and

aGender databases using x-vector neural network architecture with PLDA classifier
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Is presented in Table 6.12 below. Our model does not perform well for the male
dataset in the Turkish database compared to other datasets due to imbalance in
number of utterances in each class. Senior speakers are not represented sufficiently in
this dataset.

Table 6.13. Cross-gender speaker
age evaluation using Xx-vector
neural network architecture

Test
German Male female
= | male | 54.588 35.349
= | female | 36.372 57.565

Test
Turkish male female
= |male |44.709 |32.828
= | female | 33.368 | 64.687

The x-vector neural network is tested with utterances drawn from an unseen and
unrepresented datasets. The results shown in Table 6.13 are comparable to cross-
language and multi-language performance evaluation of GMM, SVM and
feedforward DNN carried out for Turkish and German speech utterances in a
previous literature [17]. However, it has been observed that a significant increase in
accuracies was unexpectedly made by different gender evaluations for aGender

training and Turkish test sets in our experiment.

Table 6.14. Cross-language and
cross-gender speaker age evaluation
using  x-vector  neural network
architecture
German test set
Turkish-German | Male Female
= male 31.510 |31.814
2 S
=g
= female 34.419 | 40.696
Turkish test set
German-Turkish | Male Female
- male 29.935 |48.190
c
E'S
8,’: female 41.565 | 36.000
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Performance evaluation of 5 classifiers which include both classical and deep neural
network (DNN) based models on the aGender and Turkish databases are summarized
in Table 6.14 below. The classical machine learning models include GMM, CDS and
PLDA. On the other hand the remaining two DNN based classifiers are LSTMM and
x-vector neural network architecture. LSTM offered accuracies of 51% and 64.88%
for English and Turkish female datasets respectively with MFCC features as an input.
A cross-language evaluation on this classifier resulted 41.28% and 35.39% for
Turkish and German female datasets with the English training setup respectively.
Likewise, cross-language evaluation on the Turkish trained model offered 35.6% and
33.31% for German and English female datasets respectively. An end-to-end
experimental setup with the LSTM classifier offered an accuracy of 58.61% which is
the highest compared to all other performances on the female dataset of the aGender

database.

Table 6.15. Performance  evaluation of 5
classifiers with MFCC sequences for speaker age
classification on a) female b) male datasets
respectively

Accuracies in %
aGender Turkish
Female | Male | Female | Male
CDS 56.44 | 41.80 |62.24 |47.44
GMM 57.03 42.63 | 70.45 34.16
PLDA 57.03 |53.75 [51.98 |47.56
LSTM 56.69 47.73 | 64.88 43.54
x-Vector | 57.57 | 5459 |64.69 |44.71

Classifiers

6.2. Discussion

A total of ten feature extraction methods are implemented in our experiments. We
observed their variation across selected classifiers and regression models. An end-to-
end classification is also carried out with the LSTM deep neural network classifier
where the feature extraction stage is ignored and offered the best result in the female
dataset of aGender database. We selected some relevant experimental results and
presented their interpretation here in this sub section. We conducted the experiments
a single language (matched-language), bilingual, multilingual and cross-language

scenarios.
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6.2.1.PFMFCC versus MFCC for speaker age classification

The proposed feature set PFMFCC resembles the popular MFCC spectral feature in
its algorithm. It only replaces the triangular band pass filters with parabolic shapes.
The sharp corners at the top of each triangular filter bank in MFCC would make it
hard to imagine practical implementation of these shapes. On the contrary, practical
low pass, or band pass filters can approximate the parabolic shaped bank of filters to

generate PFMFCC feature sets.

After critically examining most research studies carried out on speaker age
classification we found out that they heavily depend on MFCC features. Their focus
is on the backend (classifiers). Inspired by the performance of some features for
speech recognition, speaker recognition, speaker emotion recognition, speaker
diarisation (diarization) and replay attack detection; we inquired if these features
could perform well on speaker age classification and decided to apply them in our
study. Following how the filter band based features are extracted cautiously, we
developed more efficient, effective and practical algorithm to generate a new set of
features using parabolic band pass filter banks. Table 6.16 below presents the
summary of comparisons between the popular MFCC with our proposed feature set
PFMFCC. Based on this summary we can say that PFMFCC contains more age
information than MFCC.

Table 6.16. MFCC versus PFMFCC
Criteria MFCC PFMFCC
Filter bank shape Triangular Parabolic

No of functions
used per filter bank

2 linear functions

A single polynomial function
of degree 2

Number of features
in a frame

13 static + 13 dynamic + 13
acceleration + 3 Energy
components = 42

13 static + 13 dynamic + 13
acceleration + 3 Energy
components = 42

Performance for
female dataset

Cosine score 56.44%,
GMM 57.03%, PLDA
57.03%

Cosine score 51.06%, GMM
56.01%, PLDA 58.14%

Performance for
male dataset

Cosine score 41.8%,
GMM 42.63%, PLDA
53.75%

Cosine score 50.44%, GMM
52.74%, PLDA 57.23%

Realizability

Not easier to implement as
it consists of a sharp corner.

