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DERİN SİNİR AĞI (DSA) TABANLI ÇOK DİLLİ KONUŞMACI YAŞ 

TAHMİNİ 

ÖZET 

Finans, perakende ve diğer sektörler için çevrimiçi faaliyetlerin çarpıcı bir şekilde 

büyümesiyle birlikte, internet kullanıcılarının uzaktan profillenmesi çok önemli bir 

gereklilik haline geldi. Konuşmacı yaşı tahmini, özellikle uzak kullanıcılar için bu 

ihtiyacın etkin bir şekilde ele alınmasına büyük ölçüde yardımcı olabilir. Konuşmacı 

yaş tahmini, konuşmayı kullanarak yaş sınıflarını ve ya gerçek yaş değerlerini tahmin 

etmek olarak tanımlanabilir. En önemlisi, çocuklar internetteki grafik ve şiddet 

barındıran içeriklere genellikle fark edilmeden eriştikleri için, çocukların 

korunmasında konuşmacı yaşı tahmin sistemleri kullanılabilir. 

Bu çalışmada, farklı sınıflandırma ve öznitelik çıkarma teknikleri konuşmadan yaş 

sınıflandırma ve regresyon problemleri için kullanılmıştır. Bu özniteliklerin çoğu, 

konuşmacı yaşı tahmini için daha önce kullanılmamıştır.  

Parabolik filtre mel frekansı kepstral katsayısı (PFMFKK), mel frekansı kepstral 

katsayılarında (MFKK) filtre bankalarının (bant geçiren filtre dizisinin) şeklini 

değiştirerek yeni bir öznitelik çıkarma yöntemi olarak önerilmiştir. PFMFKK, 

uyarlanmış tüm öznitelik setlerine kıyasla kadın ve erkek veritabanları 

için  olasılıksal doğrusal ayrım analizi (ODAA, PLDA) sınıflandırıcısı ile en iyi 

performansı sunmuştur. Ayrıca diğer sınıflandırıcılarla da karşılaştırılabilir sonuçlar 

vermiştir. Konuşmacı tanıma için önerilen i-vektör ve x-vektör vektör gösterimleri de 

yaş tanıma problemine uygulanmıştır. 

Bu tezde ayrıca veri tabanları arasındaki dil ve ortam farklılığının yaş tanıma 

performansı üzerindeki etkisi incelenmiştir. Bu amaçla Türkçe, Almanca ve İngilizce 

üç farklı veri tabanı kullanılmıştır. Bu veri tabanlarının hedef dilleri ile birlikte 

toplandıkları ortamlar/geri plan gürültü oranları da birbirinden oldukça farklıdır. 

Deneysel sonuçlar, çok dilli eğitim senaryosunun, tek dilli senaryoya göre yaş 

tahmini performansını çok fazla etkilemediğini, ancak diller arası eğitim/test 

senaryosuna kıyasla performansı önemli ölçüde iyileştirdiğini göstermiştir. 

 

Anahtar Kelimeler: Çok Dilli Eğitim, Derin Öğrenme, Konuşmacı Yaş Tahmini 

Öznitelik Füzyonu, Parabolik Filtre Bankası.  
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DEEP NEURAL NETWORK (DNN) BASED MULTILINGUAL SPEAKER 

AGE ESTIMATION  

ABSTRACT 

With the dramatic growth of online activities for finance, retail and other sectors 

remote profiling of internet users has become a crucial necessity.  Speaker age 

estimation can greatly help in effectively addressing this need especially for remote 

users. Speaker age estimation can be defined as predicting either age classes or actual 

age values exploiting speech. Most importantly, speaker age prediction systems can 

be applied in safeguarding children as they usually access graphic and violent 

contents on the internet unnoticed.  

In this study, several feature extraction techniques are adapted and employed on 

selected classification and regression models. Most of these features have never been 

used for speaker age estimation. These features are used as input to selected machine 

learning and deep neural network (DNN) models over age labeled multilingual 

databases.  i-Vector and x-vector embedding are applied for fixed dimensional 

representation. 

Parabolic filter mel-frequency cepstral coefficient (PFMFCC) is proposed as a new 

feature extraction method by modifying the shape of the filter banks in mel-

frequency cepstral coefficients (MFCC). PFMFCC offered the best performances 

with probabilistic linear discriminant analysis (PLDA) classifier for female and male 

databases compared to all adapted feature sets. It also showed comparable results 

with other classifiers.  

Multilingual settings are established to introduce diversity in language and are 

observed making differences especially when there is language mismatch. 

Experimental results indicate that multilingual training setup does not affect the 

performance of speaker age estimation in single language approaches much, but it 

improves the performance compared to cross-language evaluations significantly. 

 

Keywords: Multilingual Training, Deep Learning, Speaker Age Estimation, Feature 

Fusion, Parabolic Filter Bank. 
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INTRODUCTION 

The ultimate aim of research is to find out ways, methods and solutions to specific 

problems that can improve the lives of a human society. Hence, research is a long 

journey of finding answers to a series of “why” and “how” questions. Discovering 

the causes of problems is half of the solution. The common saying ‘the devil is in the 

details’ reflects the challenges during the research process. Research brings new 

perspectives in to light to solve specific problems in many disciplines. In this sense it 

is a never ending journey of enquiring answers to the very fundamental questions of 

“why” and “how”. The “why” questions are usually associated with analysis of 

problems whereas, the “how” wing often focus on synthesis of solutions.  

Characteristics and Research Dynamics of Speech Signal 

Speech is made up of both universal and language or culture-specific aspects. The 

universal aspects are inherently paralinguistic in nature [1]. The balance between 

these properties is still open to debate. As a matter of practical reality, it is beneficial 

to improve our understanding of this balance. It can be used to develop multi-lingual 

speech processing systems and utilize cross-language sharing. This eventually helps 

to increase the number of languages available for certain speech technologies. In 

addition, it helps to make the technologies versatile with respect to languages.  

Multilingualism, which refers to the use of more than one language by an individual 

speaker or by a group of speakers, represents an area of significant opportunities for 

automatic speech-processing systems. Although multilingual societies are 

commonplace and could be by far the majority worldwide compared to monolingual 

individuals, the majority of speech processing technologies are developed with a 

single language in mind mostly English  [2]. In Asia and Africa alone, there are more 

than 4000 languages and the chance of people speaking more than two of these 

languages, is highly likely. 
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As a step towards improved understanding of multilingual speech processing, the 

current contribution investigates on how para-linguistic aspect of speech depends on 

the language spoken [3]. Para-linguistic aspect of speech include tone, pitch of voice 

and speaker age. The gap in language diversity requires additional research to make 

speech processing applications scalable in terms of languages. 

The question, “How language emerged in to human evolution?”, may never have a 

complete answer according to Dr. C. George Boeree, an American psychologist and 

professor emeritus at Shippensburg University who specialized in personality theory 

and the history of psychology [4]. It is one of the most difficult questions to give a 

satisfactory answer. However some scholars believe that language emerged in human 

society as a result of some kind of social transformation by generating unprecedented 

levels of public trust. In addition there are several theories which argue on the origin 

of language [5]. 

It is a no-brainer that speech differs across cultures and languages worldwide in a 

multiple of ways, ranging from acoustic phonetics through grammar, vocabulary and 

metaphor to pragmatics and discourse strategies. The differences involving metaphor 

or acoustic phonetics may be pronounced even for cultural groups that share the 

same language, whereas other factors such as grammar tend to encompass a larger 

set of speakers. However, little attention is given to the effects of culture on speech 

processing tasks comparatively. English, German and Turkish languages are selected 

in this study based on availability of speech data to investigate speaker age 

estimation across different languages as well as multilingual approaches to mitigate 

language mismatches during evaluation.  

Various studies have proposed several methods on speaker age estimation. What we 

can understand from most of these literatures is that age estimation from speech is 

very challenging due to its stochastic nature. Speaker age prediction is even more 

difficult for people. Some of the mechanisms that people can use to predict age 

include: looking at faces, listening to speech, examining maturity level and others. 

Apart from such subjective estimations; scientists have made efforts to estimate age 

from a DNA test [6]. They argued that if they could measure the length of a person's 

telomere, they would be able to tell his/her age [7]. After all, the more times a cell 
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divides, the shorter its DNA will be. And the older the person will be, the more times 

the person’s cells will have divided. Although they couldn’t determine the person’s 

age from DNA test, it really helped scientists to determine the ethnicity, family 

relationships and gender. A team of researchers estimated age using 200 nano grams 

of DNA for each age prediction.  The team found its margin of error was 3.75 years 

for blood samples and 4.86 for teeth. Roughly 80% of the estimations were within 

five years, either older or younger [6]. 

Speaker age estimation is the extraction of age information from speaker’s utterance. 

Feature extraction and selecting effective features that represent the speaker’s age 

characteristics uniquely are keys in speaker age classification and regression. 

Another equally essential stage is the design of a suitable classification or regression 

method. Classifiers use the features generated through a series of operations to 

predict the speakers’ age. These operations are applied on audio signals. The focus of 

this research is on finding distinctive feature sets that are able to represent utterances 

such that selected classifiers can recognize the age group of the speaker with better 

accuracies than previous studies. In addition, the design of a suitable classifier or 

regression model plays a major role in predicting the speaker’s age. This research 

investigates different classifiers and regression techniques to enhance age only 

classification and prediction for each gender as well as age plus gender classification 

for seven class scenario.  

Much of this study gives an in-depth focus for feature extraction and tries to examine 

performance of some classification and regression models in the broad artificial 

intelligence for speaker age estimation on single as well as multi-language databases. 

However, classification and regression schemes have been dealt in a great number of 

studies in the past which only need adaptation rather than invention in our work. In 

addition to investigating the performance of certain feature sets, a new feature set 

called parabolic filter mel-frequency cepstral coefficient (PFMFCC) is proposed in 

this study. The majority of the adapted features have never been employed for 

speaker age estimation to the best of our knowledge. Choice of classifiers or 

regression techniques plays a vital role regardless of which feature set is applied to 

them. Keeping this in mind we treated some classical and deep neural network (DNN) 

models in this work.  
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In a wide spectrum of studies speech features are mainly categorized in to spectral, 

prosodic and glottal. Spectral features are those generated as a result of spectral 

analysis of speech. Spectrum refers to the distribution of energy as a function of 

frequency for a particular sound source. Prosodic features express the rhythm and 

intonation of a language. The term prosodic refers to the way a speaker’s voice rises 

and falls. 

The motivation for age recognition from a speaker’s utterance comes from the fact 

that the vocal tract anatomy changes considerably in the life time of the person. DNN 

algorithms are proposed recently, that can generate important features to associate 

speech with age. A well-designed classifier or regression model is equally demanded 

for this task. Speaker age classification is a crucial issue for targeted advertising in 

the 21
st
 century as online activities in finance, retail and other sectors have become 

certainly important.  

One way to recognize a person’s age is through speech. Speech is one of the ways 

which enable us to estimate age of a person in addition to appearance. Age 

recognition together with gender, accent and emotional recognitions has got a wide 

range of applications in language learning, remote advertising (tele-marketing), 

criminal investigations, automated health, education and human-computer 

interaction(HCI) [8] .For all these application areas, systems can be customized 

based on speaker age category. This will highly improve user satisfaction level. 

Games can be designed based on age group, commercials can be broadcasted for 

specific age categories, and medical diagnosis can be carried out according to 

speaker’s age [9]. 

Speaker age estimation can help speaker recognition or verification efforts in 

contemplating speaker’s speech over the years lived. This is extremely helpful 

especially in identifying criminals who have stayed behind public attention for long 

years. Criminals change their appearances and speech patterns. Although face 

changes are quite difficult to trace as it can also be engineered, speech changes can 

be treated using collaborative effort of speaker age estimation and speaker 

recognition techniques.  
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Background noise, accent variation, speech duration, text-dependent or text-

independent control variable, recording device variation, channel and space 

variability, and other related factors make speaker age classification as one of the 

most challenging tasks in speech processing research. Speaker age classification 

consists of feature extraction and classification. A carefully designed feature 

extraction technique is not only  able to extract age related features from speech but 

also combat the effect of background noise as the noise coming from the surrounding 

is unavoidable [10]. Classification in this context, is grouping training samples in 

discrete categories and to develop models for each category.  

Generally popular features such as mel-frequency cepstral coefficient (MFCC) [11], 

energy, relative spectral transform (RASTA) [2], speech rate [12], RASTA-

perceptual linear prediction (RASTA-PLP)[13], are used in age classification. In 

addition to these features, other features can also be calculated using prosodic or 

glottal characteristics of speech utterances. Four variants of MFCC, two sub-channel 

based features, two phase-based spectral features and RASTA-PLP are employed in 

this study.  

The i-vector is first proposed for speaker verification and they are successfully 

applied to age classification task in recent studies [14]. In the study, i-vectors 

corresponding to each age class are averaged in the training phase. The cosine 

distance between each test sample and each target age class i-vector is computed 

during the test. A similar approach is followed in our work as well. The study carried 

out in [15] achieved state-of-the-art performance on the aGender database. A feed-

forward DNN for age classification using features extracted from utterances is 

proposed in another study which tries to combine long-term and short-term features 

[16]. In this method, Gaussian mixture model (GMM) super-vectors are fed into the 

DNN similar to the GMM/SVM. A DNN age classification method that combines 

database of German and Turkish speech utterances is proposed in [17]. This method 

achieved an absolute improvement of 7% over GMM classifier. 

Weighted supervised non-negative matrix factorization (WSNMF) is used together 

with a general regression neural network (GRNN) for age estimation and gender 

detection from speech [18]. This matrix is trained with GMM weight super-vectors. 
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GRNN is preferred over other neural networks since it does not demand an iterative 

training and it is more effective if it is used for sparse data. A performance better 

than chance level, is obtained using this experiment.  

Chronologically, the first major task in this study was to summarize the performance 

evaluation of three classifiers (GMM, Cosine Distance Scoring (CDS) and PLDA) 

using 10 feature sets for speaker age classification. Most of these feature sets are 

used for replay and spoofing attack detection in a previous study[19]. GMM and i-

vector classifiers are employed on these feature sets to detect genuine and spoofed 

utterances. The constant-Q cepstral coefficients (CQCC) features with i-vector 

classifier was found to offer the smallest equal error rate (EER) which is 21.38% on 

the evaluation set used in the experiment. The aGender German [20], Turkish [17] 

and Age-Vox-Celeb English [21] databases are used in our study. The task is 

performed on male and female genders separately.  

Motivation of the Study 

Back in 2016 we started to re-examine and explore the capabilities of classical and 

modern classifiers and function approximation approaches. The aim of this 

investigation was to apply these methods on speech processing applications. We 

identified three interesting areas that we can apply deep learning and machine 

learning algorithms to speech processing problems: 

1. Speech based criminal investigation 

2. Speech for diagnosis of breathing system related health problems 

3. Speaker age estimation and classification 

Due to shortage of access to appropriate data we declined not to proceed on the first 

two topics. With the outbreak of COVID19 pandemic, the second problem could 

have been a ground breaking research in its outcome due to its level of necessity. 

However, based on ease of access to suitable database we decided to conduct speaker 

age estimation and classification. In addition, the explosion of violent contents on the 

internet demanded our mind to devise a method that can limit access to these 

contents. These internet contents are inappropriate and very abusive for children and 

young people. With this in mind, identifying users based on their speech as children, 

young, adults or elders remotely can save children and the youth from psychological 
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trauma while watching violent online resources. Moreover, its commercial benefit in 

targeting users remotely based on their age class is what convinced us to make our 

choice.  

Kids these days can easily access violent and highly graphic websites that can affect 

their mental development. Placing age limit requirements is extremely demanded in 

such digital platforms. Most websites require users if they are not a robot prompt 

which can be successfully completed by even children. But speech input must be 

demanded to prove a user is not below the required age. Speech is highly secure 

compared to text and image data regarding user age information. 

Speech is more natural and if effectively implemented, it can easily be utilized for 

remote applications and most importantly it is more convenient and reliable 

compared to data communication. In commercials an automatic advertisement is very 

common these days. It would be smarter if the automatic system could predict the 

age of the person on a phone call. Customers feel satisfied when their preferences 

have been foreseen and understood. Therefore, speech is the best choice for age 

information extraction. Considering the current challenges due to the COVID19 

pandemic, speech is undeniably preferable despite the fact that age information can 

be retrieved from various other ways including facial images [22].  

There is an old but re-emerging phenomenon called ageism [23]. Just like other 

sectarian thoughts this could also be a threat to mutual coexistence of human society. 

Ageism is selectively favoring or disregarding people based on their age [24]. It can 

be casual or in some societies it might even be systematic. Robert Neil Butler used 

this term for the first time in 1969 to describe the discrimination against older people. 

There is a popular expression in Ethiopian society related to this idea which 

describes older people as “the 1960s generation”. In fact the expression is not only 

related to ageism, it also refers a political rhetoric. Sectarianism is generally an 

uncivilized, demonizing and counterproductive to mutual coexistence, peace and 

happiness of the human society.   

This study is conducted with the aim of improving estimation metrics in general, or 

increasing classification accuracies and reducing regression errors in particular for 

speaker age estimation using specifically the aGender German and Turkish databases 
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The Turkish database is collected mainly for voice conversion that includes age 

information[17]. Therefore, this research work is basically a classification as well as 

regression problem involving multilingual data for speaker age estimation. Trainings 

are carried out with single language as well as multi-language datasets. Evaluations 

are also considered for matched, cross-language and multilingual scenarios. 

Freedom of speech versus hate speech  

Most people use social media platforms such as Facebook, Twitter, Instagram and 

others to express their free opinion [25]. Unfortunately some contents expressed as a 

free thought could instigate violence and others demonize individuals and even 

societies collectively. These are acts of hate speech [26]. Hate speech has caused the 

death of millions in Africa and many parts of the world. It is easily accessible to 

billions of internet users. Children and young people are the most likely to be victims 

of hate speech as they lack maturity.  

Social media platforms need to have plans to balance between freedom of speech and 

hate speech. People can have the right to express their opinion to the extent of hate 

[25]. But these platforms must develop mechanisms to have monopoly on who can 

view selected contents and who must not view them. Age classification based on 

speech can greatly contribute to this effort. It is not only authentic but also secure to 

prompt users to utter their speech for a few seconds and make a decision whether to 

grant or deny access based on speaker age.  

Children can greatly benefit from such careful design of social media platforms as it 

protects them from viewing harmful, hateful and violent contents. Speaker age 

classification especially, for children recognition, can be employed with less 

challenge compared to young, adult and old speakers. This is mainly because  their 

speech characteristics is more distinct, separable and contains the highest 

fundamental frequency [27]. The average fundamental frequency 𝐹0  generally 

decreases with age across both male and female children of age from 6 years to 16 

years old [28]. 
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Scope and Main Contribution of the Study 

This study is confined to age estimation in general, classification and regression in 

particular based on speaker utterances. The study consists of two databases namely; 

the aGender database which consists of 47 hours of German speeches uttered by 

speakers of age 7 to 80 years old [20] and a Turkish database mainly collected for 

voice conversion. Some speech data is added from Age-Vox-Celeb database in order 

to include English speakers in certain scenarios.  The study mainly focuses on front 

end analysis of speech aimed at finding suitable feature sets for speaker age 

estimation. Our study began with classification but later extended to estimation 

including some regression models. However, classification is generally believed to 

offer more benefits and more feasible with small database than estimation. Although 

good speaker age estimation leads to an acceptable accuracy level of classification, it 

requires a relatively larger database than classification. Our experiments are carried 

out independently on both genders as well as on a mixed database of consisting male 

and female utterances for training and testing.  

In this thesis, several feature extraction schemes are employed for speaker age 

estimation with selected classification and regression models. The majority of the 

feature sets have never been used for speaker age estimation before to the best of our 

knowledge. Except few the majority of adapted features performed comparatively 

well compared to conventional feature sets. And quite few including phase-based 

spectral features have surprisingly outperformed the popular MFCC feature with 

certain classifiers. We carried out the experiments using Matlab, Python [29], and 

Kaldi toolkit and verified better feature sets for certain classifiers [30]. 

We proposed a new feature set based on previously implemented feature extraction 

techniques. We used parabolic shaped filter banks instead of the very common 

triangular one implemented in MFCC.  For ease of nomenclature we named the new 

feature sets as parabolic filter MFCC (PFMFCC) based on the shape of the filter 

bank. This new feature has improved the accuracy of speaker age classification with 

PLDA classifier and offered comparable results in other classifiers and regression 

models.  
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We have also applied state of the art methods to represent utterances with fixed 

dimensional vectors; i-vector and x-vector. We used classical as well as neural 

network classification and regression models. In addition, this study verified the 

positive impact of utterance length for speaker age estimation. On top of that we 

further investigated impact of mismatch in length of utterances within training and 

test datasets over speaker age estimation performance.  

In summary, this research work combines techniques from digital signal processing 

(DSP) particularly, speech processing and artificial intelligence (AI) to predict 

speaker age either in terms of age groups or actual chronological age values using 

short utterances. The AI techniques specifically include selected machine learning 

and deep learning classification and regression models. Utterances are taken from 

three databases of English, German and Turkish language speakers. 

This Ph.D. thesis is organized as follows: chapter 1 presents, overview of related 

literatures and developments in speech processing research, chapter 2 discusses the 

front end analysis techniques and the proposed PFMFCC feature set in detail, chapter 

3 briefly examines the two embedding; i-vector and x-vector and chapter 4 presents 

classification and regression schemes used. Following the methodology sections, 

chapter 5 presents the experimental setups, procedures employed and parameter 

specifications, whereas results, discussions and conclusions are presented in chapter 

6. The last chapter relates our hypothesis with experimental results and closes the 

study with concluding remarks at its final sub section eventually.  



 

11 
 

1. REVIEW OF SPEECH PROCESSING APPLICATIONS AND 

RESEARCH DYNAMICS 

1.1. Speech for Age Recognition 

Speech contains paralinguistic information such as speaker age in addition to the 

usual linguistic contents. When we break it to the level of phonemes, it takes 

approximately 100 milliseconds for people to utter a single phoneme. A phoneme is 

the smallest unit of speech. The English and Turkish languages for instance, have 48 

and 29 phonemes respectively. The typical number of phonemes in the world’s 

languages ranges from 30 to 50. Therefore, we need utmost 6 bits to represent all the 

phonemes in a certain language. Even though it could vary across age, people can 

produce 60 bits of information in a second through their speech. However, the actual 

information content is notably higher as speech also contains essential information 

about identity, gender, age, health status, smoking status, alcohol level, accent, the 

rate of speaking, loudness etc.  

Human speech is rich in information. Efforts have made it possible to use some of 

the potential applications of speech processing. Features extracted from an audio can 

convey a vast range of information. Typical applications include speech recognition, 

speech synthesis, speaker recognition, and others. In relation to these applications we 

have been conducting a series of experiments and simulations in our laboratory to 

use these applications for different purposes. Among these efforts speaker age 

recognition and vocal tract related illness detection using features extracted from an 

audio have captured our interest. While the former application is quite possible since 

we have organized data and we have also access to a standard database, the later 

could have taken years of data collection efforts. We pursued the age identification 

due to free database access whereas; the illness detection project could be our future 

research focus. . 
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Popular applications of speech communication include but not limited to: 

 Digital transmission and storage 

 Speech synthesis 

 Speaker recognition, verification or identification 

 The popular speech recognition 

 Handicap aids 

 Signal quality refinement 

 Speaker emotion, accent, gender and age recognition 

 Speech assisted automations 

The main reason why speech is preferred for information extraction in this research 

is because it is safe, reliable and remotely exploitable. In addition, there are 

situations where we could be forced to know something from an utterance of an 

individual. In case of age verification for instance a company which advertises its 

product through automatic phone calls, it would be more desirable if the system 

could recognize the approximate age of the intended customer. In fact it is less likely 

for a person to be shy to tell a system. But customers would feel happy if no system 

bothers them about their age. In criminal investigation, information extracted from 

speech of a suspect could lead to verify his identity.  Estimating the age group in case 

of criminal investigation could reduce the scope of suspects. It helps to narrow down 

the age range of suspects. 