Can be approximated with
practical filters.
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6.2.2. Unexpected effect of VAD

Voice activity detection (VAD) also known as speech activity detection (SAD),
reduces the amount of data by removing non-speech frames from utterances [123]. It
usually improves performance in speech recognition, speech coding and other
linguistic based speech processing applications. However, speaker age is a
paralinguistic attribute which also depends on non-verbal contents such as tone and
pitch unlike the former applications that highly rely on linguistic content of speech.
Therefore, the benefit of VAD seems to be insignificant in this regard or energy
parameters need to be re-adjusted in order to meet its goal. Surprisingly, VAD
degraded the performance of age classification in the PLDA classifier noticeably.
This raises skepticism. But it could largely be due to double reductions when VAD
is applied before PLDA scheme. The first one is reduction in the amount of data due
to removal of non-speech frames mainly consisting silence and noise. The second

one is dimensionality reduction using LDA right before PLDA scoring.

The frames removed by VAD may have contained important patterns related to age
as the energy threshold is not well crafted to preserve age related information in low
energy frames. Therefore, we suggest different VAD parameters for different speech
processing applications. Figure 6.7 depicts VAD and non VAD scenarios for speaker
age classification using PLDA for both male and female datasets of the aGender
database [76].

Accuracy in %

60 -

50 m VAD Male

40 = Non-VAD Male
30 VAD Female

20 m Non-VAD Female

10

° O L0 O O 0K < R Features
SIS PL RS
FF SIS S S ;}&S P P
R P > S
&
Figure 6.7. Effect of VAD on the PLDA classifier for male and female

datasets of aGender database from simulation results
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Using a different energy threshold has improved the performance of PLDA classifier
with MFCC and PFMFCC feature sets in the Turkish male dataset by 8.81% and
7.40% respectively. Two criteria are used to remove the silent and noise only frames.
Either frames with energy below -60dB or if the maximum energy among all the
frames in an utterance is above -20dB a relative criteria is applied and frames with
energy below 40dB below the maximum energy will be removed. To make the
second criteria more clear, let us assume we have 200 frames in a certain utterance.
After computing the energy of each frame we found out the maximum energy among
the 200 frames is -30dB. Hence, we use the first criteria (absolute criteria) because
the maximum energy is below -20dB. Accordingly, those frames with energy below -
60dB will be discarded. However, if the maximum energy was -10dB instead, the
second criteria (relative criteria) would be applied as -10dB is above -20dB.

Therefore, those frames with energy below (-10-40=-50dB) would be discarded.

The performance variations especially in the PLDA classifier for aGender and
Turkish datasets, indicates that the noise characteristics in the two databases has
contributed either positively or negatively. In the Turkish database the noise
characteristics affected the performance negatively as it is proved above. On the
other hand, it has played a positive role in the performance improvement of the
PLDA classifier for the German database. Obviously, the noise characteristics in the
two databases, is different as the recording is done through telephone line and

directly through computer for the German and Turkish databases respectively.

On the other hand, GMM and CDS did not show significant difference in
performance with VAD and without VAD scenarios. Hence we can make a tradeoff
either to remove non-speech frames from all utterances or ignore it and make the
training processes busy with less relevant noise and silence frames in these two
classifiers. The choice is clear; we have to remove these frames as the training step is
a long process compared to VAD, it would definitely make a difference in improving

speed.
6.2.3. Performance of feature fusion

In addition to standalone performance selection of feature sets based on their

individual performance is made and feature fusion is carried out on different kinds of
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features. At first a fusion of all the ten features was done using concatenation which
resulted in a performance below the best performance of a single feature set. In the
next steps few feature sets that showed the worst performances were removed one
feature set at a time and arrived at a fusion of seven feature sets that consists of
MFCC, MODGD, RFCC, SCMF, SSFC, RASTA-PLP and PFMFCC. VAD is not
applied on these features. The CDS classifier gave the best performance in both
genders with 62.14% and 59.54% accuracies for female and male datasets

respectively as shown in Figure 6.8 below.