The reason why speech based research has remained an active area of study is mainly 

because of its versatile applications. Its applications cover speech recognition, 

speaker recognition, speaker age recognition, speaker emotion recognition, speech 

analysis, speech synthesis, speech enhancement, speech print (voice print) and more. 

A breakthrough in speech processing research can boost many sectors of our modern 

life style. So far much has been done in speech recognition and a significant 

development is also carried out in speaker recognition too. Unlike these two areas 

much more effort is needed in specific areas such as age, emotion and accent 

recognition from speech utterances. Natural language processing (NLP) is another 

major area of research which attracted the attention of a significant number of 
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scholars. We cannot ignore the efforts that have been delivered in the two decades 

since the new millennium.  

1.2. Speech Generation and Perception 

The motivation for identifying the age of a speaker from his/her voice comes from 

the fact that the vocal tract anatomy changes as the person gets older. There must be 

a way that can be used to find out important features which associate people of the 

same age. Not only a feature, but we also need a well-designed classifier for this task. 

Age classification is a crucial issue in the twenty first century as online activities 

such; as online shopping, online advertising, electronic commerce, retail, etc. are 

getting increasing importance. One way to recognize a person’s age is through 

speech. Speech is one of the ways which enable us to estimate age of a person in 

addition to appearance. Age recognition together with gender, accent and emotional 

recognitions has got a wide range of applications in language learning, remote 

advertising (tele-marketing), criminal investigations, automated health, education 

and human-computer interaction(HCI) [31].For all these application areas, systems 

can be customized based on speaker age category. This will highly improve user 

satisfaction level. Games can be designed based on age group central requirement, 

commercials can be broadcasted for specific age category, and medical diagnosis can 

be carried out according to speaker’s age [32]. 

Speech production from its inception at Esophagus to its delivery at the tip of tongue 

and lips passes through different acoustic changes. This anatomical region undergoes 

some changes throughout the life time of a person. The movement of the tongue, lips, 

jaws and other organs in the articulatory system produces sound. These organs create 

pressure which eventually leads to acoustic signals [33]. The movement of the organs 

is incredibly quick, delicate as it is controlled by brain and complex in its nature[34].  

When we speak we push air out of our lungs all the way to our mouth via the vocal 

tract which basically involve throat heavily. Different sounds are produced through 

the movement or vibration of the vocal cords along with our tongue and lips which 

changes the air flow. A perceptible change in the sound we hear is possible with a 

slight change in the position and movements of the organs. Below are some of the 



 

14 
 

most important parts (organs) of this system. Figure 1.1  depicts the articulatory 

system after  the discussion [35] . 

The lungs are part of the articulatory system where sound production begins. When 

we breathe, air moves in and out of these two bag-like organs in our chest. When we 

speak, our lungs push air up past the vocal cords and through the rest of the vocal 

tract, the space in the throat, mouth, and nose where sound is produced. 

The vocal cords or vocal folds are two small membranes found in our throat which 

produce sound. When the vocal cords are stretched tight and close together, they 

vibrate rapidly more than 100 times per second. As a result, the sound that comes out 

is louder. At a relaxed state of the vocal cords, the sound that comes out of them is 

quieter, like a whisper. Pitch is affected by the vocal cords. It is a measure of how 

high or low the voice is at a particular instant of time; which fundamentally means 

high or low in the sense that a musical note is high or low; it does not mean a high or 

low volume or loudness. When the vocal cords are stretched out longer, the sound 

has a lower pitch. When they are shorter, the sound has a higher pitch. The space 

between the vocal cords is called the glottis. The vocal tract moves to change the 

shape and size of its opening. This movement helps to produce varieties of 

articulations in different languages.  

The lips are involved in the production of numerous consonants or voiced sounds: /p/, 

/b/, /m/, /w/, /f/, and /v/. Certain ways of lip movements such as —making them 

rounded, unrounded, or stretched a bit wide—also affects the sounds of vowels.  

The teeth are greatly engaged when we try to say the consonant sounds /f/ and /v/, 

with the upper teeth touching the lower lip, and also /θ/ and /ð/, with the tip of the 

tongue touching the upper teeth. These sounds are commonly known as fricative 

sounds in acoustics. 

 The alveolar ridge is the slightly rough area just behind the top teeth. It can also be 

called the tooth ridge or the gum ridge.  

The tongue touches or almost touches the alveolar ridge when a speaker says the 

sounds /t/, /d/, /s/, /z/, /l/, and /n/. In addition with a collaborative effort with teeth it 

produces /th/ sound which is extremely hard for non-native English speakers. In fact 

the tongue is involved in producing almost all the sounds of English, both consonants 
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and vowels. We can also refer to different parts of the tongue: the tip of the tongue, 

the blade of the tongue, and the back of the tongue. 

The hard palate is the hard part at the top of the mouth, beginning just behind the 

alveolar ridge. It can also be called the roof of the mouth. When we close our mouth, 

our tongue is probably flat against our hard palate. The tongue touches or almost 

touches the hard palate when we say the sounds /ʃ/, /ʒ/, /ʧ/, /ʤ/, and /y/. 

The soft palate is the softer part of the roof of the mouth, farther back than the hard 

palate. It is also called the velum. If we touch the roof of our mouth with our tongue 

and then keep moving our tongue farther back, we will find that softer area. The back 

of the tongue touches the soft palate when we say the sounds /k/, /ɡ/, and /ŋ/. 

The nasal cavity is the space inside the nose where air passes in and out when we 

breathe through our nose. In some occasions it is referred to as the nasal passage. 

This area is important in producing the nasal sounds /m/, /n/, and /ŋ/ [36]. These 

sounds are especially important in speaker recognition. For these sounds, the air 

stream moves up and out through the nose instead of the mouth. The articulatory 

system organs that play roles in generation of speech signal are shown in Figure 1.1 

below. 

The mathematical model of speech generation is displayed in Figure 1.2 below. In 

this model, the cross-sectional area of the oral cavity  𝐴(𝑥, 𝑡) , from the glottis, 

at 𝑥 = 0, to the lips, at𝑥 = 𝐿, is determined by five parameters: tongue body height, 

anterior/posterior position of the tongue body, tongue tip height, mouth opening and 

pharyngeal opening. In addition, a sixth parameter is used to additively alter the 

nominal 17-cm vocal tract length [36].  

The pressure created during a certain speech session  𝑝(𝑥, 𝑡) , the volume 

velocity 𝑢(𝑥, 𝑡), the cross sectional area  𝐴(𝑥, 𝑡), position 𝑥  and time  𝑡  satisfy the 

following pair of partial differential equations given in (1.1) and (1.2) which 

basically express newton’s law and conservation of mass respectively. The symbol  𝑐 

is the speed of light in equation (1.2). 

−
𝜕𝜌

𝜕𝑥
   = 

𝜌

𝐴(𝑥,𝑡)

𝜕𝑢

𝜕𝑡
 (1.1) 
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−
𝜕𝑢

𝜕𝑥
   = 

𝐴(𝑥,𝑡)

𝜌𝑐2
𝜕𝜌

𝜕𝑡
 (1.2) 

 

Figure 1.1. The vocal tract and the 

process of speech production 

                                                                                  

Figure 1.2. The acoustic tube model and 

the vocal tract area function 

Each individual phoneme in speech production in any language can be categorized as 

voiced and non-voiced sounds. The non-voiced sounds in the English language 

consists of the sounds (a, e, I, o and u) commonly known as vowels whereas the 

voiced sounds consist of the majority of the consonants. These sounds have their 

own typical characteristics which makes them possible to identify during speech 

recognition problems. The speech wave is conceived at the far inner end of the vocal 

tract with a great deal of assistance by lung, diaphragm and other breathing system 

organs. It finally emerges at the outer end with the help of our lips, nose, tongue and 

teeth as an acoustic wave. So basically speech is a result of a series of vibrations due 
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to the pressure created during collision of organs in our articulatory system. The 

pattern of our speech goes through gradual changes as we get older because these 

organs undergo certain changes over the years we lived.  

A simplified model of the vocal tract assumes the vocal passage as a tube of non-

uniform and time varying cross section. As the air in this cavity varies in pressure it 

creates unique and distinct speech sounds.  The vocal, glottal and radiation models 

consider soft walls, effect of friction and thermal conditions. The source and 

radiation models try to present the mathematical descriptions of the phenomenon that 

occur at glottis and lips during a speech session respectively. The glottal model is 

involved only to describe the voiced sounds. A random noise replaces the glottal 

transfer functions during unvoiced sounds. The glottal [37], vocal tract, radiation and 

the general speech models are given in equations (1.3), (1.4), (1.5), (1.6) and (1.7) 

respectively. In fact equations (1.3) and (1.4) are used to compute the glottal model.  

𝑔[𝑛] =  

{
 

 0.5 (1 − cos (
𝜋𝑛

𝑁1
))       0 ≤ 𝑛 ≤ 𝑁1 

cos (
𝜋(𝑛−𝑁1

2𝑁2
)       𝑁1  ≤ 𝑛 ≤ 𝑁1 + 𝑁2

0                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     

(1.3) 

This glottal approximation model is proposed by Rosenberg [36]. In the z-domain the 

glottal pulse model for voiced speech is approximated as 

𝐺(𝑧) =
1

(1−𝑧−1)2
  (1.4) 

Whereas,  𝐺(𝑧) = 1 for unvoiced speech. 

The shape and size of the vocal tract tube undergoes gradual changes. This non-stop 

change affects the models that are being discussed here. Age class and gender based 

models are necessary to address these changes. The nature of the tube shown in 

Figure 1.2 determines the characteristic feature of the speech uttered It is not only the 

size and shape of the tube that affects the nature of the speech produced but also the 

inner surface of this tube matters much. It is not only the size and shape of the tube 

that affects the nature of the speech produced but also the inner surface of this tube 

matters much. 
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𝑉(𝑧) =
𝐺

1−∑ 𝑎𝑘𝑧
−𝑘𝑁

𝑘=1

  (1.5) 

 

Figure 1.3. Speech production model 

Equation (1.5) above approximates the majority of sounds with all-pole vocal tract 

model. The speech radiation at the outer end of the vocal cavity by the lips, teeth, 

tongue and nose is approximated using a transfer function with a zero slightly inside 

the unit circle as: 

𝑅(𝑧) = 1−∝ 𝑧−1  (1.6) 

Typical values of ∝ include 1 and 0.98 in equation (1.6). Finally the overall transfer 

function for speech production is given by 

𝑆(𝑧)

𝐸(𝑧)
= 𝐴𝑉𝐺(𝑧)𝑉(𝑧)𝑅(𝑧)  

(1.7) 

Where, 𝑆(𝑧) and 𝐸(𝑧) represent the produced speech wave and the initial excitation 

in z-domain respectively.  

Our ear has got 3 sections namely; the outer, middle and inner ear. These sections 

constitute the auditory system. The perception process begins with filtering and 

converting the audio wave in to neural signal. Neural transduction is performed 

between the inner ear and the neural pathway to the brain. Recently a variety of 



 

19 
 

models that can simulate our auditory and perception capabilities are proposed. With 

the re-emergence of the neural networks, these models have considerably improved. 

Spectral signals coming from the medium, mainly the air (atmosphere) are converted 

in to neural activity signals in basilar membrane. Finally the neural activity is 

converted to language code in our brain 

 

Figure 1.4. Speech perception process 

Figure 1.5 below summarizes the whole synthesis to interpretation of speech. The 

origin of every speech is the human brain and its eventual destination is also brain 

where the original message is interpreted and understood.  

 
Figure 1.5. Inception, generation, propagation and interpretation 

of speech 

The message conceived in the brain is converted to language codes. Prosody (syntax 

or rhythmic aspect of language), markers denoting duration of sounds, loudness and 
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pitches are included in the codes.  The next step is to initiate neuro-muscular 

commands to provoke the vocal cords in order to vibrate at suitable circumstances.  

1.3. Procedural and Rule-based Classical Programming versus Artificial 

Intelligence 

Classical and traditional programming paradigm needs inputs and a set of rules to act 

upon these inputs to produce intended outputs. But artificial intelligence makes it 

possible to train a machine to learn rules based on a huge amount of data attributes. 

The subclass of a machine learning discipline called Deep learning works much more 

like a human evolution [29].  When humans were few they had a very simple and 

uncivilized way of life. As time goes on the human population grows exponentially. 

As a result, the rules and ways of life started to be more complex than before. People 

started to learn new rules to make their life better and easier. Complex rules have 

been developed. Rules that have been accepted as the best were changed by new 

rules as humans learn new ways, new philosophies and new societies as well as new 

world. Similarly, a deep learning system creates poor rules over few data. But as our 

data grows, the system automatically gets better and better. Data is very important 

for a deep learning system to be all inclusive.  

As we have tried to see the analogy between a human evolution through thousands of 

years and the machine learning process since its first invention, they have both 

shown a better progress in terms of simplicity and speed of task execution. This 

progress comes due to training with variety of data and better philosophy. For a 

human evolution, life philosophy could be a good aspect to explain the rules and 

procedures man has followed through the years. Whereas, computing machines 

exploit algorithms and/or methods to produce an output based on input attributes 

given to them.  

Since the beginning of the second decade of this millennium researchers have been 

attracted to neural networks. Neural networks did not give good results during the 

first attempts. It was hopeless when the first perceptron was proposed to anticipate 

the human neuron. But some dedicated scientists have not given up on their study to 

find successful results. They kept on believing that a neural network eventually 

works out. Recently artificial neural networks connected in a successive manner have 
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been designed and applied to various classification problems and found to deliver 

amazing results. However a big question lies in every research that researchers could 

not give an answer to the question “why neural nets start giving amazing results?” In 

fact there is no question about how it works. Major part of our research incorporated 

deep neural networks (DNN) [29]. 

The diagram shown in Figure 1.6 below clearly explains the difference between 

classical programming and machine learning. Deep learning is a sub category of 

machine learning where initial weights of all synapsis connecting neurons of hidden 

layers as well as terminal layers gets updated every time a feature is given to the 

input layer based on the corresponding label. In Figure 1.6 rules basically stand for 

algorithms or a set of procedures based on which a machine gives an output.  Data in 

our case stands for feature matrices or vectors extracted from speech frames and 

output stands for age classes or actual age values. The top block in this figure 

represents supervised learning in AI which needs labels to create suitable models. 

The PLDA and CDS in our study are among these algorithms. 

A great many of AI algorithms however, train models without labels. These 

categories of models are said to be unsupervised learning algorithms. GMM is one of 

them. This class of algorithms also includes several deep learning models. 

 

Figure 1.6. Classical programming versus machine learning paradigm 
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1.4. Literature Review and the Research Dynamics 

Books, journal and conference articles, lecture notes, git-hubs, google forums, and 

internet resources are exhaustively used to proceed on this research study. The vast 

majority of our references are specifically related to speaker age estimation or 

classification. Among these literatures most of them also include gender detection or 

classification. Speaker recognition and verification studies come at the second top in 

our list of resources. Books on machine learning, pattern recognition, speech 

processing and programming paradigms are highly used in the process of this 

research.  

We believe that looking at the brief history and developments of signal processing 

gives more insight in to speech processing and eventually brings us to speaker age 

estimation more specifically. It goes as far back as the 17th century, where we find 

the contribution of signal processing principles in the classical numerical analysis 

techniques according to Alan V. Oppenheim and Ronald W. Shafer renowned 

scholars in the signal processing discipline. In addition, digital control systems of the 

1940s and 1950s consist of these principles in their operation according to Wikipedia 

sources. Speech is the most popular if not dominant among all signals which has 

been exploited, dealt, analysed, processed, transformed, made storable and used for 

communication more than any other signal. These operations made transmission and 

receiving audio signals through wired or wireless channels a lot easier. The half 

century old speech processing discipline was not and will not be all pretty easy and a 

free ride. It has always been challenging ever since its inception back in the 1950s. It 

went through several periods of intense promises. One of the most popular 

applications of speech processing; speech recognition began with the invention of 

Audrey, which is a digit recognizer, by bell Laboratories’ researchers in 1952 [38].   

The long and arduous desire for humans to design machines capable of mimicking 

human behaviors inspired researchers to devote their time and effort in the field of 

speech processing. The age old aspiration is to create a human-like machine able to 

recognize and synthesize speech. In its modern sense artificial intelligence played a 

vital role in many areas in the 21st century. AI emerged in the 1950s and has been 

being employed repeatedly in automating tasks otherwise performed by humans [29]. 

It was first coined at the Dartmouth conference in 1956..It is a general discipline 
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which encompasses machine learning and deep learning. Symbolic AI, the dominant 

paradigm in AI from 1950s to the late 1980s, is having sufficiently large set of 

explicit rules and procedures for manipulating knowledge. Speech recognition, 

speaker recognition, speaker emotion recognition, accent recognition, speaker age 

estimation and many other speech research disciplines have been benefiting from AI 

subsets such as machine learning and deep learning.  

The Latin phrase “annus mirabilis”
1
 which means “marvelous year” originally used 

to refer the amazing works of Sir Isaac Newton for his laws of motion [39]. The year 

1948 is widely regarded as the miraculous year (“annus mirabilis”) of signal 

processing with the emergence of a breakthrough research work entitled a 

mathematical theory of communication by Claude Shannon [40].   

1
 “Annus mirabilis (pl. anni mirabiles) is a Latin phrase that means "marvellous 

year", "wonderful year", "miraculous year" or "amazing year". This term was 

originally used to refer to the year 1666 (of Isaac Newton), and today is used to 

refer to several years during which events of major importance are remembered. 

Prior to this, however, Thomas Dekker used the phrase mirabilis annus in his 

1603 pamphlet The Wonderful Year.” as quoted from Wikipedia [39].  

The initial sign of speaker recognition solely based on speech goes as far back as the 

biblical era in history where Isaac , who was unable to see because of old age, trying 

to recognize his two sons Esau and Jacob to give his blessings according to the book 

of genesis in the bible (Gen. 27:22-23) . The story tells a lot about age and identity 

information that exist in a human speech [41]. Speech similarity occasionally exists 

in family members of the same gender.  

Speaker recognition and verification are undoubtedly the most widely dealt area of 

speech processing next to speech recognition. While the former is finding out who is 

speaking among many available candidates, the later compares a person’s speech 

with a given template [42]. Speaker recognition or otherwise known as identification 

is one to many mapping whereas speaker verification or authentication is a one to 

one mapping [43]. These two studies contain the speaker’s age information among 

others. While some depend on it, the majority of speaker recognition and verification 

researches do not relay on speaker age. Some are text independent whereas the 

majority still remains dependent on text. 

https://en.wikipedia.org/wiki/Latin
https://en.wikipedia.org/wiki/Thomas_Dekker_(writer)
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The first attempt to deal with speaker age emerged in 1959 where the pitch and 

speech duration characteristics of older males are analyzed [44]. Three age groups; 

with average age of 47.9 years ranging from 32 to 62 years consisting of 15 adult 

individuals, with mean age of 73.3 years consisting of 12 elders ranging from 65 to 

79 years designated as elder group I and with mean age of 85 years consisting of 12 

senior individuals ranging from 80 to 92 years designated as elder group II are 

involved in this study. The study found out a rising mean fundamental frequency 

with age.   

The British broadcasting corporation (BBC) in its “100 year life “section published 

an article entitled “The age you feel means more than your actual birth date” written 

by David Robson in 19th of July 2018 [45]. According to the article, most people 

feel younger or older than they really are and this feeling of subjective age has a big 

effect on their physical and mental health. This may also impact our speech patterns. 

It affects the way we speak psychologically. However, the actual age is 

unchangeable just like our height and shoe size. According to some scientists, 

subjective age could be the reason for some people to appear to flourish as they get 

older – while others fade. It has also been indicated in this article that, people 

become less extrovert and less open to new experiences. In conclusion, people tend 

to mellow as they get older according to the article. 

Gender recognition is dealt in its own and along with speaker age in various studies. 

Results of a certain gender based study suggests that cross-gender acoustic 

differences are partly language dependent and could be socially constructed [31]. 

Gender recognition is a lot easier compared to speaker age recognition mainly due to 

the differences in average fundamental frequency ( f0 ), f0  range, pitch period, 

phonation type and speech rate. For instance, the fundamental frequency (f0) for 

children, female and male speakers, ranges 200-400, 150-200 and 50-200 Hz 

respectively. 

Non-linguistic information such as speaker age can be extracted from speech signals 

using cognitive operations [46]. Speech rate can be considered as one source of 

information by which listeners use to extract speaker age information, particularly 

when listening to older speakers. Obviously, speech rate is not the only speaker age 
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tip, and when the speaker is relatively young. In spontaneous speech context listeners 

primarily relay on other sources of information such as acoustic and linguistic.  

The first attempt to address the problem of age classification was made in the early 

1950s [47], however this problem was supported by computer aided systems dealt 

based on information obtained from speech only recently[48]. Speakers of two 

databases, the Japanese speech corpus for large vocabulary (JNAS) and 

S(senior).JNAS, were divided into two groups by listening tests [48]. The speakers 

whose speech sounds so aged were put together. The other group has the remaining 

speakers of the two databases. After that, each: speaker group was modeled with 

GMM. Experiments of automatic identification of elderly speakers showed the 

correct identification rate of 91%. To improve the performance, two prosodic 

features were considered. These features are speech rate and local perturbation of 

power. The identification rate has been improved to 95% using these features. Using 

scores calculated by integrating GMMs with prosodic features, experiments to 

automatically estimate speakers' age have been carried out. Accordingly, high 

correlation between speakers' age estimated subjectively by humans and 

automatically calculated scores of 'agedness' was reported [47]. 

Acoustic feature sets were developed for speaker age estimation in a study conducted 

a decade ago [49]. MFCCs extended by a set of prosodic features, pitch, fundamental 

frequency, and first four formant frequencies are used as baseline feature sets. 220 

features were obtained when these features are combined. Then, the 220 features are 

reduced by selecting the best feature subsets. Selection is done by maximizing the R2 

variance with R as correlation using multiple regression/correlation analysis. 

Eventually a mechanism is designed in their study to select the best subset composed 

of one feature, two features, and continues until there is no better subset. University 

of Florida Vocal Aging Database (UF-VAD) has been employed to test this approach. 

This database contains 5 hours of speech for 150 different speakers and 1350 

utterances spoken in English. It has 3 age classes equally divided between males and 

females for young, middle-aged, and old elder. They generate a constant high-

dimensional feature vector that is independent of the length of the utterance and of 

the extracted features for each speaker in the database and is represented by a 
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Gaussian model. Adding prosodic, pitch, and formant features to the MFCCs feature 

sets improved the results by reducing the mean absolute error between 4-20%.  

Background noise, accent variation, speech duration, text-dependent or text-

independent control variable, recording device variation, channel and space 

variability, and other related factors make speaker age classification as one of the 

most challenging tasks in speech processing research. Fusion of acoustic and 

prosodic level information offered weighted and unweighted accuracies of 49.5% 

and 52% respectively for speaker age classification. It also offered 88.4% and 85% 

accuracies for gender recognition likewise [50]. Speaker age classification consists of 

feature extraction and classification. A carefully designed feature extraction 

technique is not only able to extract age related features from the speech but also 

combats the effect of background noise as the noise coming from the surrounding is 

unavoidable. Classification in this context, is grouping training samples in discrete 

categories and to develop models for each category.  

The modulation cepstrum coefficients instead of the cepstral coefficients for age and 

gender classification is proposed [51]. They extracted smooth information of the 

cepstral over a period of times for extracting frames from the speech utterance. The 

discrete cosine transform (DCT) was used over a fixed duration window. The speech 

utterance in modulation cepstrum domain has been filtered by decomposing the 

utterance cepstral trajectories into groups of low and slow frequencies. And then, the 

mel cepstral modulation spectrum (MCMS) features are extracted. The low 

modulation frequencies of MCMS (3-14 Hz) have the efficient information needed 

for age and gender classification as reported. A comparison of these features with the 

conventional MFCC was made and an accuracy of 50.2% using the MCMS features 

was reported.   

Three novel systems which combine short-term and long-term cepstral features for 

speaker age recognition have been proposed and compared [52]. Pitches extracted 

from span of speech correlation clearly with the speaker age despite the fact that 

common successful systems such as GMM models and multiple phone recognizers 

that utilize such features have less performance than other features based on their 

acoustic analysis. Looking at independent performance of these two feature types, 
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short-term features are observed performing better than long-term ones with the feed 

forward DNN classifier in a certain study [53]. While a combined GMM/DNN 

classification scheme over short-term features offered 74.22% classification accuracy 

for female Turkish database, it showed more than 8% deficit for a DNN applied on 

long-term features with the same dataset according to this study.  

In a 2016 speaker age estimation study, it was shown that the use of phonetically-

aware i-vector extractor, could improve speaker age estimation performance 

compared with the GMM-UBM based counterpart [54]. Accordingly processing i-

vectors through an LDA transform trained with discrete age labels dramatically sped-

up the SVR training process in addition to improving speaker age estimation 

performance. DNN senone posterior based i-vectors method achieved speaker age 

estimation performance with a mean absolute error (MAE) of 4:7 years for both male 

and female speakers on the NIST SRE 2010 telephony test set. Basically the use of 

x-vectors for speaker age estimation is not the earliest development in speech 

research as x-vector embedding had been used for speaker verification (SV) before 

they were applied for speaker age estimation [55]. Robust speaker recognition was 

implemented using these state of the art embedding. The model was proposed by 

David Snyder for speaker verification (SV) [56] and later extended in 2018 [57]. 

Speaker verification project [55] exploited and has been built on top of kaldi recipe 

[58].   

The question why estimating speaker age keep on being challenging remains one of 

the top areas of research in speech processing until an accurate or precise method is 

devised. Age estimation remotely has become more important than ever due to the 

emergence of violent and sensitive contents on the internet. These contents are 

unpleasant and harmful to children and young people. In addition it can be employed 

future technologies to settle possible tensions due to ageism.  

The effect of aging on speech production patterns has been studied using two 

hundred Czech speakers whose age spans from 20 to 80 years old [59].  This study 

confirmed variations in temporal intensity and fundamental frequency domains 

across different age groups as well as genders. Based on the experiments carried on 

200 Czech speakers, adult men are the fastest and most stable across utterances.   
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Supervised non-negative matrix factorization method is used for speaker age 

estimation and gender detection [18]. The method used hybrid architecture of 

weighted supervised non-negative matrix factorization (WSNMF) and general 

regression neural network (GRNN). Applying this approach on spontaneous read 

speech corpus in Dutch offered a mean absolute error rate of 7.48 years for age 

estimation and an accuracy of 96% for gender detection. 

Information, such as speaker identity, gender, age range, and emotional state, are 

termed as paralinguistic information. Automatic recognition of this information can 

guide human computer interaction systems to automatically understand and adapt to 

different user needs. Several studies indicate that automatic age recognition could be 

a breakthrough in behavioral studies and health care as well. Much focus is given to 

the acoustic and prosodic level approaches for speaker age and gender identification 

[50]. Two baseline systems: Gaussian mixture model (GMM) on short-time spectrum 

based mel-frequency cepstral coefficient (MFCC) features, and support vector 

machine (SVM) on GMM mean super vectors have been considered in this study.  

Scholars applied Utterance modeling with i-vectors to estimate speaker age [60]. 

This model has been used in conjunction with within-class covariance normalization 

(WCCN) and least square support vector regression (LSSVR) to address speaker age 

estimation which has achieved a Pearson correlation coefficient and mean absolute 

error of 0.772 and 6.08 respectively. Telephone utterances of NIST 2010 and 2008 

are used for evaluation. The effect of some major factors influencing the proposed 

age estimation system, namely utterance length and spoken language are analysed in 

this scheme. Language, the communication channel at which the speech is recorded, 

and environmental conditions could affect the process of age estimation among other 

factors.  

A comparison of human and machine estimation of speaker age conducted by Mark 

Huckvale and Aimee Webb showed that both human and machine automated 

approaches have difficulty in accurately predicting the age of elderly speakers  [61]. 

The comparative study showed that human and machine accuracy is more similar 

with average errors of 9.8 and 8.6 years respectively. However the human estimation 

accuracy was believed to improve to 7.5 years if panels of listeners were consulted. 
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Both the age of speakers and listeners impacts the result. Children and young people 

do not have much experience compared to adults and older people to make relatively 

better estimation. Machines can also be thought analogously in a similar perspective 

as more data is fed to them they would improve their estimation capability. More 

experience observed in adults and elderly people is equivalent to more training data 

to machine estimation.  

A mean absolute error (MAE) of 4.9, which is 14% better than the i-vector baseline, 

is achieved applying x-vector neural network architecture on NIST SRE08 dataset 

for training and NIST SRE10 for evaluation [62]. This architecture uses a series of 

time delay layers (TDNN) followed by a temporal pooling layer which summarizes 

the feature sequence into a single fixed dimension embedding. The embedding is fed 

into a series of feed-forward layers to predict the age value. The x-vector alone 

outperformed the i-vector baseline by 14%. In addition combining both the i-vector 

and x-vector improved the i-vector baseline result by 9%. 

Support vector machine (SVM) is employed for speaker age estimation using the 

Gaussian radial basis function (RBF) as a kernel on MFCC and perceptual linear 

predictive (PLP) features as input sequences [63]. The gamma parameter on the RBF 

shows an improvement in speaker age estimation with smaller values but eventually 

starts degrading with a rise in gamma values. Speaker age estimation is proved to be 

better with 39 MFCC feature sets compared to 13 and 24.     

Another interesting study on speaker age estimation includes a neural network back 

end used in an effort to replace classical classifiers and regression techniques which 

is carried out in 2015 [64]. The neural net is applied on i-vectors to generate speaker 

age values on test set speakers after the network is trained with a set of data reserved 

for training. According to this study carried out on national instate of standards and 

technology (NIST) database 2008 and 2010 conventional MFCCs with short term 

cepstral mean and variance normalization (CMVN) [65], worked best as the features 

for i-vector extraction; WCCN, and treating speakers as classes helped. However 

linear discriminant analysis (LDA) did not help considerably. To make it more 

understandable, no clear benefits were obtained with two-layer structure. The study 

suggested that a network with a single hidden layer trained with stochastic gradient 
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descent (SGD), is the recommended choice [66]. Eventually the artificial neural 

network (ANN) back end has reduced the MAE by 4.5% compared to support vector 

regression SVR [64].  Fedorova et. al indicated  that the back-end may not have so 

much effect when the already compressed i-vectors are used as input features.  

An attempt was made to use long short-term memory (LSTM) recurrent neural 

networks for speaker age estimation and explore its performance over 3 speech 

durations (3s, 5s and 10s) [67]. However, the emphasis was on backend mechanisms 

rather than the nature of the speech. LSTM is a neural network which has the ability 

of learning order dependence in sequence prediction studies. A similar attempt has 

been made to investigate effect of utterance length mismatch in training and test 

datasets using an end-to-end DNN approach [62]. 

A doctorate research carried out back in 2017 emphasized on generating new feature 

sets and deep neural network architectures for speaker age and gender classification 

[68]. Transformed mel-frequency cepstral coefficients (T-MFCC) are generated 

using DNN methods in [68]. This scheme has offered accuracies of 56.13%, 58.98%, 

59.59% and 61.16% with T-MFCC with i-vectors as a class models based, T-MFCC 

with DNN as class models based, T-MFCC with DNN as speaker models based and 

fusion respectively. 

It is reported that a certain DNN based classification experiment offered better 

speaker age and gender classification performance compared to traditional machine 

learning algorithms [69]. The researchers pointed out that age alone and a joint 

classification with gender offer different figures as 48.41% and 57.53% jointly with 

gender and age alone classification respectively. The gender classification 

performance is reportedly 88.8%. The joint gender and age classification is the most 

challenging task followed by age alone whereas gender classification is a lot easier 

compared to the other two tasks as the speech characteristics of males and females is 

distinct and separable. 

Most recently, a multi-modal age corpus which can alleviate the challenges arising 

due to shortage of balanced and sufficient data has been established using the 

VoxCeleb2  database suitable for age estimation [21,70]. This database is used along 

with aGender and the Turkish database in our study [20]. It is reported in certain 
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studies that speaker age estimation is more challenging than facial age 

estimation.[21]. These studies also indicate that facial age estimation can be more 

robust. Another study which aims at estimating gender and age from speech signals 

applying state of the arts x-vector and transfer learning used Age-Vox-Celeb 

database [71].  

Recently, age dependent insensitive loss has been used to estimate speaker age and 

short duration speech data has been employed for speaker profiling [72], [73]. The 

former study reported improvements in the mean absolute error (MAE) value ranging 

3.1% to 5.2% using the NIST SRE 10 database as an evaluation set. And the later 

achieved MAE values of 5.2 years, and 5.6 years for male and female speakers 

respectively. 
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2. ADAPTED AND PROPOSED FEATURE EXTRACTION 

TECHNIQUES  

2.1. Introduction 

Speech is inherently regarded as a concatenation of discrete and finite set of symbols 

called phonemes. As stated in chapter 1 the main purpose of speech is 

communication. And the communication potential of speech can be characterized 

using the idea of the famous information theory proposed by Shannon [40]. Signal 

processing is obviously fundamental to feature extraction computations. The major 

part of it involves signal representation and transformation. Generally speaking, 

information processing and manipulation begins with identifying the source of 

information. Obviously a human speaker is our source when the information needed 

is embedded in speech. Therefore recorded audios organized as databases in gender 

and age classes are our source. Feature extraction is a distillation process. The values 

generated in this process, are believed to represent certain attributes of the   signal. 

Figure 2.1 below shows general procedures in feature extraction operations. 

 

Figure 2.1. General block diagram of pre and 

post signal processing operations 
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The original representation size of the signal is reduced at the end of the process. A 

characteristic of large data sets is a large number of variables that require a lot of 

computing resources to process. Feature extraction is the name given for methods 

that select and/or combine variables into features, effectively reducing the amount of 

data that must be processed, while still accurately and completely describing the 

original data set. It reduces redundant values and focuses on unique values. For 

instance noise is a common characteristic of speech signals, therefore feature 

extraction works very hard to remove or reject it. But it should be noted that, losing 

important or relevant information must be avoided during the process.  

The following subsection presents preliminaries to feature extraction; mainly time 

and frequency domain analysis of speech signal. This discussion will pave the way to 

the various feature extraction methods and operations as all of our experiments need 

these prerequisite computations.  

2.2. Time and Frequency Domain Analysis of Speech Signal 

2.2.1. Pre-emphasis 

The majority of spectral energy of speech is concentrated at the lower end of spectral 

plots. At the higher frequencies however, the energy is much weaker. It is normally 

assumed that spectral energy roughly drops 2 dB for every 1 kHz of frequency 

increase (i.e. 2dB/kHz). This potentially causes practical problems in implementation. 

To compensate for such inaccuracies during implementation a pre-processing tool is 

required. A pre-emphasis finite impulse response (FIR) filter can play crucial role in 

amplifying spectral components at higher frequencies.  

Excessive pre-emphasis however, would cause problems to fricative sounds as they 

have more energy at high frequencies. Therefore, the decision on how much pre-

emphasis is needed depends on application and implementation details. Generally 

pre-emphasis filter serves to achieve the following objectives: 

1. to amplify high frequency components 

2. to balance the frequency spectrum 

3. to avoid numerical problems during discrete Fourier transform (DFT) operations 

and 
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4. to improve the signal to noise ratio (SNR) of speech utterances [74] 

Given a discrete speech sequence  𝑥[𝑛]  accessed using a Matlab 

command,{  [𝑥, 𝑓𝑠] =  𝑎𝑢𝑑𝑖𝑜𝑟𝑒𝑑(𝑤𝑎𝑣𝐹𝑖𝑙𝑒𝑃𝑎𝑡ℎ);  }, the outcome signal 𝑦[𝑛]  after 

applying pre-emphasis filter is defined as: 

𝑦[𝑛] = 𝑥[𝑛] − 𝛼𝑥[𝑛 − 1]  (2.1) 

where the constant parameter α determines the cut-off frequency of the single-zero 

high pass filter through which 𝑥[𝑛] passes and usually assumed to be 0.94. 

2.2.2. Windowing 

The speech signal is extremely dynamic which changes its statistical properties 

within short period of time. For a stable and static analysis splitting up sentence level 

speech signals in to pieces good enough to represent a phoneme is needed. For non-

stationary signals like speech spectral features in short segments rather than entire 

signal are of great importance for a great deal of applications. 

Speech utterance of length 𝐿𝑠 seconds sampled at 𝑓𝑠 𝐻𝑧  contains 𝐿𝑠 ∗ 𝑓𝑠 number of 

samples. For instance a 3 second utterance sampled at 8 kHz is represented by 24000 

discrete samples. This 3 second speech is not stationary in its statistic properties. 

Therefore cutting the 3 second speech in to smaller frames of length 𝐿𝑓seconds is 

carried out in order to get a new signal whose contents are capable of representing 

phonemes and maintain statistical properties stationary. The disadvantage of 

representing speech as a concatenation of independent and relatively stationary 

pieces of smaller frames is discontinuity.  One way to avoid such discontinuity is by 

introducing overlap during framing. We shift the framing window so as to involve 

25%, 50% or 75% of the previous frame which basically creates continuity between 

consecutive frames. We choose 50% in our experiments; however it can also be 

researchable parameter.  

In the next subsections and entire unit we used 𝑥[𝑛] notation to represent a signal for 

a single frame, but to make it clear the full duration signal 𝑋[𝑛]is a superposition of 

all the frames in it. The following equation displays the mathematical description of 

speech using frames obtained through the process displayed by Figure 2.2 below 

𝑋[𝑛] = ∑ 𝑥𝑖[𝑛]
𝑁𝑓
𝑖=1

   (2.2) 
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The upper summation limit Nf represents number of frames which can be computed 

from the length or duration of speech 𝐿𝑠 , length of frames 𝐿𝑓 and overlap length or 

hop duration 𝑀 as shown below. 

𝑁𝑓 = ⌊
  𝐿𝑠−𝑀   

𝐿𝑓−𝑀
⌋   

(2.3) 

 

Figure 2.2. Framing and feature extraction using windows 

A number of framing windows have been proposed for the purpose of splitting 

dynamic signals in to smaller and static enough for further processing. The four most 

popular windows in signal processing are rectangular, Hanning, Hamming and 

Bartlet whose discrete time functions are given in the following equations 

respectively [75].  

w[n] = {
1,            0 ≤ 𝑛 ≤ 𝐿𝑓 ∗ 𝑓𝑠  

0,                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       where   𝑀𝑓 =  𝐿𝑓 ∗ 𝑓𝑠 

(2.4) 

Where the product,𝐿𝑓 ∗ 𝑓𝑠, gives the number of discrete samples in a certain frame. 

Infect every frame consists of equal number of samples as the duration of every 

frame is equal. 
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w[n] = {
0.5 − 0.5cos (

2𝜋𝑛

𝐿𝑓∗𝑓𝑠
),            0 ≤ 𝑛 ≤ 𝐿𝑓 ∗ 𝑓𝑠  

0,                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

(2.5) 

The Hamming window is the most commonly used window for the sake of reducing 

harmonics and leakage. Its function is given below  

w[n] = {
0.54 − 0.46cos (

2𝜋𝑛

𝐿𝑓∗𝑓𝑠
),            0 ≤ 𝑛 ≤ 𝐿𝑓 ∗ 𝑓𝑠 

0,                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

(2.6) 

Mathematical description of the Bartlett or triangular window is given below  

w[n] =

{
 
 

 
 

2𝑛

𝐿𝑓∗𝑓𝑠
,                   0 ≤ 𝑛 ≤  

𝐿𝑓∗𝑓𝑠

2

2 −
2𝑛

𝐿𝑓∗𝑓𝑠
,     

𝐿𝑓∗𝑓𝑠

2
≤ 𝑛 ≤ 𝐿𝑓 ∗ 𝑓𝑠

0,                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

(2.7) 

 

Figure 2.3. Framing windows 

Finally the rarely used Black man window is given by 

w[n] = {
0.42 − 0.5 cos (

2𝜋𝑛

𝐿𝑓∗𝑓𝑠
) + 0.08cos (

4𝜋𝑛

𝐿𝑓∗𝑓𝑠
) ,     0 ≤ 𝑛 ≤ 𝐿𝑓 ∗ 𝑓𝑠  

0,                                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

(2.8) 

The waveforms of the five framing windows discussed so far, are shown in Figure 

2.3 above for a window length of 20 milliseconds.   
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2.2.3. Time domain analysis 

The time domain analysis fundamentally assumes the speech signal 𝑥(𝑡) as dynamic 

and its properties change relatively slowly with time notably (5-10 sounds per 

second). It exhibits uncertainty due to small amount of data. Thus time domain 

processing of speech signal begins with a suitable representation and framing with 

one of the windows discussed in the above section to get stationary segment. There 

are basically two major choices for this task; waveform and parametric 

representation. The parametric speech representation is further classified as 

excitation and vocal tract parameters. The speech synthesis described in equation 

(2.1), is converted to analysis equation using product operation to get mathematical 

representation of each frame as shown in equation (2.9) below. 

𝑥𝑖[𝑛] = 𝑋[𝑛]𝑤[𝑛 − (𝑖 − 1)
𝑀𝑓

2
]   (2.9) 

Where 𝑀𝑓  represents number of samples in the framing window which can be 

computed as a product of the sampling frequency 𝑓𝑠  and frame duration 𝐿𝑓         

(𝑀𝑓 = 𝑓𝑠𝐿𝑓), 𝑥𝑖[𝑛] denotes the discrete time representation of the  𝑖𝑡ℎ frame, and the 

index 𝑖 runs from 1 to the number of frames 𝑁𝑓 in the utterance (𝑖 = 1, 2, 3, . . ., 𝑁𝑓).  

Figure 2.4 below shows framing with a Hamming window of 50% overlap where 

every preceding frame consists of half unique and the other half similar contents with 

the current frame. 

 

Figure 2.4. Framing with 50% overlap 
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Popular time domain speech computations following framing include: 

 Zero crossing rate 

 Level crossing rate 

 Energy 

 Autocorrelation 

 Pitch range 

 Average magnitude difference function (AMDF) 

The zero crossing rate counts the number of sign changes for each sample in the 

entire frame. It is computed as: 

𝑍𝐶𝐶 = ∑ 0.5(𝑠𝑖𝑔𝑛(𝑥[𝑘]) − 𝑠𝑖𝑔𝑛(𝑥[𝑘 − 1]))𝑁
𝑘=1   (2.10) 

It basically answers the question “how many times the speech signal crosses the time 

axis in a given frame. It is a reflection of frequency and high 𝑍𝐶𝐶 value indicates high 

frequency.  

Energy of a speech frame 𝑥[𝑛] is computed via adding all the squared samples in an 

entire frame as   

𝐸𝑠 = ∑ {𝑥[𝑛]}2𝑁
𝑛=1     (2.11) 

where 𝑁 is the length of a certain speech frame 𝑥[𝑛]. The short energy can also be 

computed from the frequency domain representation of the signal using Parseval’s 

theorem which will be shortly discussed in the next sub section.  

Combined with short time energy can be used to detect voiced and unvoiced sounds 

as high energy 𝐸𝑠  and low 𝑍𝐶𝐶  values indicate voiced speech whereas low energy 

and high 𝑍𝐶𝐶  values usually represent unvoiced ones. We recall that vibration of 

vocal cords is caused during voiced sound generation; on contrast unvoiced sounds 

do not need any vibration of the vocal cords. The voiced phonemes tend to be louder 

like the vowel sounds (/a/, /e/, /i/, /o/, /u/) whereas the unvoiced phonemes are abrupt 

like the sounds /p/, /t/ and /k/ [35]. These characteristics can be exploited in speech 

recognition applications.  

Correlation function is commonly used in speech processing applications to show the 

difference between random variables. In quasi periodic signals such as speech we use 
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autocorrelation computation to uncover the distinction between a speech signal and 

its delayed version by 𝑘 samples mathematically described as shown below 

𝜙(𝑘) =
1

𝑁
∑ 𝑥[𝑛]𝑥[𝑛 + 𝑘]𝑁−1
𝑛=0    (2.12) 

This equation is depicted in a block diagram shown in Figure 2.5. For a delay of 𝑘 

samples the average magnitude difference function (AMDF) which serves a similar 

purpose as autocorrelation function is given by  

𝜙(𝑘) =
1

𝑁
∑ |𝑥[𝑛] − 𝑥[𝑛 + 𝑘]|𝑁−1
𝑛=0    (2.13) 

Compared to autocorrelation AMDF may be less intensive to implement on some 

processor architectures.  

Pitch period is another metrics which can be calculated in time domain as the inverse 

of the fundamental frequency of speech frame for voiced sounds. Pitch range is used  

 

Figure 2.5. Autocorrelation function 

2.2.4. Frequency domain analysis  

It is fundamental to understand that all frequency domain analysis arise from the 

Fourier analysis of a certain signal. Fourier transform converts the time domain 

representation in to frequency domain in which we can visualize the magnitude and 

phase components of spectrums. For a discrete signal 𝑥[𝑛] the dual equations that 

compute frequency and time domain representations aka analysis and synthesis duo 

are given in equations (2.14) and (2.15) respectively. 

𝑋(𝑒𝑗𝜔) = ∑ 𝑥[𝑛]𝑒−𝑗𝜔𝑛∞
𝑛=−∞    (2.14) 

And the synthesis equation also called inverse Fourier transform is given as 
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𝑥[𝑛] =
1

2𝜋
∫ 𝑋(𝑒𝑗𝜔)𝑒𝑗𝜔𝑛𝑑𝜔
𝜋

−𝜋
   (2.15) 

Equation (2.15) is commonly known as discrete time Fourier transform (DTFT). 

Properties of DTFT can be found in numerous academic resources [75]. The 

properties made complex computations a lot easier. Although the signal is discrete in 

time domain, it remains continuous in frequency domain which makes it difficult for 

digital hardware to further process. Hence we need to sample the frequency domain 

and represent the signal in finite samples in frequency domain too. Periodicity and 

symmetry are the most important properties. Since DTFT computation is angular and 

conterminal angles offer the same spectral value, unique values occur only for a unit 

circle whose angular range is [0 2𝜋]. 

𝑋[𝑘] = ∑ 𝑥[𝑚]𝑤[𝑚]𝑒−𝑗
2𝜋

𝑁
𝑘𝑚𝐿−1

𝑚=0    
(2.16) 

Where 𝑤[𝑚] is a framing window of length 𝐿and 𝑘 is a frequency index which spans 

to a discrete Fourier transform (DFT) point 𝑁. Usually the DFT point is equal to the 

discrete sequence size 𝐿  (i.e. 𝑁 = 𝐿). In this sense, the spectral values are calculated 

only for discrete and finite angular frequencies given by 

 𝜔𝑘 =
2𝜋𝑘

𝑁
.                    

 Hence: 𝑋[𝑘] =  𝑋(𝑒𝑗𝜔)|
𝜔=

2𝜋𝑘

𝐿

 .  