Accuracy in % m Cosine
64 = GMM
62 1 PLDA
60 -
58 -
56
54
52 A
50 -
48 -
46 . . ~~ Datasets
Seven Class Female Dataset ~ Male Dataset

Figure 6.8 Performance evaluation results of feature
fusion of seven feature sets on three classifiers on seven and
three age class arrangements

The Matlab simulation result carried out on all the seven classes consisting children
aged 7-14, young female aged 15-24, adult female aged 25-54, old female aged 55-
80, young male aged 15-24, adult male aged 25-54 and old male aged 55-80 resulted
in overall accuracies of 60.18%, 52.17% and 56.35% using CDS, GMM and PLDA
respectively. The age classes are made based on the aGender database [20].
According to this result the cosine score classifier has made an overall improvement
of the accuracy by 2.55% compared to speaker age classification study carried out on
the same database in [119].

6.2.4. Limitations, solutions and findings

An apparent limitation of our study lays on the difficulty of finding convenient
boundaries especially between adult and old speaker age classes where one speaker

age class ends and the next one begins. For instance putting age 55 together with age
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80 and putting age 54 in a different speaker age class causes a great deal of error.
This problem could be solved by using regression instead of classification with a
large amount of training data which can represent each and every age sufficiently.

With a large amount of data and sufficient representation of discrete ages, regression
can avoid the inconvenience of age class boundaries. However, we also suggest
binary classification of adjacent age bins of selected ages around the boundaries

before the actual speaker age classification experiment to find suitable boundaries.

Another limitation of our study is that the databases especially the aGender consist of
short utterances (2.55 second on average) which also include non-speech frames.
VAD further reduces the number of frames in an utterance by discarding the non-
speech frames. Non-speech frames contain spectral energy below a certain threshold.
Furthermore, PLDA reduces dimension due to its linear discriminant analysis (LDA)
function within it. The performances of features with and without VAD on PLDA
classifier as shown in Figure 6.7 indicates that PFMFCC and fusion of features could

perform better on a database with longer duration of utterances.

The imbalance in the size of each class in the Turkish male dataset caused significant
decline in performance compared to other databases. Addition of the German
database for a bilingual training scenario improved the performance of the PLDA
classifier. Additionally, the CDS classifier outperformed with a multilingual scenario
over matched language setup for certain feature sets such as MFCC, LFCC and
RFCC. Therefore, it is likely that these features overcome the imbalance problem in
a single language setup with addition of more languages to the training. It can also be
imagined that the CDS model in multilingual and PLDA model in bilingual scenarios
are able to learn age classes from the phoneme sequences of heterogeneous language

scenarios better compared to a monolingual classification over this dataset.

The sampling rate in the three databases is different, for this reason down sampling
was required in order to carry out bilingual and multilingual trainings. As the
aGender database is most complete and balanced as well as recorded mainly with the
intension of speaker age classification the age classes and the sampling rates in the

Turkish and Age-Vox-Celeb databases are brought to be similar with aGender.
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Apart from few outliers which have been challenging for interpretation, multilingual
and bilingual scenarios have improved the performance significantly compared to
cross-language setups. To mention few strange results in the cross-language
evaluation; 60.56% accurate classification of female Turkish test sets by English
trained PLDA classifier using PFMFCC feature sets as an input which is more than
20% better than the matched-language performance with the same classifier and
feature, 54.56% accurate age classification of Turkish male test audios by English
trained CDS classifier using MFCC feature sets which showed 7.21% increase
compared to a Turkish trained CDS classifier performance with the same feature, and
the MODGD features offered better performances with all the three classifiers over
German-Turkish cross-language scenario compared to Turkish-Turkish matched
language setting. This could luckily be due to the phoneme sequences in the test sets

which may have enabled the models to learn better than matched-language scenarios.

Nevertheless, the best performances for the matched-language scenario in each
datasets are in harmony with our expectations compared to other scenarios. The
summary of best performances by matched-language scenarios for each of the three
databases and both genders is presented in Table 6.7. These results are compared to
multilingual, bilingual and cross-language scenarios for the same dataset as well as
feature-classifier pair and presented in Figure 6.9 for better visualization. If we look
at same efforts over these datasets especially the German and the Turkish; our results
showed 5.6% increase in accuracy with MFCC using the PLDA classifier for the
Turkish male dataset exploiting bilingual training compared to SVM classifier with
MFCC carried out in [17] which offered 50% accuracy for the same dataset and
feature. The MODGD and PFMFCC features also showed 1.48% and 1.13% with the
same classifier and dataset over SVM respectively. Similarly, accuracies of 54.5%,
69.2% and 69.6% are reported with GMM, SVM and DNN classifiers respectively
with a multi-language training of German and Turkish female audios in [17]. On the
other hand our GMM classification experiment on the same multilingual dataset
resulted in accuracies of 70.16%, 70.45% and 70.93% with MFCC, LFCC and RFCC
features respectively. Hence our best result showed an improvement by 1.33% over
the DNN classification. Our approaches also outperformed in the German female
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dataset which gained 17.19%, 7.6% and 9.9% accuracy increases with RFCC feature
and GMM classifier over GMM, SVM and DNN respectively in [17].