If 𝑁 is greater than 𝐿, zeros are padded to the discrete sequence 𝑥[𝑚]. Whereas if 𝑁 

is less than 𝐿, 𝐿 − 𝑁 samples that occur from time index 𝑁 to 𝐿 will be discarded 

from the sequence. 

The DFT computation consists of a series of complex addition and multiplication 

operations. For an L-point DFT there are 𝐿  complex multiplications and 𝐿 − 1 

complex additions for a single frequency index. Each complex multiplication 

consists of 2 real multiplication and 2 real additions. Therefore, a single frequency 

component of speech frame takes a total of  2[(𝐿 − 1) + 𝐿] = 4𝐿 − 2  real 

mathematical operations. As we have a total of 𝐿 frequency components for an L-

point DFT, the total operation makes up 𝐿(4𝐿 − 2) real operation which makes the 

complexity of the DFT computation to the order of 𝐿2 and designated as 𝑜(𝐿2). As 

the DFT point increases the complexity rises dramatically. Hence it makes it 

computationally inefficient to carry on these operations traditionally. Due to the 
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symmetric and periodic properties of the radix factor 𝑒−𝑗
2𝜋

𝑁 efficient algorithms 

collectively termed as fast Fourier transform (FFT) have been proposed over the 

years. FFT reduces the computation complexity from 𝑜(𝐿2) to 𝑜(𝐿 ∗ 𝑙𝑜𝑔2
𝐿).  

2.3. Filter Bank Based Features 

After spectral analysis the next major step in most speech processing applications is 

applying filter banks to attenuate the components differently and recombine them 

into a modified version of the original signal. Filter banks are arrays of bandpass 

filters that split a certain spectrum of speech frame into multiple components, each 

one carrying a single frequency sub-band. They come in various shapes and the 

spacing between consecutive filters can be linear or mel scale. The mel scale is the 

most commonly used spacing as listeners judge the melody and loudness of sounds 

in a logarithmic scale rather than a linear fashion.  

Magnitude and filter bank based spectral feature sets used in our research are; mel-

frequency cepstral coefficient (MFCC), rectangular filter cepstral coefficient (RFCC), 

inverted MFCC (IMFCC) and linear frequency cepstral coefficient (LFCC). After 

carefully examining the performance of these feature sets we proposed a new 

technique called parabolic filter mel-frequency cepstral coefficient (PFMFCC) [76] 

to generate features and contributed for publication. RFCC offered an impressive 

performance for an experiment aimed at detecting replay or spoofing attack [77]. 

MFCC and PFMFCC use mel scale to split the range of frequencies between the 

minimum and the maximum while LFCC and RFCC use linear scales in our 

experiments. 

Since the features considered here in this note are frequency domain features, the 

discussion so far is common for all the features. The DFT is the standing point for all 

the features. Some features use the magnitude and others use the phase component. 

Further procedures make each feature extraction technique unique from the other. 

2.3.1. Mel-frequency cepstral coefficient (MFCC) 

Filter bank based spectral feature extraction techniques including MFCC vary only in 

the choice of the filter bank shape and spacing between adjacent filters we use. Some 
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of these techniques use the mel scale whereas others use the linear scale. Linear 

scale means that the frequency bands are linearly divided. On the other hand, mel 

scale is a frequency scale commonly found in psychoacoustics, i.e. it reflects how 

our ear detects pitch. The filter banks are approximately linear below 0.5 

kHz and approximately logarithmic above that. MFCC is one of these features. It is 

well known and widely used in the speech processing community. And it is believed 

that encouraging results have been obtained in using this feature. MFCC uses the 

Mel scale for linearly spacing the filter banks. Mel is a term taken from melody 

which supposedly is inspired by the human hearing or perception system. Since our 

auditory system uses a decibel or logarithmic scale, the above determined DFT either 

power spectrum or phase need to be redefined in a log scale. In addition to the filter 

bank spacing scales, we also categorize feature extraction techniques based on the 

type of filter banks used. Some use triangular and others use rectangular. MFCC uses 

Mel scale to space triangular filter banks.  

The first step in MFCC feature extraction is to determine the short time Fourier 

transform (STFT) of speech signal. The STFT to be determined the sampled audio 

signal is first grouped in small overlapping frames of about 20ms size. This can be 

easily done using windowing techniques. The hamming window is chosen 

conventionally in most applications. Once framed, the STFT can efficiently be 

computed using the FFT algorithm. 

Then, DFT values are grouped together in critical bands and weighted according to 

the triangular weighting function shown below. These bandwidths are constant for 

centre frequencies below 1 kHz and increase exponentially up to half the sampling 

rate. 

Before the mathematical analysis of MFCC we need to explain about the Mel Scale 

which relates perceived frequency, or pitch, of a pure tone to its actual measured 

frequency. Humans are much better at discerning small changes in pitch at low 

frequencies than they are at high frequencies. Therefore the mel scale makes our 

features match more closely to what humans hear. This is basically motivated by the 

human perception mechanism which is done in a human cochlea. It doesn’t perceive 

acoustic waves in a linear basis rather it uses a logarithmic scale in decibels. Below 
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is the formula for converting a conventional frequency measured in hertz to mel scale 

which is best expressed as human hearing scale: 

𝑀𝑒𝑙(𝑓) = 1125ln (1 +
𝑓

700
)  (2.17) 

𝑀𝑒𝑙−1(𝑚) = 700(exp (
𝑚

1125
) − 1)                                

𝑚𝑒𝑙(𝑖) =  401.25 + 243.3740 ∗ 𝑖          𝑓𝑜𝑟 𝑖 = 0, 1,2, … , 10              

𝑚𝑒𝑙(𝑖) = 401.25,   622.50,      843.75,        𝑓𝑜𝑟 𝑖 = 0 , 𝑖 = 1    𝑎𝑛𝑑 𝑖 = 2   

𝑚𝑒𝑙(𝑖) = 2392.49,    2613.74,     2834.99       𝑓𝑜𝑟 𝑖 = 7 , 𝑖 = 8    𝑎𝑛𝑑 𝑖 = 9  

Obtaining all the mel scale points helps us to calculate the frequencies at which the 

filter bank functions begin and end. We use the inverse of equation (2.17) to compute 

the corner frequency values after partition in mel scale. Accordingly we have the 

following list of frequencies for the filter bank functions to be determined: 𝑓(𝑖)= 300, 

517.33, 781.90, 1103.97, 1496.04, 1973.32, 2554.33, 3261.62, 4122.63, 5170.76, 

6446.70, and 8000. At low frequency these functions are spaced closely while they 

are sparsely spaced at high frequency showing the same behaviour as human hearing 

nature.  

The Major steps in  MFCC and other  filter bank based feature extraction 

implementation are [78]: 

1. Apply pre-emphasis filter to the speech utterance before splitting it up in to 

pieces 

2. The signal has to be framed in short frames of duration 20-30 ms. 

3. Periodogram estimate of the power spectrum has to be calculated for each frame. 

4. Apply the mel or linear filter bank to the power spectra, sum the energy in each 

filter. 

5. The logarithm of all filter bank energies need to be calculated. 

6. The Discrete Cosine Transform (DCT) or inverse FFT of the log filter bank 

energies has to be taken. 

7. Only 2-13 DCT coefficients has to be kept, and the rest has to be discarded.  

Following these procedures the delta MFCC which can also be called as dynamic 

feature and the delta delta MFCC or the acceleration feature can be calculated from 

the above 13 MFCC coefficients.  Calculate the dynamic coefficients from the 13 
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static coefficients and similarly calculate the acceleration coefficients from the 

dynamic coefficients.  

In order to apply the mel scale and generate the filter bank functions we need to 

determine the lowest and highest frequencies. Assuming a lowest frequency of 300 

Hz and the highest frequency of 8000 Hz for instance, converting these 

measurements to mel scale based on equation (2.17) yields 401.25 mels and 2834.99 

mels. The next step is dividing this range in to linearly spaced filter banks based on 

the desired number of filter banks which in this case is assumed to be 10 filter banks.  

The range will be 2834.99 - 401.25 =2433.74 and the linear spacing yields 

2433.74/10 =243.3740. 

Therefore, we need to define the filter bank function 𝑉𝑖[𝑘]  that plays 

important roles in signal processing. They are used in many areas, such as speech 

and image compression, and processing. The main use of filter banks is to divide a 

speech frame in to several separate frequency domains. The triangular bandpass filter 

bank functions are mathematically defined as: 

 𝑉𝑖[𝑘]  =  

{
 
 

 
 

0     ,                         𝑘 < 𝑓(𝑖 − 1) 
𝑘−𝑓(𝑖−1)

𝑓(𝑖)−𝑓(𝑖−1)
    ,   𝑓(𝑖 − 1) < 𝑘 <  𝑓(𝑖)

𝑓(𝑖+1)−𝑘

𝑓(𝑖+1)−𝑓(𝑖)
   ,   𝑓(𝑖) < 𝑘 <  𝑓(𝑖 + 1)

0      ,                               𝑘 > 𝑓(𝑖 + 1)

 

(2.18) 

The corner points of each distinct triangle 𝑓(𝑖 − 1), 𝑓(𝑖) and 𝑓(𝑖 + 1) denote the 

lower, center and upper edge of the 𝑖𝑡ℎ filter bank respectively in equation (2.18). 

Once we determine these corner frequencies for filterbanks, the next step is 

converting these frequencies in to frequency bins 𝑘 using the sampling frequency and 

the number of FFT points. For 512 – point FFT and  8 kHz sampling rate the bins 

will be computed as in equation (2.19). 

𝑘𝑖  =  ⌊
(𝑁+1)∗𝑚𝑒𝑙−1(𝑖)

𝑓𝑠
)⌋  (2.19) 

Here 𝑘𝑖 is a frequency bin and 𝑖 is the mel index at which we convert to frequency 

and eventually to bins. 
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𝑀𝐹[𝑖]  =  
1

𝐴𝑖
∑ |𝑉𝑖[𝑘]𝑋(𝑛, 𝑘)|
𝑈𝑖
𝑘=𝐿𝑖

  (2.20) 

𝐴𝑖 = ∑ |𝑉𝑖[𝑘]|
2𝑈𝑖

𝑘=𝐿𝑖
  (2.21) 

𝑀𝐹𝐶𝐶[𝑚]  =  
1

𝑅
∑ log(𝑀𝐹[𝑖]) cos [

2𝜋

𝑅
(𝑖 +

1

2
)𝑚]𝑅

𝑖=1   (2.22) 

The filter bank energy is designated by 𝐴𝑖 as in equation (2.21). In addition 𝑅 and 𝑚 

stand for number of filter banks and number of features respectively in equation 

(2.22). While the 𝑚  static features are extracted in the above procedures, the 

dynamic a.k.a. delta and acceleration a.k.a. delta-delta or double delta features can be 

computed using the following two equations. The 𝑚 dynamic features are generated 

as in equation (2.23): 

𝑑𝑒𝑙𝑡𝑎[𝑡] =
∑ 𝑛(𝑀𝐹𝐶𝐶𝑡+𝑛  −   𝑀𝐹𝐶𝐶𝑡−𝑛)
𝑄
𝑛=1

2∑ 𝑛2
𝑄
𝑛=1

 ,    𝑄 =  2    
(2.23) 

The 𝑚 acceleration features are computed applying equation (2.24) shown below. 

𝑑𝑜𝑢𝑏𝑙𝑒_𝑑𝑒𝑙𝑡𝑎[𝑡] =
∑ 𝑛(𝑑𝑒𝑙𝑡𝑎𝑡+𝑛  −   𝑑𝑒𝑙𝑡𝑎𝑡−𝑛)
𝑄
𝑛=1

2∑ 𝑛2
𝑄
𝑛=1

   ,    𝑄 =  2  
(2.24) 

All the mathematical computations presented above equally apply for the other 

feature extraction techniques with a modification on the bandpass filter bank 

functions according to their shape and spacing.  

2.3.2. Rectangular filter cepstral coefficient (RFCC) 

This feature is similar with MFCC in its filter bank spacing scale. Both use the Mel 

scale. However RFCC as its name implies uses rectangular filter banks before 

calculating the cepstral coefficients. And the filter banks are computed using 

trapezoidal membership function. The Matlab inbuilt function trapmf(x, parameter) 

is used to determine the filter channels where x defines the domain and ‘parameter’ 

assigns the corner values of the trapezoid. Since we have four corners in a trapezoid 

a one by four array need to be assigned to the parameter.  

 

for i=1:M 

    fft_matris(i,:)=trapmf(fft_fr,[F_mel(i),F_mel(i),... 

        F_mel(i+2),F_mel(i+2)]); 

End 
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This piece of code fragment constructs M filters spaced regularly in a Mel scale. This 

way it computes values for all the rows in an iterative way and accumulates in the 

fft_matris(i,:) matrix. All procedures after this code fragment remain the same as 

MFCC method  

2.3.3. Linear frequency cepstral coefficient (LFCC) 

Triangular filter banks are employed both in MFCC and LFCC however; LFCC uses 

linear scale frequency spacing as opposed to the Mel scale in MFCC. The Matlab 

code fragment to compute the M filter banks is given below. It is exactly the same as 

the MFCC code fragment. The difference lies in the values of the lower, center and 

upper frequency values in each filter bank. All these corner frequencies are spaced 

linearly in LFCC where as a mel scale is used in MFCC. 

Algorithm 2.1: 

for i=1:M 

        fft_matris(i,:) = ... 

  (fft_fr > lower(i) & fft_fr <= center(i)).* ... 

   filt_height(i).*(fft_fr-lower(i))/(center(i)-lower(i)) + ... 

  (fft_fr > center(i) & fft_fr < upper(i)).* ... 

   filt_ height (i).*(upper(i)-fft_fr)/(upper(i)-center(i)); 

end 

Where lower(i), center(i) and upper(i) stand for lower, center and upper frequencies 

respectively. In the linear filter cepstral coefficient (LFCC) we take the minimum 

and maximum frequencies and divide the length in to M equal length small 

segments. In the MFCC case the minimum and maximum frequencies are converted 

in to Mel scale first and we use these values to divide the length in to M small 

segments. The conversion is shown below. 

Algorithm 2.2: 

F_max_mel=(1000/log10(2))*log10(1+F_max/1000); 

F_min_mel=(1000/log10(2))*log10(1+F_min/1000); 

F_mel=linspace(F_min_mel,F_max_mel,M+2); 

Then we need to convert these individual corner frequencies for all the M filters back 

to frequency scale (Hz). 
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Algorithm 2.3: 

F_Hz=1000*(-1+10.^(F_mel.*log10(2)/1000)); 
lower=F_Hz(1:M); 

upper=F_Hz(3:M+2) ; 

center=F_Hz(2:M+1); 

Note that, LFCC does not need mel conversion as its scale is already linear. 

2.3.4. Inverted mel-frequency cepstral coefficient (IMFCC) 

This technique is also similar with MFCC in most procedures. It uses triangular 

filters and mel-frequency scaling to space the filter banks just like MFCC does. But 

the filter banks are inverted. To make it clear, the filter banks are narrowly spaced at 

low frequency and the spacing gets longer and longer as frequency increases in 

MFCC whereas the spacing length gets shorter and shorter as frequency increases in 

IMFCC. After calculating the filter impulse response functions (fft_matris) in a 

similar way as MFCC using code fragments shown above, these filter bank impulse 

response values will be flipped using fliplr(). . 

LFBE=10*log10((fliplr(fft_matris) * spectrum)+eps); 

2.3.5. Parabolic filter mel-frequency cepstral coefficient (PFMFCC) 

Inspired by all the four filter bank arrangements discussed above, we proposed a 

similar type of filter banks but parabolic in shape to get a different result. Every 

individual passband filter except the first one begins rising from the center of its 

previous filter. The center of the filter bank is the point at which the impulse 

response scores is maximum value. 

We made a unique contribution at the filter bank stage in this study which resulted in 

a different set of features. The most commonly used triangular band pass filter banks 

in MFCC are replaced by parabolic filter banks inverted down and shifted to the right 

based on mel scaling of range of frequencies. The general description of the 𝑖𝑡ℎ  filter 

bank function 𝐻[𝑖, 𝑘] is given in a compact form as in equation (2.25): 

𝑉𝑖[𝑘] = −𝐴(𝑖)(𝑘 − 𝑓(𝑖))
2 + 𝐵  (2.25) 
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In order to obtain the maximum and the vertical line of symmetry of this function a 

first derivative with respect to 𝑘 must be applied and equated to zero. This leads to 

the equation given in (2.26): 

(𝑉𝑖[𝑘])
′ = −2𝐴(𝑖)(𝑘 − 𝑓(𝑖)) = 0  (2.26) 

which in turn leads to the point where the maximum of the function occurs.  The 

vertical line 𝑘 =  𝑓(𝑖) is the line of symmetry at the same time the maximum value 

of the 𝑖𝑡ℎ parabolic function occurs here. And the maximum point is (𝑓(𝑖), 𝐵). The 

intercepts to the horizontal axis are determined based on the values of the partition 

made on the frequency range(𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥). The minimum frequency is set to be 0 and 

the maximum is half of the sampling frequency used in the speech database which 

can be written as  (𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥)  = (0, 4000𝐻𝑧)  for the aGender database [20]. 

Whereas (𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥)  = (0, 8000𝐻𝑧)  is used for the Turkish database as the 

utterances are sampled at 16 kHz.  

The intercept values determine the parameter 𝐴(𝑖) in each parabolic function. The 

value of the function below the minimum and beyond the maximum intercept should 

be set to zero. The maximum value B remains the same in all the band pass filter 

bank functions. The number of filter bank functions is set to be 30 in our 

experiments. Once the entire range of frequencies is converted in to mel scale using 

equation (2.17), this range is partitioned in to 30 smaller band of frequencies. It is 

known that the mel scale relates the perceived frequency to the actual measured 

frequency. The human ear is better at identifying small changes in speech at lower 

frequencies. The converted minimum and maximum frequency pair in mel scale is 

(0, 2146). 

The filter bank functions in (2.25) above need to be redefined considering the 

intercept points of the functions at the corner frequencies.  The value of each filter 

bank function is made to vanish out of the ranges of the intercepts. Substituting the 

right edge of each filter 𝑓(𝑖 + 1) in the values of 𝑘 and equating it with zero results 

in 𝐴(𝑖) = (𝑓(𝑖 + 1) − 𝑓(𝑖))−2, which eventually give the relation described in (10).  

Since the parabola in each function is symmetrical with the line  𝑘 = 𝑓(𝑖) , the 

distance from the center to both edges is equal. 
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𝑉𝑖[𝑘] = {
− (

𝑘−𝑓(𝑖)

𝑓(𝑖+1)−𝑓(𝑖)
)
2

+ 1,   𝑓(𝑖 − 1) ≤ 𝑘 ≤ 𝑓(𝑖 + 1)    , 𝑖 = 1, 2, 3, … , 30 

0,                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                           
   

(2.27) 

Where the left most edge 𝑓(0) and the right most edge  𝑓(31) of all the filter banks 

are 0 and 4000 Hz respectively in equation (2.27). The conventional triangular filter 

bank functions Vi[k] employed for MFCC given in equation (2.18) above differ from 

the parabolic ones in having a sharp corner at the center of each function as a result 

each filter needs two line functions to define the entire sub band. The graphs of both 

triangular and parabolic filter banks are shown in Figures 2.6 and 2.7 respectively. In 

both cases the spacing is uniform until the thousandth frequency, and then it 

increases in each succeeding filter bank. 

 

Figure 2.6. Triangular filter banks for MFCC 

 

Figure 2.7. Parabolic filter banks for PFMFCC 

Table 2.1 below summarizes the computation of filter bank functions presented so far 

in this sub section.  In linear scale uniform partitions are made while splitting the 

frequency band between the minimum and maximum frequencies. Whereas, the mel 

scale uses logarithmic scale. First the maximum and minimum corner frequencies are 

converted in to mel scale and these values are used to determine the corner 

frequencies of each partition. Finally the corner frequencies of each partition are 

converted back to actual frequency in linear scale. At low frequencies below 1000 
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Hz the partitions in linear as well as mel scale are uniform. After 1000 Hz the mel 

scale partition starts increasing as the frequency increases.  

Table 2.1. List of filter banks in magnitude spectral feature extractions 

Features Filter banks used 
MFCC 

𝑉𝑖[𝑘]  =  

{
 
 

 
 

0     ,                         𝑘 < 𝑓(𝑖 − 1) 
𝑘−𝑓(𝑖−1)

𝑓(𝑖)−𝑓(𝑖−1)
    ,   𝑓(𝑖 − 1) < 𝑘 <  𝑓(𝑖)

𝑓(𝑖+1)−𝑘

𝑓(𝑖+1)−𝑓(𝑖)
   ,   𝑓(𝑖) < 𝑘 <  𝑓(𝑖 + 1)

0      ,                               𝑘 > 𝑓(𝑖 + 1)

  

 

 
PFMFCC 
𝑉𝑖[𝑘] =

{
− (

𝑘−𝑓(𝑖)

𝑓(𝑖+1)−𝑓(𝑖)
)
2

+ 1, 𝑓(𝑖 − 1) ≤ 𝑘 ≤ 𝑓(𝑖 + 1) 

0,                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                           
   

 
RFCC 

We used trapezoid functions 
fft_matris(i,j)= trapmf(fft_fr(j),[F_mel(i),F 

mel(i),...              F_mel(i+2),F_mel(i+2)]);  

 

 
LFCC 

Functions are the same as MFCC but the 

spacing is linear rather than mel scale as in 

MFCC. 

 
IMFCC 
𝑉𝑖_𝐼𝑀𝐹𝐶𝐶[𝑘]=𝑓𝑙𝑖𝑝(𝑉𝑖_𝑀𝐹𝐶𝐶[𝑘])  

 
fft_matris = fliplr(fft_matris) 

  

2.4. Phase and Sub-channel Based Features 

In this sub section phase and sub-channel based as well as the old relative spectral 

transform-perceptual linear prediction (RASTA-PLP) are presented briefly [13].  

2.4.1. Sub-band spectral flux coefficients (SSFC) 

Spectral flux measures the spectral change between two successive frames and is 

computed as the squared difference between the normalized magnitudes of the 

spectra of the two successive short-term windows is given by equation (2.28) as: 

𝐹𝑙(𝑖,𝑖−1) = ∑ (𝐸𝑖(𝑘) − 𝐸𝑖−1(𝑘))
2𝐿

𝑘=1    (2.28) 
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where (𝐸𝑖(𝑘) is the k
th

 normalized DFT coefficient at the i
th

 frame which is given by 

equation (2.28) above. 

𝐸𝑖(𝑘) =
𝑋𝑖(𝑘)

∑ 𝑋𝑖(𝑗)
𝐿
𝑗=1

  (2.29) 

And here Xi(k) denotes the k
th

 DFT of frame i, and L is half of the DFT point N in 

equation (2.29). SpectralFlux. = |NormalizedSpectrum − PreviousSpectrum|
2
 Spectral 

flux is the average variation value of spectrum between the adjacent two frames 

computed as: 

𝑆𝑓 =
1

(𝑁−1)(𝐾−1)
∑ ∑ [log (𝑋(𝑛, 𝑘) + 𝛿) − log (𝑋(𝑛 − 1, 𝑘) + 𝛿)]2𝐾−1

𝑘=1
𝑁−1
𝑛=1   (2.30) 

where 𝑆𝑓 is spectral flux, 𝑋(𝑛, 𝑘) is the discrete Fourier transform (DFT) of the 𝑛𝑡ℎ 

frame of speech signal 𝑥[𝑚] in equation (2.30),  𝑁 is the total number of frames, 𝐾 is 

the order of DFT and  𝛿  is a very small value to avoid calculation overflow in 

equation (2.30) above [79].  

2.4.2. Sub-band centroid magnitude and frequency (SCMF) 

SCMF combines spectral centroid magnitude (SCM) and spectral centroid frequency 

(SCF) [80]. Given the frequency spectrum of a speech frame x[n] as its Fourier 

transform X(ω) we divide the spectrum into M sub-bands. Each sub-band consists of 

a filter frequency response of Hk(ω)  with a lower frequency flk  and an upper 

frequency fuk both the centroid magnitude and frequency are computed using (2.31) 

and (2.32) respectively as: 

𝑚𝑘 =
∑ 𝑓𝑋(𝑓)𝐻𝑘(𝑓)
𝑓𝑢𝑘
𝑓=𝑓𝑙𝑘

∑ 𝑓
𝑓𝑢𝑘
𝑓=𝑓𝑙𝑘

  
(2.31) 

𝐹𝑘 =
∑ 𝑓𝑋(𝑓)𝐻𝑘(𝑓)
𝑓𝑢𝑘
𝑓=𝑓𝑙𝑘

∑ 𝑋(𝑓)𝐻𝑘(𝑓)
𝑓𝑢𝑘
𝑓=𝑓𝑙𝑘

  
(2.32) 

where mk and Fk denote centroid magnitude and centroid frequency. 

2.4.3. Relative spectral transform perceptual linear prediction (RASTA-PLP) 

Spectral transform (RASTA) is a separate technique that applies a band-pass filter to 

the energy in each frequency sub-band in order to smooth over short-term noise 

variations and to remove any constant offset resulting from static spectral coloration 
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in the speech channel e.g. from a telephone line [13]. RASTA-PLP achieved 98% 

and 95% gender classification accuracy for clean and noisy speech using robust 

GMM classifiers [81]. RASTA method of speech processing is a generalization of 

cepstral mean subtraction (CMS). The RASTA algorithm uses auditory masking 

principle in reducing the perception of noise. It addresses the problem of a slowly 

time-varying linear channel (i.e., convolutional distortion) in contrast to the time 

invariant channel removed by CMS. The essence of RASTA is a cepstral lifter that 

removes low and high modulation frequencies and not simply the DC component, as 

does CMS. The fixed infinite impulse response (IIR) band pass filter for all time 

trajectories given by transfer function in equation (2.33) is used by RASTA for noise 

reduction. 

𝐻(𝑧) = 0.1𝑧−4
2+𝑧−1−𝑧−3−𝑧−4 

1−0.94𝑧−1
  (2.33) 

2.4.4. Cosine phase 

Cosine phase is one of the two phase spectrum based features used in our research 

work during the speaker age classification experiments. It is extracted from the phase 

envelope of speech frames. phase spectrum information is normally ignored in most 

applications [82]. It is used in our study for age classification for the first time and 

found to perform poorly compared to most of the other features used in our 

experiments. The base phase feature 𝜁𝑡,𝑡−∆𝜏[𝑘] for frequency channel k due to the 

phase dependence interference introduced by the cosine of the phase difference 

between two signals 𝜑𝑡[𝑘]  and 𝜑𝑡−∆𝜏[𝑘]  at two different times t  and t − ∆τ 

respectively is given by equation (2.34) below 

𝜁𝑡,𝑡−∆𝜏[𝑘] = 𝑐𝑜𝑠(𝜑𝑡[𝑘] − 𝜑𝑡−∆𝜏[𝑘] − 
2𝜋𝑘

𝑁
𝜂∆𝜏 + 𝜃𝑘)  (2.34) 

where 𝜃𝑘 a phase shift created by feedback loops.  

2.4.5. Modified group delay (MODGD) 

The MODGD feature is the negative rate of change of the phase spectrum θ(ω) with 

respect to frequency ω as defined in equation (2.35) below. This feature is used in 

[83] for speech recognition. It is used for speaker age classification for the first time 

in this study and the best result is achieved in the female test set.  
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𝜏(𝜔) = −
𝑑(𝜃(𝜔))

𝑑𝜔
  (2.35) 

𝜃(𝜔) is taken from X(ω) written in its magnitude and phase components using polar 

representation as |X(ω)|𝑒𝑗𝜃(𝜔) 

2.5. Feature selection, Feature Fusion and Dimensionality Reduction 

Simple models are only able to describe data with fewer dimensions in a robust 

manner. As dimension increases the complexity emerges to be the curse of obtaining 

a feasible model to fully explain what underlies in data. Therefore, we need more 

rigorous methods to uncover knowledge from data. Contrary to this if we can explain 

certain data with less number of features; it is a lot easier to understand what 

underlies within data. Hence knowledge can easily be extracted from such data. Data 

can also be plotted and analyzed visually if it can be represented with fewer features 

such as hidden and latent factors without loss of information. Both principal 

component analysis (PCA) and linear discriminant analysis (LDA) are linear 

projections mainly used in dimensionality reduction processes however they are 

unsupervised and supervised respectively. PCA resembles much very much like 

factor analysis and multidimensional scaling. 

For a 2 second speech, sampled at a sampling rate of 8 kHz the number of discrete 

values representing it would make up 16000 real numbers. It contains speech 

phonemes, noise and silence of course. The silence and noise contribute nothing if 

not negatively impact speaker age estimation efforts. With one of the methods 

discussed so far in this unit this dimension can be reduced to a much lower 

dimension assuming decompositions can be constant statistical characteristics. This 2 

second speech will be decomposed in two 200 frames each containing 160 samples.  

The number of samples in a frame multiplied by number of frames (160 ∗ 200 =

32000 ) does not fit with the original 16000 samples as there is 50% overlaps 

between adjacent frames. This would even make the dimension higher. However we 

carry out a series of operations to reduce the 160 samples in to 42, 28, 14, 39, 26, or 

13; depending on our choice of feature types, as static, dynamic, or acceleration; with 

or without energy components. If we choose the highest dimension here i.e. 42, 200 
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frames would make up 8400 discrete sequences which is a reduction of 42.5% from 

the original 16000 discrete sequences.  

This reduction dramatically reduces the complexity of operation assuming the huge 

size of typical data. Therefore feature extraction is one of the dimensionality 

reduction methods along with feature selection [84], subset selection and others 

which reduces a 𝑑dimensional data to 𝑘  where 𝑘 < 𝑑  and discard the irrelevant 

𝑑 − 𝑘 dimensions.  

 

Figure 2.8. Dimensionality reduction methods 

Figure 2.8 above depicts some linear and non-linear dimensionality reduction 

methods. Details on these dimensionality reduction methods and other search 

algorithms can be obtained in Ethem Alpaydin’s introduction to machine learning 

book [85]. 

We applied PCA, LDA, and subset feature type selection methods in our study. We 

adapted 2 phase and 7 magnitude based spectral features to our research study and 

proposed parabolic filter based feature extraction method which offered best results 

with certain classifiers. Combined effect of these ten features is investigated in this 

study. The following subsections present these dimensionality reduction methods 

briefly.  

2.5.1. Union selection of feature sets 

Subset selection is the process of finding the best subset among the set of features 

usually conducted in forward or backward search fashion using greedy algorithm 

[86]. The forward search begins with empty set and adds features to the subset 

depending on their performance, minimum mean absolute error (MAE) for 
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regression or maximum accuracy for classification. The process continues until there 

is no more improvement in performance or the improvement is insignificant. On the 

other hand, backward search starts with the complete set and removes the feature that 

gave the poorest performance until the improvement saturates.  

We used the subset selection method in our experiments in a different approach. 

Rather than a single feature, we considered feature set types as we applied 10 kinds 

of feature sets. Before we make a subset of these feature types their performance is 

evaluated for three machine learning models; cosine distance scoring (CDS), 

Gaussian mixture model (GMM) [87] and probabilistic linear discriminant analysis 

(PLDA). Each feature type consists of 42 features.  Therefore, a tradeoff is needed to 

minimize the cost of complexity as we perform subset selection of these feature types. 

Unless a significant improvement is made, feature types will not be padded to the 

existing subset in forward search algorithm. In case of backward search algorithm, a 

feature type will be discarded even if it only offers a slight change in performance to 

keep the complexity lower.  The forward search approach is preferable as it goes 

from low complexity to high, whereas the backward search starts with high overhead 

in complexity and reduces as it removes low performing feature types.  

Mathematically, the subset selection method with backward and forward search can 

be expressed with equations (2.36) and (2.37) respectively. 

𝑗 = 𝑎𝑟𝑔min𝑖𝑀𝐴𝐸(𝐹 − 𝑓𝑖)  (2.36) 

The established subset is denoted by 𝐹   and 𝑓𝑖  represents a feature type to be 

removed from the subset.  

𝑗 = 𝑎𝑟𝑔max𝑖 𝑎𝑐𝑐(𝐹 − 𝑓𝑖)  (2.37) 

Remove 𝑓𝑖 if 𝑎𝑐𝑐(𝐹 − 𝑓𝑖) ≥ 𝑎𝑐𝑐(𝐹), for complexity reason it includes the equal sign 

and those feature types which cannot change the performance significantly.  

Although the order of complexity is the same between the two search algorithms, 

forward search algorithm is more preferable as it emerges from simple to complex. 

And it is mathematically described as the addition of feature types one by one in a 

greedy manner in equation (2.38).  
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𝑗 = 𝑎𝑟𝑔min𝑖𝑀𝐴𝐸(𝐹 + 𝑓𝑖)  (2.38) 

For classification we use equation (2.39) as shown below. 

𝑗 = 𝑎𝑟𝑔max𝑖 𝑎𝑐𝑐(𝐹 + 𝑓𝑖)  (2.39) 

Add 𝑓𝑖 to the subset 𝐹 if 𝑎𝑐𝑐(𝐹 + 𝑓𝑖) > 𝑎𝑐𝑐(𝐹)  

In order to make the process more visible to readers, we took a simple example 

briefly explained in Ethem Alpaydin’s machine learning book [85]. Using the nearest 

mean [88] as a classifier on the Iris dataset [89] with single feature, the accuracies 

were 76%, 57%, 92%, and 94%, for sepal length, sepal width, petal length and petal 

width respectively. We pick the single feature which showed the highest accuracy i.e. 

petal width and add one more feature to see their combined effect. Assuming 

{𝐹1, 𝐹2, 𝐹3, 𝑎𝑛𝑑 𝐹4, }  represent the four features, Figure 2.9 below shows the 

accuracies of the classification using two features combined. 

 

Figure 2.9. Classification of Iris data with two features using nearest mean 

As we can observe from the graphs in Figure 2.9 above, combining 𝐹3and 𝐹4 has 

improved the accuracy by 2% compared to the best single alone feature. This process 

however, takes considerably large amount of time and processing complexity for 

multi feature and large data. It takes 𝑑 + 𝑑 − 1 + 𝑑 − 2 + 𝑑 − 3 +⋯ .+𝑑 − 𝑘 

training and testing sessions which makes the order of the complexity 𝑜(𝑑2)  to 

reduce the dimension 𝑑 to 𝑘 and obtain better classification accuracy.  
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2.5.2. Principal component analysis (PCA) 

With minimum loss of information data can be represented in 𝑑 − 𝑘  fewer 

dimensions than in its original 𝑑  dimensions [90]. This process is named as principal 

component analysis (PCA) and it projects an original data 𝑋 in to the direction of 

𝑊to generate new feature sets 𝑍 with new dimension 𝑘 , where 𝑘 < 𝑑. PCA does not 

depend on output information to maximize the variance between observations as 

defined by equation (2.40).  

𝑍 = 𝑊𝑇𝑋  (2.40) 

The aim of PCA is to maximize variance and create reparability between data and 

eventually make the difference between sample points become apparent.  For a 

unique solution the magnitude of the principal component 𝑊 need to be unity i.e. 

‖𝑊1‖ = 1 . If we want to maximize the separability we need to maximize the 

variance 𝑉𝑎𝑟(𝑍1)of the newly transformed matrix 𝑉𝑎𝑟𝑍1using Lagrange multipliers 

problem solving techniques using equation (2.41) below [91]. 

𝑉𝑎𝑟(𝑍1) = 𝑊1
𝑇∑𝑊1  (2.41) 

With the constraint 𝑊1
𝑇𝑊1 = 1  we maximize the variance with the following 

approach defined in equation (2.42): 

max𝑊1{𝑊1
𝑇∑𝑊1 − 𝛼(𝑊1

𝑇𝑊1 − 1)}  (2.42) 

The partial derivative w.r.t. 𝑊1, leads us to visualize the local maxima when the 

slope is zero as described in equation (2.43) 

𝜕{𝑊1
𝑇∑𝑊1−𝛼(𝑊1

𝑇𝑊1−1)}

𝜕𝑊1
= 0 = 2∑𝑊1 − 2𝛼𝑊1  

(2.43) 

Therefore, ∑𝑊1 = 𝛼𝑊1, which clearly shows that 𝑊1is an Eigen vector and 𝛼 is a 

corresponding Eigen value [92] that can maximize the argument in equation (2.42). 

Hence, 𝑊1
𝑇∑𝑊1 = 𝛼𝑊1

𝑇𝑊1 =  𝛼.  

The transformation matrix 𝑊  is formed from the k Eigen vectors 

{𝑊1,𝑊2,𝑊3 ,𝑊4 ,𝑊5…… . ,𝑊𝑘} concatenated based on the order of their 

corresponding Eigen value {
1
, 2, 3 ,4 ,5… , 𝑘} where  = 𝛼.  



 

58 
 

2.5.3. Linear discriminant analysis (LDA) 

Unlike PCA linear discriminant analysis (LDA) involves a supervised dataset to 

reduce the dimension of feature sets used to represent each observation of a data 

sample from 𝑑 to 𝑁 − 1, where 𝑁 is the number of classes. LDA begins with a two 

class problem and generalizes it for multiple classes more than two. Therefore, the 

dimension reduction is from 𝑑 to 1. 

Again vector 𝑊  transforms observations 𝑋 drawn from two classes 𝐶1 and 𝐶2  to 

reduce their dimension to 1. The transformation is on to the direction of 𝑊 where the 

reduced observations will be 𝑍 = 𝑊𝑇𝑋. Given the sample observations 𝑋 = { 𝑥𝑡 ,  𝑟𝑡}, 

such that  𝑟𝑡 = 1 if  𝑥𝑡 is drawn from class 1 and  𝑟𝑡 = 0 if  𝑥𝑡 is drawn from class 2. 

Let us assume 𝑀1and 𝑚1represent means of our data drawn from class 1 before and 

after dimensionality reduction respectively. Like wise 𝑀2and 𝑚2 represent means of 

class 2 𝐶2 and given by equation (2.44) below.  

𝑚1 =
 ∑ 𝑊𝑇𝑥𝑡𝑟𝑡𝑡

∑ 𝑟𝑡𝑡
= 𝑊𝑇𝑀1  

(2.44) 

The mean after transformation for class 2 is  

𝑚2 =
 ∑ 𝑊𝑇𝑥𝑡𝑟𝑡𝑡

∑ (1−𝑟𝑡)𝑡
= 𝑊𝑇𝑀2  

(2.45) 

After projection the scatter of samples 𝑆1
2
and 𝑆2

2
from class 𝐶1and 𝐶2respectively 

are given by: 

𝑆1
2 = ∑ (𝑊𝑇𝑥𝑡 −𝑚1)

2𝑟𝑡𝑡   (2.46) 

The scatter in class 2 is: 

𝑆2
2 = ∑ (𝑊𝑇𝑥𝑡 −𝑚2)

2(1 − 𝑟𝑡)𝑡   (2.47) 

In order to make the two classes well separated, we need to maximize the difference 

between the means of the two classes after projection. To make the two classes easily 

separable the means should be as far apart as possible, but scattered in as small 

region as possible. Using Fisher’s linear discriminant, the function to achieve both 

requirements can be stated as in equation (2.48) below: 
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𝐽(𝑊) =
 (𝑚1−𝑚2)

2

𝑆1
2+𝑆2

2   (2.48) 

When we explicitly express the numerators and denominators of the above equation 

in terms of original data means and other parameters;  

(𝑚1 −𝑚2)
2 = (𝑊𝑇𝑀1  − 𝑊

𝑇𝑀2 )
2  

= 𝑊𝑇(𝑀1  − 𝑀2 )(𝑀1  − 𝑀2 )
𝑇𝑊  

= 𝑊𝑇𝑆𝐵𝑊   

Where 𝑆𝐵 = (𝑀1  − 𝑀2 )(𝑀1  − 𝑀2 )
𝑇 represents between-class scatter matrix [93]. 

When we look at the denominator in equation (2.48), the scatters can be expressed 

with original data as: 

𝑆1
2 = ∑ (𝑊𝑇𝑥𝑡 −𝑚1)

2𝑟𝑡𝑡   

= ∑ 𝑊𝑇(𝑥𝑡 −𝑀1)(𝑥
𝑡 −𝑀1)

𝑇𝑊𝑟𝑡𝑡   

= 𝑊𝑇{∑ (𝑥𝑡 −𝑀1)(𝑥
𝑡 −𝑀1)

𝑇𝑟𝑡𝑡 }𝑊  

= 𝑊𝑇𝑆1𝑊   

Where 𝑆1 = ∑ (𝑥𝑡 −𝑀1)(𝑥
𝑡 −𝑀1)

𝑇𝑟𝑡𝑡  represents within-class scatter matrix for 

class 1. Similarly 𝑆2 = ∑ (𝑥𝑡 −𝑀2)(𝑥
𝑡 −𝑀2)

𝑇𝑟𝑡𝑡  expresses the scatter matrix for 

class 2. Finally the total within-class scatter matrix 𝑆𝑤is the sum of the scatters in the 

two classes 𝑆1 + 𝑆2 which can be expressed as in equation (2.49): 

𝑆2
2 + 𝑆2

2
= 𝑊𝑇𝑆1𝑊 +𝑊𝑇𝑆2𝑊  (2.49) 

= 𝑊𝑇(𝑆1 + 𝑆2)𝑊  

To compute the transformation matrix 𝑊, we need to maximize the function 𝐽(𝑊). 

Hence after taking the partial derivative of  𝐽(𝑊) w.r.t 𝑊 we set it equal to zero. 

𝜕𝐽(𝑊)

𝜕𝑊
= 0 = 2

𝑊𝑇(𝑀1 −𝑀2 )

𝑊𝑇𝑆𝑊𝑊
{(𝑀1  − 𝑀2 )  −

𝑊𝑇(𝑀1 −𝑀2 )

𝑊𝑇𝑆𝑊𝑊
𝑆𝑊𝑊}  

(2.50) 

Given that, the mathematical expression 
𝑊𝑇(𝑀1 −𝑀2 )

𝑊𝑇𝑆𝑊𝑊
 is a constant, we have: 

𝑊 = 𝐶𝑆𝑊
−1(𝑀1  − 𝑀2 )  (2.51) 
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The constant 𝐶  shows the magnitude. However, we are more interested in the 

direction instead. Hence the constant can be assumed to be 1 and the transformation 

matrix will be well computed as 𝑊 = 𝑆𝑊
−1(𝑀1  − 𝑀2 )  with C=1. For normal 

distribution 𝑝(𝑥|𝐶𝑖) ~ 𝑁(𝜇𝑖, ∑) , the transformation matrix is expressed as 𝑊 =

∑−1(𝜇1  − 𝜇2 ). 

For multiple classes  𝑘 > 2 , the linear transformation can be generalized by 

redefining the between-class and within-class scatter matrices. The dimensionality 

reduction is from 𝑑  to 𝑘  removing 𝑑 − 𝑘  less relevant dimensions. The 

transformation matrix 𝑊 becomes 𝑑 × 𝑘 instead of 𝑑 × 1. 

We compute the scatter matrix 𝑆𝑖for each class 𝐶𝑖, where 𝑖 = 1,2,3…… , 𝑘 and 𝑘 the 

number of classes using equation (2.52) below. 

𝑆𝑖 = ∑ 𝑟𝑖
𝑡(𝑥𝑡 −𝑀𝑖)(𝑥

𝑡 −𝑀𝑖)
𝑇

𝑡   (2.52) 

The class label 𝑟𝑖
𝑡 = 1 if the observation 𝑥𝑡 is drawn from class  𝐶𝑖 otherwise 𝑟𝑖

𝑡 = 0. 

Hence the total within-class scatter is the superposition of all the individual within-

class scatter matrices in each class as defined by equation (2.53).  

𝑆𝑊 = ∑ 𝑆𝑖
𝑘
𝑖=1   (2.53) 

Between-class scatter matrix 𝑆𝐵 determines how far apart are the means of each class 

from the overall mean of the data. 

𝑆𝐵 = ∑ 𝑁𝐶𝑖(𝑀𝑖 −𝑀)(𝑀𝑖 −𝑀)
𝑇𝑘

𝑖=1   (2.54) 

The term 𝑁𝐶𝑖 = ∑ 𝑟𝑖
𝑡

𝑡  denotes the total number of observations in each class 𝐶𝑖  in 

equation (2.54) above. The 𝑘 × 𝑘  matrices 𝑊𝑇𝑆𝐵𝑊  and 𝑊𝑇𝑆𝑊𝑊  represent 

between-class and within-class scatter matrices after projection respectively. Again 

we need to formulate a function that maximizes the between-class and minimizes 

within-class scatter simultaneously in order to make the data easily separable 

between classes. If we put both matrices in a rational function at the numerator and 

denominator as shown in equation (2.55) respectively, then maximize this function 

can successfully achieve the two objectives at the same time.  

max𝑊 𝐽(𝑊) = max𝑊 {
𝑊𝑇𝑆𝐵𝑊

𝑊𝑇𝑆𝑊𝑊
}  (2.55) 
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Taking the partial derivative of the function 𝐽(𝑊) and set it equal to 0 leads us to 

find the optimal solution 𝑊. The largest eigenvectors computed from the product  

𝑆𝑊
−1𝑆𝐵 provide the optimal solution to both problems stated above simultaneously. 

2.5.4. Feature fusion 

We used simple concatenation of the ten feature sets in an intertwined manner. In 

fact the result was not better compared to a single feature best performance. 

Therefore, we reduced the least performing feature sets until we finally obtain 

encouraging performances from our classifiers in a subset backward search feature 

selection manner. Accordingly, we obtained the best performance after removing the 

three least performing feature types.  

The feature types eventually dropped from the fusion include IMFCC, cosine phase 

and SSFC which are described in this chapter. The fusion combined three classes of 

feature types; filter bank based, sub-channel based and spectral phase-based features 

to form a vector with higher dimension for each frame. 

We used different form of concatenation to combine elements of each feature set. 

Iterative algorithms instead of the traditional vertical or horizontal concatenation are 

implemented to arrange each element of feature sets in an intertwined manner one 

after the other. The pattern of 7 feature sets obtained in such a manner has improved 

the accuracy of speaker age classification using the cosine distance scoring (CDS). 
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3. EMBEDDING WITH MACHINE LEARNING AND DEEP LEARNING 

MODELS 

Acoustic word embedding (AWE) in speech processing applications is a fixed-

dimensional representation of variable-length utterances in an embedding space [94]. 

Therefore embedding is a relatively low-dimensional space into which high-

dimensional vectors can be translated.  Machine learning classification, regression or 

any approximation models on large inputs like sparse vectors representing words are 

made easier mainly due to embedding.   Two embedding schemes namely; i-vector 

and x-vector are employed in our research. These vectors are briefly presented in the 

following two sub sections consequently [55-57].  

3.1. i-Vector Embedding 

A vector of fixed dimensions from variable length utterances is generated via four 

major steps depicted in Figure 3.1 below.  

 

Figure 3.1. i-Vector extraction  
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Any of the feature sets presented in Unit 3 can be used in the generation of theses 

vectors. The i-vectors are defined alongside with a factor analysis which uses a linear 

model to compute feature matrices. They are basically sets of vectors generated 

based on factor analysis in which the acoustic features (typically MFCC and log-

energy plus their 1st and 2nd derivatives) by a Gaussian mixture model (GMM).  