Accuracy in %

80 B Matched
B Muttilingual

Bilingual

60 B Engiish

B German

W Turkish
40

20

Test Datasets

Turkishmale  Turkishfemale  Germanmale Germanfemale Englishmale  English female

Figure 6.9. Performance  comparison ~ of  matched-language,
multilingual, bilingual and cross-language training scenarios for speaker
age classification
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7.  CONCLUSION

Speaker age prediction has remained one of the most challenging research disciplines
in speech processing due to the stochastic nature of speech signals despite all the
consorted efforts to improve age prediction metrics. With the reemergence of DNNs,
innovation of high speed digital signal processors (DSPs) and intelligent machines
this area of research has been getting more interest in recent years. A breakdown of
the difficulties has been made and some solutions have been proposed to resolve
certain challenges in this research. Additional algorithms and techniques have been
introduced in order to fill the research gap in this area. PFMFCC has been designed
and proposed as an alternative to existing spectral feature extraction techniques.
Several feature sets, which have not been applied to speaker age prediction before,
are adopted to this research and observed to make a difference with certain classifiers.
This study has also strengthened the formation of multilingual training scenarios

which has remained rare in speaker age estimation.

This study investigated certain factors affecting speaker age prediction. The
predictions were implemented in the form of classification and regression. Spoken
language, amount of training data, speech duration, asymmetry of utterances
representing age classes and environmental noise were the presupposed determinants

confirmed to alter speaker age prediction.

Speech duration is confirmed to affect the prediction of speaker age in this study. It
is in line with the hypothesis we presupposed that longer utterances deliver better
performances than shorter ones. Speaker age regression using LSSVR experimental
results confirmed this argument that the improvement continued from 0.5 to 4
seconds to be bold and started to saturate all the way to 10 second irrespective of
front end feature set type. The improvement continued after 4 second but remained
too little to bargain over computation overheads due to large data size. Therefore,

developers are recommended to train their prediction models with medium length
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utterances typically 4-6 seconds which is capable of tolerating utterance length

mismatches during performance evaluation.

Several magnitude, phase and sub-channel based spectral features are employed for
speaker age estimation with classification given more emphasis in this research. Our
proposed feature set PFMFCC overwhelmingly outperformed the majority of the
remaining features and offered relatively close results with the famous MFCC feature
on all classifiers and regression models. With the PLDA classifier it gave the best

performance for both genders and all database setups.

Despite the high order of complexity exhibited during simulations, LSTM offers best
speaker classification and regression performances for female and male datasets of
the aGender database with power spectral sequences with no further processing at the
frontend. PLDA offered comparatively best results among traditional machine

learning models for speaker age classification.

Multilingual training has been observed to make up for the poor performance of
classification models due to language mismatches between training and test datasets.
The performance for matched language setups is observed to be the best among the
three scenarios; matched-language, language mismatch (cross-language) and
multilingual setups. The multilingual training however, does not affect the
performance of a matched-language significantly while it played a crucial role in
improving the prediction accuracy for cross-language settings. Increasing the number
of languages in the multilingual scenario has even improved some of the feature-
classifier pair performances further for certain datasets. The worst case scenario
appears when the setup is made to be cross-language where the performance dropped
dramatically. The unbalanced nature of the Turkish male dataset seems to cause
performance decline with the German male test set during bilingual training
scenarios. However, this training has offered benefits to the Turkish male evaluation
significantly. Despite few outliers both the bilingual and multilingual (with the three
languages) scenarios outperformed the cross-language evaluation in many of feature-
classifier pairs. Therefore, multilingual training is preferred in order to widen the
domain of incoming test set languages and get relatively acceptable accuracy of
prediction.
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Most speech processing applications heavily rely on magnitude based spectral
feature sets. The impressive speaker age classification accuracies shown by the
MODGD feature however, indicate age information is lumped in both magnitude and
phase components of speech spectrum. Therefore, we recommend a combined
strategy could outperform existing standalone approaches. The classification
accuracies are as bad as chance level predictions for mismatch scenarios. Hence for

its versatility, training a certain model with multilingual data is recommended.

The significant accuracy difference in the VAD and non-VAD experimental setups
observed in PLDA classifier, suggests that a different energy threshold is required for
different speech processing applications while removing non speech and noise
frames from utterances during feature extraction. The nature of our databases may
have caused the performance degradation of the PLDA classifier in VAD applied
scenarios. Some frames are not sufficient enough to represent speech sound but, they
may contain attributes that can enable speaker age recognition. Therefore, a lower
energy threshold is recommended to retain some non-speech but, paralinguistic

contents in speaker age estimation.
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