Suppervector (UBM) 𝑀  and total variability (TV) 𝑇  are determined from the 

development set using expectation maximization algorithm [95]. Therefore each 

utterance Xifrom a dataset 𝑋 = {𝑋1, 𝑋2, 𝑋3, … . . , 𝑋𝑁} is written in terms of a global 

mean  𝑀 , a low-rank 𝑅 × 𝐷  matrix  𝑇 , D-dimensional latent factor 𝜔𝑖  which 

eventually represents i-vectors with prior density 𝑁(𝜔|0, 𝐼)  and residual noise 𝜖𝑖 

following a Gaussian density with zero mean and covariance matrix 𝛴. 

𝑋𝑖 = 𝑀 + 𝑇𝜔𝑖 + 𝜖𝑖  (3.1) 

The marginal distribution of X is given by. 

𝑝(𝑋) = ∫𝑝(𝑋|𝜔)𝑝(𝜔)𝑑𝜔  (3.2) 

Substituting the normal distributions in the above equation: 

𝑝(𝑋) = ∫𝑁(𝑋|𝑀 + 𝑇𝜔,𝛴)𝑁(𝜔|0, 𝐼)𝑑𝜔  (3.3) 

Assuming the above equation as the convolution of Gaussians it finally leads to the 

following mathematical expression. 

𝑝(𝑋) = 𝑁(𝑋|𝑀, 𝑇𝑇𝑡 + 𝛴 )  (3.4) 

Determining the parameters  M , 𝑇  , and Σ  needs an iterative method called 

expectation maximization which consists of two steps: the expectation E-step 

computes parameters and the maximization M-step maximizes these parameters [96]. 

3.2. Deep Learning-Based Embedding 

3.2.1. Introduction to deep learning  

Deep learning is the 21
st
 century’s most exploited subset of artificial intelligence (AI). 

Most tech giants such as Google, Intel, Microsoft, Facebook, Apple, Twitter and 

others extensively apply deep learning models in their daily activities [97].  The deep 



 

64 
 

learning concept re-emerged long after Rosenblum’s perceptron proposed in 1958 

failed to recognize multiple classes. A perceptron is a single layer artificial neural 

network capable of learning linearly separable patterns. Therefore, it could not live 

up to its expectations. For this reason, the neural network research had stagnated 

until it finally showed a resurgence in the 1980s with the emergence of multilayer 

feed-forward neural networks which showed significant improvement in processing 

power over perceptron. But most kept faith in it and recently it has become a trend in 

the research community due to additional hidden layers introduced to it in order to 

make it able to learn from complex data distribution [29].  

Transformation and extraction of features are usually associated with deep learning 

algorithms whereas neural networks use neurons to fire data in the form of input and 

output values via connections. Section 4.4 in the next chapter briefly discusses DNNs 

in detail. It compares the biological nervous system with artificial neural networks 

(ANNs). 

The deep neural network (DNN) structure shown in Figure 3.2 below depicts how 

each of the input components, the neurons in hidden layers and outputs are connected 

to each other. DNN algorithms basically filter out attributes associated with labels or 

actual values in what exactly resembles as a data distillation process. The 

mathematical details will be presented in-depth in the next chapter but in the 

meantime the number of connections between two adjacent layers is a product of a 

number of neurons (the circular structures in the figure) in the two layers. 

 

Figure 3.2. Multilayer deep neural network structure     
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The weights associated with each connection or synapses as in the biological nervous 

system are stored in an 𝑁 ×𝑀 matrix where 𝑀 stands for the number of neurons in 

the layer found at the left and  𝑁 represents the number of hidden units (neurons) in 

the layer closer to the output at right.  

Deep learning algorithms apply the Keras toolkit to classify supervised data. The 

Keras deep learning framework is a model-level library, providing high-level 

building blocks for developing deep-learning models. It runs on top of Tensorflow, 

Theano or Microsoft Cognitive Toolkit (CNTK) backend. 

3.2.2. x-Vector embedding  

The number of frames in each utterance makes a random variable that might not be 

expressed using known distributions. The x-vector architecture converts these 

variable length feature sequences in utterances into a fixed-dimension embedding 

which contains the relevant information of the utterance. The x-vector embedding is 

extracted by a temporal pooling layer in time delay neural networks (TDNNs) which 

summarizes information along the time axis [98]. This kind of network is starting to 

outperform the state-of-the-art i-vector embedding in tasks like speaker and language 

recognition. Its reputation is believed to be mainly due to context level processing. 

After getting this embedding, utterance level labels, such as speaker identity, age, 

and gender, can be used for discriminative network training. Thus, end-to-end 

training becomes possible, jointly optimizing both feature extraction and prediction 

[62].   

During the processing of a wider temporal context, in a standard DNN, the initial 

layer learns an affine transform for the entire temporal context. Affine transform is a 

geometric transformation which preserves lines and parallelism but not necessarily 

distance and angles. However in TDNN architecture the initial transforms are learned 

on narrow contexts and the deeper layers process the hidden activations from a wider 

temporal context. Hence the higher layers can learn wider temporal relationships. 

Each layer in a TDNN operates at a different temporal resolution, which increases as 

we go to higher layers of the network. Each of the neurons in the subsequent layers 

learns from a sampled set of neurons in the previous layer. Contexts increase as the 
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process goes deeper in to higher layers. This shows the neurons in the higher layers 

get a wider context than those in lower layers as is shown in Figure 3.3 below [98]. 

The transforms in the TDNN architecture are tied across time steps and for this 

reason they are seen as a precursor to the convolutional neural networks. During 

back-propagation, due to tying, the lower layers of the network are updated by a 

gradient accumulated over all the time steps of the input temporal context. Thus the 

lower layers of the network are forced to learn translation invariant feature 

transforms [99]. 

The input contexts of each layer required to compute output activation, at one time 

step define the hyper-parameters which describe the TDNN network. x-Vector is a 

greedy approach that can only perform better than i-vector with large amount of data. 

Hence we incorporated additional data from MUSAN database consisting of music, 

speech and noise [100]as well as the simulated room impulse response (RIRs) data 

base for augmentation [101]. 

 

Figure 3.3. Time delay neural net (TDNN) Computation with sub-

sampling (red) and without sub-sampling (blue+red)    

The above figure shows the time steps at which activations are computed, at each 

layer, and dependencies between activations across layers. It can be seen that the 

dependencies across layers are localized in time. In addition table 1 below describes 

layer-wise context specification, corresponding to the TDNN shown in fig. 4 above. 
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Hence the first neuron in the second layer connects with two neurons forward and 

two neurons back ward in the first layer forming a symmetrical triangle.  Therefore 

the context will be [-2,2] at the first layer for instance.  If the forward meaning future 

frame index and back ward previous frame indices are not equal the triangle formed 

will not be symmetrical rather its apex moves towards the lower index in absolute 

value.  

Once the frame level computation is done the statistics pooling layer continues and 

all the proceeding layers until the softmax layer including the statistics layer process 

on segment level data [56]. Table 3.1 below shows the context size in each layer and 

the total context size from the apex. 

Table 3.1. Context specification of the TDNN shown in fig. 4 above 

Layer Input context(the red lines) at every layer Total context size 

1 [-2, +2]  = {t-2, t, t+2} 5 

2 [-1, +2]  = {t-1, t, t+2} 8 = {t-3, t, t+4} 

3 [-3, +3] = {t-3, t, t+3} 14= {t-6, t, t+7} 

4 [-5, +4] = {t-5, t, t+4} 23= {t-11, t, t+11} 

5 
{0} this means at frame t 

23= {t-11, t, t+11} 

The fixed dimensional x-vectors which uniquely represent the age characteristics of a 

speaker can be extracted at any layer after the statistics pooling layer but before the 

softmax layer. The complete end-to-end flow of the whole age estimation approach is 

depicted in fig. 5 below.  

Algorithm 3.1 below presents the sample command creating the DNN layers which 

all perform TDNN. It is an excerpt taken from our Kaldi code series. Accordingly it 

specifies the input dimension as the dimension of the MFCC feature set which is, 42 

for a frame of speech. With these terminal inputs it creates 3 frame level and 2 

segment level layers. x-Vectors are pulled out at the fourth or fifth layers then fed to 

a softmax or other classification model.  

At the input layer, we provide frames each of which consists of a set of a fixed set of 

features. In our experiments each frame consists of 13 MFCC, 13 dynamic, 13 

acceleration and one more feature as an energy component from each of the static, 

dynamic and acceleration MFCC features. 
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Algorithm 3.1 

# the frame-level layers implemented using python 3.6 

  input dim=${feat_dim} name=input 

  relu-batchnorm-layer name=tdnn1 input=Append(-2,-1,0,1,2) dim=512 

  relu-batchnorm-layer name=tdnn2 input=Append(-2,0,2) dim=512 

  relu-batchnorm-layer name=tdnn3 input=Append(-3,0,3) dim=512 

  relu-batchnorm-layer name=tdnn4 dim=512 

  relu-batchnorm-layer name=tdnn5 dim=1500 

 

 

Figure 3.4. TDNNs to softmax end-to-end speaker 

age estimation   

Hence a total of 42 features are used to represent a given frame. The DNN 

establishes the context and learns important traits from connecting all these 

subsampled clusters of frames in the frame level processing at the higher layers. The 

network eventually generates a set of fixed dimensional feature sets that can 

represent all the frames in a condensed manner. This set, of features are widely 

known as x-vectors in the speech processing community recently.  
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4. CLASSIFICATION AND REGRESSION MODELS 

Due to its ease of implementation and superiority of its applications, most of our 

experiments give relatively better focus to speaker age classification rather than 

regression. However, regression studies are also carried out to some extent. Plenty of 

human desires come categorically which fundamentally consider age groups. Some 

services, ads, online contents, entertainments etc. are unpleasant to a certain age 

group while others could enjoy them greatly.  

Classification is a decision process which employs relatedness or closeness to 

categorize observations in to different labels based on parameters determined from 

collected data. It is also a process of learning patterns [102]. For instance we can 

decide whether a student fails or passes his examination based on criteria collected 

from a wide range of experiences. These criteria are the factors affecting student’s 

ability to pass examinations. To list a few factors: the number of hours studied, the 

number of hours slept, health status, the broadness of the content studied, the 

difficulty of the exam and others. Putting all these factors in to numbers and 

generating new parameters such as mean and variance or covariance we could be 

able to classify students’ ability before the results are displayed. Similarly a business 

plan could be predicted whether it is risky or reasonable based on factors such as 

market condition, initial investment and so on [85]. The same holds for age 

classification in which we train our model with a training set speech dataset. 

Extracted features with their respective labels (ages) will be used to learn the model 

we develop. A brief discussion has been made on some of the famous classification 

models. 

4.1. Gaussian Mixture Model (GMM) 

The Gaussian mixture model (GMM) is a collection of weighted multivariate 

Gaussian distributions. This model assumes there is a certain number of clusters in 

unsupervised data that tend to show Gaussian distribution with district parameters. It 

is a superposition of all independent and identically distributed random variables 
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(i.i.d.) which satisfy Gaussian distribution with each of them having their own 

parameters scaled by different weights. The Gaussian distribution is the most 

common probability distribution in statistics. The graph of the Gaussian distribution 

as shown in Figure 4.1, is a bell shaped curve where the highest probability occurs 

when the value of the random variable is equal to the mean value ().  The 

distribution is commonly called as the normal distribution.It is designed in such a 

way that 68% of the populations or samples are included in one standard deviation 

range i.e. the probability of finding the random variable x between  -  to  +  is 

0.68.  Similarly the probability of finding x in two standard deviation ranges which is 

between  - 2 to  + 2 gets higher and is 0.95. Increasing the range to three 

standard deviations makes the probability of finding the random variable in this 

range to 99.7% (0.997). This clearly shows most of the observations accumulate 

around the mean. The mathematical computation of the Gaussian distribution is 

given in equation (4.1) below. 

𝑝(𝑥) =  
1

√2𝜋𝜎2
𝑒
−(𝑥−μ)2

2𝜎2   
(4.1) 

Where 𝑥 is independent and identically distributed (i.i.d.) random variable and in this 

case it is a continuous variable, 𝑒 is a natural exponent whose value is agreed to be 

2.71828, μ is the mean of the random variable and 𝜎2 is the variance of the random 

variable . The variance is the square of standard deviation (𝜎).  

 

Figure 4.1. Gaussian distributions and mixture 
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When there are more distributions with different parameters; 𝜇𝑖 and 𝜎𝑖  where 

𝑖 = 1, 2, 3, … . , 𝑁  here 𝑁  is the number of mixtures all the Gaussian distributions 

should be scaled with corresponding weights based on which distributions dominate 

and which ones have less influence and finally superposition is applied to the 

distributions to provide the model called Gaussian Mixture model. The scaling 

factors are given by weight variables; 𝑤𝑖 . The mathematical expression for the 

Gaussian mixture is given in equation (4.2) below. 

𝑝(𝑥, 𝜆 ) =  ∑ 𝑤𝑖
1

√2𝜋𝜎𝑖
2
𝑒
−(𝑥−𝜇𝑖)

2

2𝜎𝑖
2𝑁

𝑖=1   
(4.2) 

For data expressed with 𝑑  features, the multivariate Gaussian normal distribution is 

expressed as shown in equation (4.3) below. 

𝑁(𝑋|𝜇,∑) =  
1    

√(2𝜋)𝑑|∑|  
 𝑒−

1

2
(𝑋−𝜇)𝑇∑−1(𝑋−𝜇)       

  
(4.3) 

The mixture of 𝑘 clusters would form the probability distribution given by equation (4.4)  

[103]: 

𝑃(𝑋|𝑤, 𝜇,∑) = ∑ {𝑤𝑖
1    

√(2𝜋)𝑑|∑𝑖|  
 𝑒−

1

2
(𝑋−𝜇𝑖)

𝑇∑𝑖
−1(𝑋−𝜇𝑖)       }𝑘

𝑖=1     
 (4.4) 

The expectation-maximization (EM) algorithm is employed to compute the Gaussian 

parameters 𝑖 = {𝑤𝑖 , 𝜇𝑖 ∑𝑖 } for each cluster 𝐶𝑖 [104]. This helps to develop the GMM 

that predicts the cluster of a certain observation using posterior probability 𝑃(𝐶𝑖|𝑋) 

from incomplete data with missing attributes called latent variables 

[105].The EM algorithm has been exploited for a variety of application areas and 

continuously upgraded to perform faster [106].  

4.2. Cosine Distance Scoring with i-Vector (CDS) 

The cosine distance scoring (CDS) is a score given to a test speech sample after 

determining the cosine distance between the test sample and target class [14]. The i-

vectors are determined for each utterance. Then the average of i-vectors is calculated 

for each target class as in equation (4.5). Every test i-vector is scored against target 

class i-vectors as shown in equation (4.6). 
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𝜔𝑡𝑎𝑟𝑐𝑙𝑎𝑠𝑠_𝑖 =
1

𝑀𝑖
∑ 𝜔𝑡𝑟𝑎𝑖𝑛_𝑘
𝑀𝑖
𝑘=1   (4.5) 

cos _𝑠𝑐𝑜𝑟𝑒𝑘_𝑖 =
𝜔𝑡𝑒𝑠𝑡_𝑘

𝑇∗𝜔𝑡𝑎𝑟𝑐𝑙𝑎𝑠𝑠_𝑖

‖𝜔𝑡𝑒𝑠𝑡_𝑘‖‖𝜔𝑡𝑎𝑟𝑐𝑙𝑎𝑠𝑠_𝑖‖
  

(4.6) 

In the above equations, 𝜔𝑡𝑟𝑎𝑖𝑛_𝑘 is i-vector for training sample 𝑘 in the 𝑖th target class, 

𝑖 is the specific target class, = {1, 2, 3, …𝑁} , 𝜔𝑡𝑎𝑟𝑐𝑙𝑎𝑠𝑠_𝑖  is  the average i-vector for 

target class 𝑖 and N is the number of target classes in equations (4.3) and (4.4). And 

𝑀𝑖  is the number of training samples in target class 𝑖. In addition,  cos _𝑠𝑐𝑜𝑟𝑒𝑘_𝑖  

stands for cosine distance scoring between test sample 𝑘 and target class 𝑖. 

4.3. Probabilistic Linear Discriminant Analysis with i-Vector (PLDA) 

Probabilistic linear discriminant analysis (Probabilistic LDA, a.k.a. PLDA [107]) is a 

generative approach that tries to create data instances for a given class with Gaussian 

distributions[108]. LDA is deterministic and models intra-class and inter-class 

variations as multidimensional Gaussians while PLDA is a probabilistic approach 

and assumes data instances come from Gaussian distributions [109]. The relationship 

between PLDA and LDA is analogous to that of factor analysis (FA) and principal 

component analysis (PCA). While the former ones are supervised PLDA being 

superior to LDA in modeling data instances coming from unseen classes, the later are 

unsupervised.  

When we say PLDA is generative it means it captures or learns the joint probability 

distribution 𝑝(𝑥1, 𝑥2) of observations assumed as data instances from a mixture of 

distributions without labels. Unlike PLDA, discriminative models capture the 

conditional probability of outcomes given data instances 𝑝(𝑦|𝑥) commonly known 

as posterior probability. The distribution of the latent variables 𝑦 usually invisible 

but most powerful in representing outcomes of a given model for a certain class can 

be generated using the famous Gaussian distribution with mean 𝜇 and semi-definite 

between-class covariance ∑𝑏.  

We use a non-singular transformation matrix 𝑉 to convert the between-class ∑𝑏 and 

the definite within-class ∑𝑤 covariance matrices in to diagonal matrices in order to 

transform data instances from their original feature space to a dimensionally reduced 

latent space. As well discussed in section 2.4 above, the objective of this 
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transformation is to reduce dimensionality and to create separability between classes. 

The advantage of PLDA over LDA is that it allows making inferences about classes 

that are unseen during training sessions [109]. The two covariance matrices 

apparently expressing definite scatters within classes ∑𝑤and semi-definite scatters 

between classes ∑𝑏  can be diagonalized with generalized eigen problem 

simultaneously as:  

𝑉𝑇∑𝑤𝑉 = 𝐼  (4.7) 

𝑉𝑇∑𝑏𝑉 = 𝜓   

where 𝐼 and 𝜓 are identity and diagonal matrices that can be computed with eigen 

matrix decomposition in equation (4.7) above.  

Observed variables 𝑥  and 𝑦  in the feature space can be expressed with latent 

variables 𝑢 and 𝑣 in the latent space which is the transformed domain with normal 

distributions, 𝑢~𝑁(. |𝑣, 𝐼) and 𝑣~𝑁(. |0, 𝜓) respectively as:  

𝑥 = 𝜇 + 𝐴𝑢  (4.8) 

𝑦 = 𝜇 + 𝐴𝑣   

 

Figure 4.2. Projection of observed features in to latent space 

where, the matrix A can be computed from the non-singular matrix V as A=V^(-

T)and the latent variables v and u represent class and data instances of the class in 

the projected domain in equation (4.8) shown above. This is demonstrated in Figure 

4.2 above. The figure is taken from a website named as “towards data science”. 
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The i-Vectors are used as observed variables both in the CDS and PLDA classifiers. 

They are identity vectors extracted from a joint factor analysis (JFA) expression of 

an utterance [110]. A super-vector 𝑀 consisting of speaker and channel or session 

subspaces. The speaker dependent super-vector is defined as shown in (4.9). 

𝑀 = 𝑚 + 𝑉𝑦 + 𝑈𝑥 + 𝐷𝑧  (4.9) 

In equation (4.7), 𝑚  denotes session-independent speaker super-vector generally 

obtained from UBM, 𝑉 and 𝐷 represent eigen voice matrix and diagonal residue of 

speaker subspace respectively, and U denotes session subspace (Eigen channel 

matrix). The vectors 𝑥, 𝑦, 𝑧  are assumed to be random variables with a normal 

distribution  𝑁(0, 𝐼)  . They are speaker, channel and residual factors in their 

respective subspaces [111]. A new space referred to as  “total variability space,” that 

contains speaker and channel variability simultaneously is proposed in [110]. It is 

defined by the total variability matrix that contains the eigenvectors with the largest 

eigenvalues of the total variability covariance matrix[112]. Accordingly for a given 

utterance the new space redefines the GMM super-vector 𝑀 as: 

𝑀 = 𝑚 + 𝑇𝜔  (4.10) 

where 𝑚 is the new speaker channel-independent universal super-vector, T is the 

rectangular total variability matrix of low rank and 𝜔 is an identity vector commonly 

known as i-vector in equation (4.10) above. 

 

Figure 4.3. Overall process diagram of CDS and PLDA 

Classifiers 
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The overall block diagram of CDS and PLDA classifiers is shown in Figure 4.3 

below. The development, training and test sets are all common to both classifiers. 

Procedures applied to the test set are identical until the scoring execution.  

The development set is used to generate the total variability space matrix and the 

UBM super-vector which is common in all the three classifiers is used. The training 

set undergoes a similar process until i-vector extraction phase. After this phase it is 

directly used by the cosine score whereas it will be transformed using LDA in the 

PLDA classifier. 

4.4. Deep Neural Network (DNN) Based Classifiers 

Neural networks formally known as artificial neural networks (ANN), were initially 

proposed by psychologist Frank Rosenblatt in 1958 to imitate the processing power 

of the human brain. They were called perceptrons and mainly used to process visual 

data and learn to recognize objects. They were not successful at the beginning and 

therefore most scholars were not patient to wait while very few kept faith in their 

performance. Eventually neural networks began to outperform what can be done with 

traditional machine learning models.  

 

Figure 4.4. Biological neural network 

The nodes in modern day neural nets represent biological neurons in the nervous 

system mostly located in our brain. The connection lines (edges) connecting nodes 

are analogous to the synapsis in the biological brain as depicted in Figure 4.4 taken 

from Wikipedia. These connections transmit signals from it input to neurons or from 

one neuron to another where all the signals arriving at a neuron are summed up and 
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fed to a non-linear activation function. All the connections are associated with 

randomly picked initial weights which get updated as training proceeds.    

Activation functions determine the outcome of a given neuro based on a set of inputs 

and weights associated with the connections to the neuron. The most popular 

activation function is the sigmoid activation function also known as logistic 

activation function in its other name. Logistic or sigmoid or else soft step activation 

function is defined as in equation (4.11) below.  

𝜑(𝜁) =
1

1+ 𝑒−𝜁
  (4.11) 

The Greek symbol  𝜁 represents the sum of all the inputs to a certain neuron multiplied 

by their respective weights and a bias parameter 𝑏  on top of it as computed in 

equation (4.12) below. The bias is not associated with any input variable or 

intermediate neuron output.  

𝜁 = 𝑏 + ∑ 𝑥𝑖𝜔𝑖
𝑁𝑐
𝑖=1   (4.12) 

The parameters 𝑁𝑐 and 𝜔𝑖 represent the number of synapses connected to the neuron 

and the weight of the 𝑖𝑡ℎ connection respectively while 𝑥𝑖 denotes input feature or an 

output from a node in the previous layer associated to the connection.   Figure 4.5 

below presents the entire network consisting two layers with five hidden units or 

neurons each.  

Let us assume a simple 4 input and 2 output single layer neural network. The input 

dimension is 4 and consists of two neurons at the output layer. Therefore, the input is 

represented as 𝑋 = [𝑥1  𝑥2  𝑥3  𝑥4]
𝑇 and the weights associated with the first and 

second output neuros are  

𝑊1 = [𝑤11  𝑤21  𝑤31  𝑤41]
𝑇 and𝑊2 = [𝑤12  𝑤22  𝑤32  𝑤42]

𝑇  respectively where the 

total weight matrix can be expressed as  𝑊𝑇 = [𝑊1  𝑊2] . Then the output value 

𝑌 = [𝑦1  𝑦2]
𝑇of each neuron can be computed by applying an activation function to 

the product 𝑊𝑋.     

𝑊 = [
𝑤11   𝑤21  𝑤31   𝑤41
𝑤12   𝑤22  𝑤32   𝑤42

]  
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For a generalized artificial neural network with N inputs and M activation functions, 

the weight matrix associated with each input to activation function pars is given by: 

𝑊 =

[
 
 
 
 
 
 
𝑤11   𝑤21  𝑤31   𝑤41….… 𝑤𝑁1 
𝑤12   𝑤22  𝑤32   𝑤42… .𝑤𝑁2
𝑤13   𝑤23  𝑤33   𝑤43…… 𝑤𝑁3 
𝑤14   𝑤24  𝑤34   𝑤44… .𝑤𝑁4.

.

.
𝑤1𝑀   𝑤2𝑀  𝑤3𝑀   𝑤4𝑀… .𝑤𝑁𝑀]

 
 
 
 
 
 

  

 

Figure 4.5. Deep neural network sample with two layers 

The next major step in DNN algorithms is computing the error incurred for every 

training entry as a difference between predicted (estimated) and actual values.  After 

obtaining the error values the weights will be updated to compensate for the error 

incurred in a backpropagation process. If we assume the output of the neurons after 

the first layer as 𝑓(. )   and the second layer as 𝑔(. ) then the eventual output is 

computed using the chain rule 𝑔(𝑓(𝑥)). Given the input features 𝑋 = [𝑥1, 𝑥2, 𝑥3,

𝑥𝑁𝑐]  and the weight matrices in the two layers as 𝑊  and 𝑊′  respectively the 

predicted values are 𝑔(𝑊′𝑓(𝑊𝑋)). The weight matrices follow the size of the input 

features and number of hidden units where the number of columns are equal to the 

size of input features or the number of the hidden units to the left of the synapses 

whereas the rows are equal to the number of hidden units in the layer pointed by the 

connections to the right. The sigmoid activation function is given by equation (4.13). 

Its range spans from zero to one as the independent variable goes from − ∞ to +  ∞. 
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𝑓(𝑥) =
1

1+ 𝑒−𝑊𝑋𝑡
  (4.13) 

The output at the second layer is defined as shown in equation (4.14) below. 

𝑔(𝑓(𝑥)) =
1

1+ 𝑒−𝑊
′(𝑓(𝑥))

𝑡
   
  (4.14) 

Once predictions are made by the network, the next crucial step is to compute the 

error incurred by subtracting the prediction from actual values as given by equation 

(4.15) below. 

𝑒 = 𝑌(𝑛) − 𝑌̃(𝑛)  (4.15) 

The loss function 𝐿(𝑤)is determined as the square of the error in equation (4.15) 

above. It is a function of the input data, the weight and the bias parameters and 

defined as in equation (4.16) below. As we do not have much control over the data, 

we can in fact manipulate the weight and bias parameters to minimize the loss in 

order to obtain a prediction close to the actual value. Obtaining suitable weight and 

bias parameters would reduce the error ideally to zero. However, this is not possible 

to do it trivially using brute force optimization process as it would definitely take 

millions if not billions of years for an average processor [113].  In addition, the curse 

of dimensionality would make it unimaginable.  

𝐿(𝑤) = 𝑒2 = (𝑌(𝑛) − 𝑌̃(𝑛))2   (4.16) 

The optimality criteria are solving the partial derivative of the cost function 

𝐿(𝑤)with respect to the weights 𝑤 and obtain the weights that make the derivative 

zero (local minimum). 

𝜕𝐿(𝑤)

𝜕𝑤
= ∇𝐿(𝑤) = 0   (4.17) 

The gradient operator ∇ represents partial derivatives with respect to each weight as 

given in equation (4.18) below. 

∇= [
𝜕

𝜕𝑤1
,

𝜕

𝜕𝑤2
,
𝜕

𝜕𝑤3
,
𝜕

𝜕𝑤4
,
𝜕

𝜕𝑤5
, ……

𝜕

𝜕𝑤𝑚
]
𝑡

   
(4.18) 

The updated weights are determined depending on the direction of the gradient 

whether it is decreasing or increasing which can be visible on the sign of the gradient 

value. Positive and negative values of the gradient show increasing and decreasing 
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slopes respectively [114]. Therefore, the new weight parameters 𝑤 (n+1) are 

computed as:  

𝑤(𝑛 + 1) = 𝑤(𝑛) +  𝜂∇𝐿(𝑤)   (4.19) 

where, 𝜂  is a positive constant best known as the learning rate parameter or 

sometimes as step-size parameter in equation (4.19) above. This way all the weights 

get updated from output to input layers.  

4.4.1. x-Vector deep neural network architecture for classification 

Figure 4.6 below describes the complete process from audio inputs to accuracy 

computation carried out with the x-vector neural network architecture.  

 

Figure 4.6. General block diagram for x-vector 

architecture embedding 

The acoustic features MFCC and the DNN based embedding x-vector, necessary and 

intermediate inputs to speaker age classification as shown in Figure 4.6 above are 

briefly presented in Unit 2 and 3 respectively. We used the Kaldi speech recognition 

toolkit to implement the setup [115]. 
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4.4.2. Long short-term memory (LSTM) networks for classification 

LSTM neural network is a type of recurrent neural network (RNN) that can learn 

long-term dependencies between time steps of sequence data. The main components 

of LSTM are a sequence input layer and LSTM layer. Sequence input layer feeds 

sequence or time-series data into the network. This network was introduced to the 

machine learning world by Hocheiter and Schmidhuber in 1997.  It is called short-

term memory because it preserves the error that can be back-propagated through time 

and layers. 

Figure 4.7 shown below illustrates the architecture of a simple LSTM network either 

for classification or regression setups. The network starts with a sequence input layer 

followed by an LSTM layer. To predict class labels, the network ends with a fully 

connected layer; a softmax layer, and a classification output layer. The regression 

outputs are taken at the fully connected layer. Hence the softmax layer is 

unnecessary for regression.  

There does not exist feedback connection in Standard feedforward DNNs [116], on 

the other hand, LSTM has feedback connections. It can not only process single data 

points (such as images), but also entire sequences of data (such as speech or video).  

 

Figure 4.7. Classification and regression with LSTM 

For example, LSTM is applicable to tasks such as unsegmented, connected 

handwriting recognition, speech recognition and anomaly detection in network traffic 

or intrusion detection systems (IDSs). A cell, an input gate, an output gate and a 

forget gate are required to compose a common LSTM. The cell remembers values 
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over arbitrary time intervals and the three gates regulate the flow of information into 

and out of the cell. 

4.5. Regression Models 

Regression is the process of estimating the dependent variable from a test dependent 

sample based on parameters obtained during the training phase.  For a good 

regression we need a good model and a large number of supervised data. The 

dependent variables are often called as outcomes whereas the independent variables 

are called as features [13]. 

Alternative names for independent variables include predictors and covariates. These 

variables can be one or more than one and based on their number the regression is 

called either single variate regression or multivariate regression respectively. Linear 

regression is the most common and widely used kind of regression.  

4.5.1. Linear regression 

As it can be well depicted in Figure 4.8 below, linear regression is an effort of 

determining the equation of a straight line that passes through the data points. 

Possibly an infinite number of straight lines can pass through the data points but only 

one of these can show the lowest mean error. The mean error is the sum of all the 

distances between the true data point and the straight line or hyperplane in the case of 

multiple feature types whose equation is determined through the training process. 

The straight line becomes a hyperplane when we have more than one independent 

variable (feature types).  

For a single variated regression analysis the two parameters determined from a 

training database are the slope and the vertical intercept or y-intercept in basic 

mathematical terms. The process of determining these parameters mainly considers 

plans on how to minimize the error. The ideal case is making the error down to zero. 

The mathematical model is setup as shown in equation (4.20) below. Once the 

estimation equation is computed the error is calculated by subtracting these estimated 

values from each actual data point. Since we are interested in minimizing the error 

we deal with strategies on how to find out those parameters which can minimize the 
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error. In the following equations all the actual values are represented by symbols 

without bar and those symbols with bars are used to represent estimated values. 

𝑌𝑖̂ = 𝐴𝑋𝑖 + 𝐶 = 𝑓(𝑋𝑖)    (4.20) 

 

Figure 4.8. Linear regression (Picture credit to 

Wikipedia) 

In fact the actual value of the outcome variable is a little more or a little less than the 

value obtained through mathematical computation using a straight line equation as it 

incurs an irreducible error 𝜖𝑖 for each data point computation (𝑋𝑖, 𝑌𝑖).   

𝑌𝑖 = 𝐴𝑋𝑖 + 𝐶 + 𝜖𝑖  =  𝑓(𝑋𝑖)  + 𝜖𝑖 (4.21) 

Apart from irreducible error a regression model suffers from a residual error 𝑒𝑖 which 

can be reduced and managed to make it as small as zero or close to zero as indicated 

in equation (4.22) below. And the irreducible error  𝜖𝑖 is part of the residual error  𝑒𝑖 

in equation (4.21) above. 

𝑒𝑖 = 𝑌𝑖 −  𝑌𝑖̂  (4.22) 

Now mean value of all the individual errors ϵ can be made minimum by optimizing 

the selection algorithm of the slope and the intercept parameters. Therefore, we need 

to calculate the mean of these errors as shown in equation (4.23) below and then 

compute its derivative to find out the minima equating it with zero. At the minima or 

maxima point of any function the slope becomes zero because the straight line 

passing through these points is horizontal making no angle with x-axis. 
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𝑚𝑒𝑎𝑛(𝑒𝑖) =  
1

𝑁
∑ 𝑒𝑖
𝑁
𝑖=1   (4.23) 

But only this cannot guarantee a good model as positive and negative error values 

could cancel each other and wrongly provide minimum error value. Therefore, it is 

advisable to focus on either on absolute error or sum of residual error squared value 

(RSS) as shown in equation (4.24).  

𝑅𝑆𝑆 =  ∑ (𝑒𝑖)
2𝑁

𝑖=1   (4.24) 

Hence, the values of the slope parameter A and the intercept parameter C which offer 

the minimum RSS value can be obtained using equation (4.25). 

arg min            𝐴,𝐶 ∑ (𝑌𝑖 − 𝐴𝑋𝑖 −  𝐶  )
2 𝑁

𝑖=1   (4.25) 

To compute the minimum of this RSS value first we take the partial derivative of the 

RSS function with respect to the parameter C and equate it with zero as shown in 

equation (4.26).  

𝑑(𝑅𝑆𝑆)

𝑑𝐶
= 

𝑑(∑ (𝑌𝑖−𝐴𝑋𝑖− 𝐶  )
2 𝑁

𝑖=1 )

𝑑𝐶
= 0  

(4.26) 

This can be explicitly expressed as shown in equation (4.27). 

−2∑ (𝑌𝑖 − 𝐴𝑋𝑖 −  𝐶  ) = 0
𝑁
𝑖=1      ≫≫     ∑ (𝑌𝑖 − 𝐴𝑋𝑖) =  ∑ 𝐶𝑁

𝑖=1
𝑁
𝑖=1   (4.27) 

And finally, we compute the optimal intercept parameter as shown in equation (4.28). 

𝐶 = mean(Y) − 𝐴𝑚𝑒𝑎𝑛(𝑋) =  𝑌̅ − 𝐴𝑋̅  (4.28) 

Hence the y-intercept is computed by subtracting a product of the slope 𝐴 and the 

average of the input features 𝑋̅  from the mean of the outcomes 𝑌̅.  

The next step is to determine the slope 𝐴  of the straight line equation. For this 

purpose we need to take the partial derivative of the RSS equation with respect to 

(w.r.t) the slope parameter 𝐴 as in equation (4.29). 

𝑑(𝑅𝑆𝑆)

𝑑𝐴
= 

𝑑(∑ (𝑌𝑖−𝐴𝑋𝑖− 𝐶  )
2 𝑁

𝑖=1 )

𝑑𝐴
= 0  

(4.29) 

Similarly this can be expanded as in equation (4.30). 

−2∑ (𝑌𝑖 − 𝐴𝑋𝑖 −  𝐶  )𝑋𝑖 = 0𝑁
𝑖=1   (4.30) 
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Finally, it gives the mathematical relation shown in equation (4.31). 

∑ (𝑌𝑖)𝑋𝑖 − 𝐴∑ 𝑋𝑖𝑋𝑖 
𝑁
𝑖=1

𝑁
𝑖=1 − 𝐶 ∑ 𝑋𝑖 = 0

𝑁
𝑖=1  (4.31) 

Substituting the expression for 𝐶  in equation (4.28) above we can compute the 

formula to determine the slope parameter  𝐴  following the mathematical relations 

described in equations. 

∑ (𝑌𝑖)𝑋𝑖 − 𝐴∑ 𝑋𝑖𝑋𝑖 
𝑁
𝑖=1

𝑁
𝑖=1 − (𝑌̅ − 𝐴𝑋̅)∑ 𝑋𝑖 = 0𝑁

𝑖=1   

 

(4.32) 

∑ (𝑌𝑖)𝑋𝑖 +  𝐴(𝑋̅ ∑ 𝑋𝑖
𝑁
𝑖=1 − ∑ 𝑋𝑖𝑋𝑖) 

𝑁
𝑖=1

𝑁
𝑖=1 − 𝑌̅ ∑ 𝑋𝑖 = 0

𝑁
𝑖=1   

 

(4.33) 

𝐴(𝑋̅ ∑ 𝑋𝑖
𝑁
𝑖=1 − ∑ 𝑋𝑖𝑋𝑖) 

𝑁
𝑖=1 = 𝑌̅ ∑ 𝑋𝑖

𝑁
𝑖=1 − ∑ (𝑌𝑖)𝑋𝑖 

𝑁
𝑖=1   

 

(4.34) 

𝐴 =  
𝑌̅ ∑ 𝑋𝑖

𝑁
𝑖=1 − ∑ (𝑌𝑖)𝑋𝑖 

𝑁
𝑖=1

𝑋̅ ∑ 𝑋𝑖
𝑁
𝑖=1 −∑ 𝑋𝑖𝑋𝑖 

𝑁
𝑖=1

  

 

(4.35) 

𝐴 =  
1

𝑁
∑ 𝑌𝑖
𝑁
𝑖=1 ∑ 𝑋𝑖

𝑁
𝑖=1 − ∑ 𝑌𝑖𝑋𝑖 

𝑁
𝑖=1

1

𝑁
∑ 𝑋𝑖
𝑁
𝑖=1 ∑ 𝑋𝑖

𝑁
𝑖=1 −∑ 𝑋𝑖𝑋𝑖 

𝑁
𝑖=1

=  
𝑁𝑋 ̅𝑌̅− ∑ 𝑌𝑖𝑋𝑖 

𝑁
𝑖=1

𝑁(𝑋 ̅)2−∑ (𝑋𝑖)
2 𝑁

𝑖=1

  
 

And finally we can substitute the formula of the slope parameter A  obtained in 

equation (4.35) in to equation (4.28) to compute for the optimal vertical intercept 

parameter as shown in equation (4.36). 

𝐶 = 𝑌 ̅ −  
𝑁𝑋 ̅𝑌̅− ∑ 𝑌𝑖𝑋𝑖 

𝑁
𝑖=1

𝑁(𝑋 ̅)2−∑ (𝑋𝑖)
2 𝑁

𝑖=1

  
(4.36) 

Another fascinating derivation of these regression parameters A and C shown in 

equations (4.35) and (4.36) respectively above can be done using Bayesian rule by 

assuming the straight line passes through the origin. Therefore a straight line 

equation passing through the origin doesn’t have a constant term or its intercept is 

said to be zero. Hence the line equation is expressed as 𝑦𝑖  =  𝑤𝑥𝑖 + 𝑛𝑜𝑖𝑠𝑒𝑖. Here the 

noise signals are independent, and normal distribution with zero mean and unknown 

variance of 𝜎2 . The probability distribution  𝑝(𝑦𝑖\𝑤, 𝑥)  has a normal distribution 

with mean 𝑤𝑥  and variance  𝜎2 . Having the data points  (𝑥1, 𝑦1)  , 

 (𝑥2, 𝑦2)  ,  (𝑥3, 𝑦3  ,….,  (𝑥𝑖, 𝑦𝑖) , …,  (𝑥𝑁 , 𝑦𝑁)  as evidence we can find out the 

parameter 𝑤 using Bayes posterior rules. The posterior distribution is given by:𝑝(𝑤\

𝑥1, 𝑥2, 𝑥3 , … , 𝑥𝑁 , 𝑦1, 𝑦2 , 𝑦3, … , 𝑦𝑁) . This is commonly known as Bayes linear 

regression [103]. The next step is to work for the maximum likelihood estimation. 

This includes answering the following questions: 
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1. For what value of 𝑤 

𝑝(𝑦1, 𝑦2 , 𝑦3, … , 𝑦𝑁\𝑥1, 𝑥2, 𝑥3 , … , 𝑥𝑁 , 𝑤 ) is maximized? 

2. For what value of 𝑤 

∏ 𝑝(𝑦𝑖\𝑥𝑖 , 𝑤)
𝑁
𝑖=1  is maximized? 

3. For what value of 𝑤 

∏ 𝑒−
1

2
(
𝑦𝑖−𝑤𝑥𝑖

𝜎
)2𝑁

𝑖=1   is maximized? 

4. For what value of 𝑤 

∑ −
1

2
(
𝑦𝑖−𝑤𝑥𝑖

𝜎
)2𝑁

𝑖=1   is maximized ? 

5.  For what value of 𝑤 

∑ (𝑦𝑖 − 𝑤𝑥𝑖)
2𝑁

𝑖=1   is minimized ? 

6. For what value of 𝑤 

∑ (𝑦𝑖)
2 − 2𝑁

𝑖=1 𝑤𝑥𝑖𝑦𝑖 + (𝑤𝑥𝑖)
2  is minimized? 

∑ (yi)
2 − 2N

i=1 w∑ xi
N
i=1 yi + (w)

2∑ (xi)
2N

i=1    

And this is the final form and easy to see that it has a quadratic form. Therefore the 

minimum of this function occurs at the bottom of the parabola where the slope of the 

line tangent to the graph of the function is zero. Meaning the tangent line is 

horizontal. Hence taking the partial derivative of this function with respect to 𝑤 and 

then equating it with zero helps to determine the expression for w  value that 

minimizes the quadratic equation above. 

−2∑ xiyi + 2w∑ (xi)
2N

i=1
N
i=1 = 0  

w = 
∑ xiyi
N
i=1

∑ (xi)
2N

i=1

  

The regression model presented so far does not show the reality in nature. Outcomes 

depend on more than one factor in nature. For instance the price of a house depends 

on the location of the house, the number of rooms, the distance between the nearest 

supermarkets, the quality of the road connecting it with public centers, the nature of 

the neighborhood and so on. Some of these factors can be quantized and numerically 

expressed and others are subjective which cannot be described mathematically. The 

next section discusses the regression process consisting of multiple input variables 

(independent variables) determining the outcome. 
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Multivariate Linear Regression  

This is a regression process incorporating multiple features or covariates to 

determine the outcome. The choice of this regression technique depends on the 

relationship between each feature and the outcome variable too. As a particular input 

sample involves vectors or matrix possibly a multivariate regression is carried out 

using a matrix computation.  The multivariate regression model can be approached in 

the following ways:  

Let us assume the following notations for simplicity of our approach 

 Input vector assumed to be 𝑥 ∈ ℝ𝑑 

 Output value assumed to be 𝑦 ∈ ℝ 

 Parameters 𝛽 = (𝛽0 , 𝛽1,𝛽2,𝛽3, … . ., 𝛽𝑑)
𝑇  ∈ ℝ𝑑+1 

 Then we set up the model as in equation (4.37) 

𝑓(𝑥) = 𝛽0 + ∑ 𝛽𝑗𝑥𝑗
𝑑
𝑗=1  =  𝑥𝑡𝛽  (4.37) 

Given the training data 𝐷 =  {(𝑥𝑖,𝑦𝑖)}𝑖=1
𝑁 the least square cost or loss 𝐿(𝛽) is defined 

as in equation (4.38). 

𝐿(𝛽) =  ∑ (𝑦𝑖 − 𝑓𝑖(𝑥)
𝑁
𝑖=1 )2 = ∑ (𝑦𝑖 − 𝑥𝑖

𝑡𝛽𝑁
𝑖=1 )2    =  ‖𝑌 − 𝑋𝛽‖2  (4.38) 

Here  

𝑋 =

{
 
 

 
 
𝑥1
𝑡

.

.

.

.
𝑥𝑁
𝑡 }
 
 

 
 

=  

{
 
 

 
 
1,   𝑥1,1, 𝑥1,2,   . . . ., 𝑥1,𝑑
1,   𝑥2,1, 𝑥2,2,   . . . ., 𝑥2,𝑑

…………… .
1,   𝑥𝑗,1, 𝑥𝑗,2,   . . . ., 𝑥𝑗,𝑑

…………… .
1,   𝑥𝑁,1, 𝑥𝑁,2,   . . . ., 𝑥𝑁,𝑑}

 
 

 
 

   ,    𝑌 =

{
 
 

 
 
𝑦1
𝑦2
𝑦3
..
𝑦𝑁}
 
 

 
 

  

𝑥𝑗
𝑡  = {1,   𝑥𝑗,1, 𝑥𝑗,2,   . . . ., 𝑥𝑗,𝑑}  

In addition  𝑁  and 𝑑 are the number of samples in our training set and number of 

features in each sample respectively. To find a minimum loss an optimization 

technique is applied and optimal parameters 𝛽
𝑗
that could lead to a linear model are 

obtained.  For this purpose we need to take the first derivative of the loss function in 

equation (4.39) with respect to 𝛽. 

0𝑑
𝑡 =

𝜕𝐿(𝛽)

𝜕𝛽
   =  −2(𝑌 − 𝑋𝛽)𝑇𝑋  ↔  0𝑑

𝑡  =   𝑋𝑇𝑋𝛽 − 𝑋𝑇𝑌    (4.39) 
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Solving for the parameter 𝛽 gives the equation shown in (4.40). 

𝛽 =   (𝑋𝑇𝑋)−1𝑋𝑇𝑌    (4.40) 

4.5.2. Non-linear and least square support vector regression (LSSVR)  

When a statistical data does not fit in linear models a non-linear model is defined 

which replace the independent variables xj in equation (4.37) above with a non-linear 

function 𝜑(𝑥𝑗)   ∈ ℝ
𝑘and these functions are named as non-linear features hereafter. 

The new estimation function  𝑓(𝑥)  is expressed similarly in equation (4.41) 

below.  Nonlinear regression provides the most flexible curve-fitting functionality.  

However it can take considerable effort to choose the nonlinear function that creates 

the best fit for the particular shape of the curve.  

𝑓(𝑥) = ∑ 𝜑(𝑥𝑗)𝛽𝑗
𝑘
𝑗=1  =  𝜑(𝑥)𝑇𝛽  (4.41) 

The expression for optimal parameter β remains the same as shown in equation (4.40) 

above except the independent variables xj
Tare replaced by non-linear features φ(xj

T). 

These features depend on the choice of the model attempt to apply. Selected non-

linear models will be briefly discussed in this section.  

Therefore  

𝑋 =

{
 
 

 
 
𝜑(𝑥1)

𝑇

.

.
𝜑(𝑥𝑖)

𝑇

.
𝜑(𝑥𝑁)

𝑇}
 
 

 
 

    for non-linear models or kernels 

One of the most widely used non-linear models in acoustic modeling is the radial 

basis function (RBF) which is briefly discussed below.  In addition a list of other 

kernel functions 𝜑(𝑥) for univariate dataset is presented below. 

Linear : 𝜑(𝑥, 𝜔) = 𝑥𝑇𝜔  

Polynomial : 𝜑(𝑥, 𝜔) = (𝜂 +  𝑥𝑇𝜔)𝑑  

 

Radial basis function (RBF) : 𝜑(𝑥, 𝜔) = 𝑒
−
‖𝑥−𝜔‖2

2𝜎2   

Splines : f(x) = ∑ βjgj(x)
m+k+1
j=1 , where k is polynomial 

order, and m is number of polynomial kernel 
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function  gj(x) . The approximation f(x) is a 

fitting functions whileβj’s are coefficients. 

wavelets: 𝑊𝑖𝑗 = 𝜑𝑗(𝑥𝑖)  where, 𝑥𝑖 =
𝑖

𝑛
, 

𝑖 = 1, 2, 3, …… . . , 𝑛 

String – kernel : It measures similarity of pairs of strings [32]. 

Let str1  and str2  be two strings, the kernel 

φ(str1, str2) would provide a higher value for 

higher similarity between str1 and str2. 

Radial Basis Function (RBF) 

Neural Networks are very powerful models for classification tasks. But we used them 

for regression in our study to develop the least square support vector regression 

(LSSVR). We used our training dataset and we projected the training trend into the 

test set to make predictions. Regression has been discussed earlier at the beginning of 

this section and has many applications in a wide range of areas including finance, 

physics, medicine, meteorology, biology and many others. Radial basis function 

(RBF) is a neural network architecture commonly used in non-linear regression as 

well as function approximation in addition to their popular application in 

classification [117]. An RBF network is a 2-layer network apart from the output 

layer. We have an input that is fully connected to a hidden layer. The output of the 

hidden layer is taken to perform a weighted sum to get our final output. Hence its 

architecture is not deep. Unlike the neurons in conventional neural networks and 

deep neural networks (DNN) the neurons in RBF networks contain Gaussian RBF. 

And hence the Gaussian RBFs are used as the activation functions. 

Figure 4.9 below shows some Gaussian densities with different parameters and their 

combined effect. These Gaussian densities make up the radial basis function. As it 

can be clearly observed in the figure, the values of individual densities are bound to 

[0,1]. The resultant density depends on the means and variances of all the individual 

densities. The individual densities follow normal distribution whose mathematical 

expression for univariate and multivariate random variables is given by equation 

(4.42) and (4.43) respectively. 
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Figure 4.9. Gaussian mixtures and kernel functions 

𝑁(𝑥|𝜇, 𝜎) =  
1

√2𝜋𝜎2
𝑒
−
(𝑥−𝜇)2

2𝜎2   
(4.42) 

With dimensionality changes on the dataset as well as the parameters modification in 

equation (4.42) is required in the case of multivariate data. Assuming each sample is 

𝑑 dimensional, equation (4.42) is rewritten as: 

𝑁(𝑋⌊𝜇,∑) =  
     𝑒

−
1
2
(𝑋−𝜇)𝑇∑−1(𝑋−𝜇)       

√(2𝜋)𝑑|∑|           
  

(4.43) 

Here √(𝑋 − 𝜇)𝑇∑−1(𝑋 − 𝜇)    is the Mahalanobis distance and |∑|  is the 

determinant of the covariance matrix of the dataset 𝑋.  

In either univariate or multivariate cases the shape, center and steepness of the bell 

shaped curve shown in Figure 4.9 above. The mean  𝜇 determines the center of the 

symmetrical graph where half of the whole dataset lays to the left of this vertical line 

and the other half remains to the right of the symmetrical vertical line representing 

(𝑥 = 𝜇). In Figure 4.9 above, the Gaussians have different colors and are weighted 

differently. Taking the sum of all the probability densities gives a continuous 

function. The parameter which indicates the closeness of individual data sample is 

the variance 𝜎2 or in some literatures is the standard deviation 𝜎 which is the square 

root of the variance. Accordingly a large variance shows a wide variation between 

data samples therefore the resulting bell curve is shorter in height, flat and wide open. 
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On the other hand a small variance results in a long, steep in shape and indicates very 

close individual data samples. 

Technically, the probability density function (pdf) described in equations (4.34) and 

(4.35) is used to determine the probability of observing an input 𝑥  or 𝑋  in 

multivariate case given that specific normal distribution. However the bell-curve 

properties of the Gaussian are more important than the fact that it represents a 

probability distribution for the application of radial basis function (RBF). It is logical 

to observe an inverse relation between the maximum of the probability density 

function which occurs at (𝑥 = 𝜇) and evaluated as ( √2𝜋𝜎2 )−1 =
1

𝜎√2𝜋
  since the 

total area covered by the bell curve is supposed to be unity. A linear combination of 

Gaussian density functions with varied centers and a wide range of variances can be 

used to approximate any function.  

The number of Gaussian density functions needed in function approximation 

depends on the number of bases or kernels used in our network. The structure of the 

network is shown in fig. 3 below. K-mean clustering can be used to formulate and 

place the continuous function created due to the superposition of the individual 

kernels. The center of each basis function is the means of each respective cluster. 

The weights 𝜔 = {𝜔1,  𝜔2, 𝜔3, .  .  .  , 𝜔𝐾}  where 𝐾  stands for the number of 

clusters or bases, multiplies the output of the basis functions unlike conventional 

neural networks in which the weights multiply the input features before computing 

the activation functions. 

The centers 𝑐𝑗for each kernel function  𝜑𝑗(. ) of the RBF are determined using k-

mean algorithms. The regression process begins with clearly setting the necessary 

variables and parameters.  

The input at the very beginning is a set of features for each sample speaker in our 

study which is given by   𝑋𝑡 = {𝓍1,  𝓍2, 𝓍3, .  .   .  , 𝓍𝑑} where is the dimension of 

the input or number of features representing each speaker. The approximation 

function which produces the estimate age   𝑌́ =  {𝑦̂1, 𝑦̂2, 𝑦̂3, .  .   .  , 𝑦̂𝑁}  where 

𝑁 represents the number of utterances in the specified dataset, is given by equation 

(4.44) below: 
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Figure 4.10. Least square support vector regression (LSSVR) 

𝐹(𝑥) =  ∑ 𝜔𝑗𝜑𝑗(𝑥 , 𝑐𝑗) + 𝑏
𝐾
𝑗=1   (4.44) 

where 𝜔𝑗  are the weights, 𝑏 is the bias, 𝐾 is the number of kernels or clusters or 

centers of bases in equation (4.44) above. The function approximation is depicted in 

Figure 4.10 above.  The basis functions  𝜑𝑗(. ) are the Gaussian RBFs given by 

equation (4.45). 

𝜑𝑗(𝑥 , 𝑐𝑗) = 𝑒
−

1

2𝜎𝑗
2(‖𝑥−𝑐𝑗 ‖)

2
       

  

(4.45) 

The sum of the squared error between the actual value of individual data points and 

the values generated by the approximation function is given by the cost formula 

shown in equation (4.46). 

𝑒𝑟𝑟𝑜𝑟 =  ∑ (𝑦(𝑖) − 𝐹(𝑥(𝑖)))2𝑁
𝑖=1   (4.46) 

Now we apply optimization algorithms step by step to find optimal weight 

parameters 𝜔𝑗 and the bias 𝑏. For this purpose we take the partial derivative of the 

error function with respect to 𝜔𝑗  and bias 𝑏 separately to compute optimal weights 

and optimal bias in equations (4.47) and (4.48) respectively.   

𝜕(𝑒𝑟𝑟𝑜𝑟)

𝜕𝜔𝑗
  =  

𝜕(𝑒𝑟𝑟𝑜𝑟)

𝜕𝐹

𝜕𝐹

𝜕𝜔𝑗
  (4.47) 
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𝜕(𝑒𝑟𝑟𝑜𝑟)

𝜕𝜔𝑗
  =  

𝜕

𝜕𝐹
[  ∑ (𝑦(𝑖) − 𝐹(𝑥(𝑖)))

2
𝑁
𝑖=1  .  

𝜕

𝜕𝜔𝑗
[∑ 𝜔𝑗𝜑𝑗(𝑥 , 𝑐𝑗) + 𝑏

𝐾
𝑗=1  ]   

(4.48) 

The new weights will be updated considering the error they have incurred in the 

previous iteration using the learning rate 𝜂. The result of the partial derivative is 

given by: 

𝛻(𝑒𝑟𝑟𝑜𝑟) =  −(∑ (𝑦(𝑖) − 𝐹(𝑥(𝑖)))𝑁
𝑖=1 ) .  (∑ 𝜑𝑗(𝑥 , 𝑐𝑗)

𝐾
𝑗=1 )  Then we deduce the 

updated weights are  𝜔𝑗  ←  𝜔𝑗  +  𝜂(𝑦
(𝑖) − 𝐹(𝑥(𝑖)))𝜑𝑗(𝑥 , 𝑐𝑗).  

 

Similarly for the new bias parameter we take the partial derivative of the error 

function with respect to 𝑏. 

 
𝜕(𝑒𝑟𝑟𝑜𝑟)

𝜕𝑏
  =  

𝜕(𝑒𝑟𝑟𝑜𝑟)

𝜕𝐹

𝜕𝐹

𝜕𝑏
= 

𝜕

𝜕𝐹
[  ∑ (𝑦(𝑖) − 𝐹(𝑥(𝑖)))

2
𝑁
𝑖=1  .  

𝜕

𝜕𝑏
[∑ 𝜔𝑗𝜑𝑗(𝑥 , 𝑐𝑗) + 𝑏

𝐾
𝑗=1  ]     

𝜕(𝑒𝑟𝑟𝑜𝑟)

𝜕𝑏
 =  (𝑦(𝑖) − 𝐹(𝑥(𝑖))                Giving          𝑏 ←  𝑏 +  𝜂(𝑦(𝑖) − 𝐹(𝑥(𝑖))) 

The technique derived to update the weights and the bias parameters is commonly 

called as the backpropagation in conventional neural networks. This can be 

converted to pseudo code and eventually to actual code using either python or Matlab. 

We used Matlab in our experiments [118]. Algorithm 4.1 describes the schematic 

implementation of LSSVR depicted in Figure 4.10 above. 

Algorithm 4.1 

Step .1. Define the radial basis function RBF: 

def rbf(x, c, s): 

return np.exp(-1 / (2 * s**2) * (x-c)**2) 

Step .2. Define the approximation function using superposition of weighted radial basis functions 

(RBFs) 

def predict(self, X): 

    y_pred = [] 

    for i in range(X.shape[0]): 

        a = np.array([self.rbf(X[i], c, s) for c, s, in zip(self.centers, self.stds)]) 

        F = a.T.dot(self.w) + self.b 

        y_pred.append(F) 

return np.array(y_pred) 

Step .3. Compute the error subtracting values generated by approximation function from actual 

values 

Step .4. Update the weights and bias parameters  

Step .5. Continue the process until the error reach a specified level. 

 

The perpendicular (the shortest distance between the univariate variable 𝓍 and its 

center cj in the exponent of the kernel functions described in equation (4.45) above 

changes to Mahalanobis distance in the case of multivariate data. Hence the new 

basis function is given by equation (4.49). 
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𝜑𝑗(𝑋: 𝜇) =  𝑒
−
1

2
(𝑋−𝜇𝑗)

𝑇
∑𝑗

−1(𝑋−𝜇𝑗)             
(4.49) 

4.5.3. LSTM for speaker age regression  

We used LSTM for estimating the age of speakers from MFCC features as well as 

power spectrum of frames in addition to speaker age classification shown in sub 

section 5.4.2. As stipulated earlier in this research book at the classifiers list LSTM is 

suited to classify and predict from patterns based on similarities in a time series data. 

There exists a cell at the heart of the LSTM network that memorizes previous error 

values in addition to the three important gates; input, output and forget gates.  

Given input features  𝑥𝑡 , the weights {𝑊𝑓 , 𝑊𝑖  , 𝑊𝑜 𝑎𝑛𝑑 𝑊𝑐} associated with 

connections from input frames and the weights {𝑉𝑓, 𝑉𝑖 , 𝑉𝑜 𝑎𝑛𝑑 𝑉𝑐} associated with 

connections from the cell at the center to forget, input and output gates as well as the 

cell itself respectively, the operation of an LSTM network can be described using the 

following flow diagram and the mathematical expressions are listed below the 

diagram consecutively. The bias parameters  𝑏𝑓 ,  𝑏𝑖  , 𝑏𝑜  and 𝑏𝑐  in the equations 

represent the biases directed to forget gate, input gate, output gate and the cell at the 

center respectively.  

 

Figure 4.11.Peephole connections in LSTM cells 

Figure 4.11 above is commonly referred to as the peephole connection LSTM unit in 

recurrent neural networks (RNN). Peephole connections stand for the three synapses 

originating from the cell and terminating at the input, output and forget gates 𝒊𝒕, 𝒐𝒕 
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and 𝑓𝑡 respectively. The chain of equations (4.50) to (4.55) can be used to determine 

the outputs of the three gates and the cell shown at the middle of the LSTM. 

𝑓𝑡 = 𝑔𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑓𝑥𝑡 + 𝑉𝑓ℎ𝑡−1 + 𝑏𝑓)      (4.50) 

𝑖𝑡 = 𝑔𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑖𝑥𝑡 + 𝑉𝑖ℎ𝑡−1 + 𝑏𝑖)      (4.51) 

𝑜𝑡 = 𝑔𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑜𝑥𝑡 + 𝑉𝑜ℎ𝑡−1 + 𝑏𝑜)      (4.52) 

𝑐̃𝑡 = 𝑔ℎ𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐 (𝑊𝑐𝑥𝑡 + 𝑉𝑐ℎ𝑡−1 + 𝑏𝑐)      (4.53) 

𝑐𝑡 = 𝑓𝑡⊗ 𝑐𝑡−1 + 𝑖𝑡⊗ 𝑐̃𝑡      (4.54) 

ℎ𝑡 = 𝑜𝑡⊗𝑔𝑡𝑎𝑛ℎ𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐(𝑐𝑡)      (4.55) 

The cell contributes the estimated value ℎ𝑡−1at time step for the current time 𝑡 

prediction ℎ𝑡 .The operation ⊗ represents element-wise multiplication between two 

operands in the above equations. The initial values 𝑐0 and ℎ0are assumed to be both 

zero and the subscripts 𝑡 denotes time step. 
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5. EXPERIMENTAL SETUP 

5.1. Databases 

The age and gender annotated telephone speech database (aGender) is exhaustively 

used to train and test performance of several feature-classifier pairs [14-15, 17, 20, 

119]. The database consists of 47 hours of prompted and free text [20]. It includes 

seven categories: Children (7-14 years old) for both genders, young female (YF, 15-

24 years old), young-male (YM, 15- 24 years old), adult-female (AF, 25-54 years 

old), adult-male (AM, 25-54 years old), senior-female (SF, 55-80 years old), and 

senior-male (SM, 55-80 years old). Due to commercial concerns and considering that 

it is easier to classify compared to the other classes, most studies avoid the children 

class in their researches [17, 60, 67, 119]. Children’s speech both in male and female 

contains relatively higher fundamental frequency 𝐹0 which makes it easily separable 

and more classifiable compared to young, adult and senior utterances [28]. Therefore, 

we limited our focus on speakers older than 15 years in order to compare our 

approaches with past and ongoing studies. Young, adult and senior classes are treated 

separately in their respective genders. This database is prepared to help in 

overcoming the low compatibility of results, by addressing three selected sub-

challenges namely; age, gender and affect sub-challenges [14]. A total of 184 male 

and 190 female speakers are used in the training set. The development set consists of 

130 male and 131 female speakers. 15 male and 14 female speakers are selected for 

testing performance as summarized in table 5.1 below.  

Table 5.1. Distribution of speakers along development, 

training and test sets in each class of the aGender database. 

 Development set Training set Test set Total 

Female  131 190 14 335 

Male  130 184 15 329 

The audios in the aGender database were recorded over cell phones and landline 

connections in 8000 Hz, 8 bit alaw format. The male and female datasets are further 

classified in to three categories as young (ages: 15-24), adult (ages: 25-54) and old or 
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senior (ages: 55-80). A total of 852 German speakers (at least 100 speakers in each 

class) have participated in the audio recording which accounts for 47 hours of speech 

[120]. All the seven classes including children class ranging from age 7 to 14 are 

considered to evaluate the overall performance of fusion of features in one scenario 

[76]. The distribution of utterances in each class for development, training and test 

sets is presented in table 5.2 below. Due to the lack of labeling on the test set of the 

original dataset we received the training dataset is split in to training and test sets. 

Once the path to each speech utterance in the three datasets is established Matlab 

commands are exploited to trace and pick for processing. A total of 9644, 12985 and 

1150 audio samples are used as development, training and test sets in the female 

speaker age classification experiments respectively. Similarly 8508, 12906 and 1079 

utterances are used in the male gender respectively. 

Table 5.2. Distribution of utterances along development, 

training and test sets in each class of the aGender database. 

Age Classes  Development set Training 

set 

Test set Total 

Child 7-14 2397 4000 407 6804 

Female 15-24 2722 4254 384 7360 

Female 25-54 3361 4187 386 7934 

Female 55-80 3561 4544 380 8485 

Male 15-24 2170 3631 388 6577 

Male 25-54 2512 4051 366 7295 

Male 55-80 3826 5224 325 9700 

Female Total 9644 12985 1150 23779 

Male Total 8508 12906 1079 22493 

Grand Total 20549 29891 2636 53076 

Age-Vox-Celeb database consists of YouTube recordings of celebrities. For this 

reason, it contains a large number of utterances in the adult class for both genders. 

This class is well represented in terms of speaker and utterance diversity. However, 

young and senior classes lack this luxury [21, 70-71]. Table 5.3 below shows the 

distribution of utterances in this database for the three speaker age classes. 
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Table 5.3. Distribution of utterances along development, training 

and test sets in each class of the Age-Vox-Celeb database. 

Age Classes  Development set Training set Test set Total 

Female 15-24 1820 3710 699 6229 

Female 25-54 2594 6738 2000 11332 

Female 55-80 2810 3770 999 7579 

Male 15-24 2549 4013 900 7462 

Male 25-54 3526 7497 1209 12232 

Male 55-80 3857 7022 1200 12079 

Female Total 7224 14218 3698 25140 

Male Total 9932 18532 3309 31773 

Grand Total 17156 32750 7007 56913 

We had fewer speakers and more number of utterances in the Turkish database 

compared to aGender and Age-Vox-Celeb. The aGender is the most balanced among 

the three databases. Each speaker contributed several utterances in the Turkish 

database although their number was quite a few. The sampling rate used in the 

Turkish and English databases is 16 kHz. The details of the Turkish database are 

provided in table 5.3. 

Table 5.4. Distribution of speakers along development, training 

and test sets in each class of the Turkish database. 

Age Classes  Development set Training 

set 

Test set Total 

Female 15-25 6 10 41 57 

Female 26-40 6 10 107 113 

Female 41-100 6 10 33 49 

Male 15-25 6 10 31 47 

Male 25-40 6 10 77 93 

Male 41-100 6 10 0 16 

Female Total 18 30 181 229 

Male Total 18 30 108 156 

Grand Total 36 60 288 384 

5.2. Classification and Regression Experimental Setups 

All our experiments begin with establishing well organized databases to each audio 

sample. Then our subroutines pick the sample utterances from this path before it 

commences to other operations as shown in Figure 5.1 below. Details are presented 

in the experimental setup section mean while our databases are organized in gender, 

age classes, training, test and development (UBM) sets. 
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Figure 5.1. General block diagram that shows the overview 

of experiments in this study 

A hamming window of length 20 ms with 10 ms overlap is used for framing 

utterances [121]. 512 DFT point and a total variability dimension of 200 are applied. 

13 static, 13 dynamic and 13 acceleration features are extracted from each frame. 

This makes up a total of 42 features including an energy component for each of the 

three feature sets.  

For speech duration analysis we used the setup displayed below.  

 

Figure 5.2. Speech length in terms of number of frames for age estimation 
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After extracting the acoustic features we stored these values in a matrix variable and 

adjust the duration according to selected sizes from the shortest being 0.5 second (5o 

frames) long and the longest as 10 seconds (1000 frames) long.  

Several network architectures of DNN and LSTM have been attempted in order to 

raise the accuracy of prediction and reduce the mean absolute error. However, DNN 

failed to deliver up to our expectation. On top of that it takes longer to complete even 

20 epochs. LSTM on the other hand, has a comparable performance in the female 

aGender dataset with MFCC feature and the best end-to-end prediction accuracy 

compared to CDS, GMM and PLDA with this dataset. The network setup includes 7 

layers; an input layer with input dimension 42, three bidirectional LSTM layers with 

128, 32 and 32 hidden units (neurons) respectively,  a fully connected layer with 3 

neurons, a softmax layer  and an output layer with cross-entropy.  Sigmoid activation 

function is applied in most of the neurons.  For end-to-end setting, the same number 

of layers is used with the same hidden layers except for the input dimension which is 

increased to 257.  The input dimension is determined from the DFT point N we 

applied in the FFT algorithm. Hence, the input dimension is half of the DFT point N 

plus 1. Stochastic gradient discent (SGD), a maximum epoch of 20 and minimum 

batch size of 27 are implemented. 

Two metrics are used to evaluate the performance of the LSSVR and LSTM 

regression algorithms. The majority of our experiments have dealt with speaker age 

classification rather than regression especially at the beginning of our research. But 

later regression approaches are included for speaker age estimation. The famous 

mean absolute error (MAE) and Pearson correlation coefficient (𝜌 ) are used to 

evaluate the performance of linear and non-linear regression approaches. These two 

parameters are defined using actual and estimated speaker age data as shown in 

equation (5.1) and (5.2) below. 

𝑀𝐴𝐸 = 
1

𝑁
∑ |(𝑦𝑖 − 𝑦̃𝑖)|
𝑁
𝑖=1       (5.1) 

𝜌 =  
1

𝑁−1
∑ (

𝑦𝑖 −𝜇𝑦 

𝜎𝑦
) (

𝑦̃𝑖 −𝜇𝑦̃ 

𝜎𝑦̃
)𝑁

𝑖=1        
(5.2) 

Where 𝑦𝑖 and  𝑦̃𝑖 are the actual and estimated age of the 𝑖𝑡ℎ utterance respectively. In 

addition_𝜇𝑦̃ and _𝜎𝑦̃ are the mean and standard deviation for the predicted ages of 
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the test set; and 𝜇𝑦and 𝜎𝑦 for the true ages. Higher correlation coefficients and lower 

mean absolute error values are better. The performance evaluation of our approaches 

is presented in section 5 below. 

Similar approaches are followed in pre-processing of the audio signal during feature 

extraction. However, instead of writing the features on to a text file we created a 

matrix that accumulates all the features in each frame immediately after extraction is 

completed. The usual hamming window of size 20 milliseconds and 10 milliseconds 

overlap is applied for framing each audio file [17]. Most of the features we used and 

designed are inspired by an article that investigated several features (magnitude as 

well as phase-based) for replay spoofing attack detection [18]. We have also 

contributed a new feature set called parabolic filter mel-frequency cepstral 

coefficient (PFMFCC). Our experimental result for the new feature is published in 

[76]. 

For speaker age classification schemes, accuracy is used as a measure of 

performance metrics in our experimental results. The usual way to do this is to 

generate the confusion matrix. This matrix is a square matrix, whose order is 

equivalent to the number of classes in a classification problem, consisting of correct 

and misclassified number of utterances. The rows in a confusion matrix stand for 

actual classes whereas the columns represent predicted classes. The elements placed 

along the diagonals convey the number of correctly classified utterances for each 

class as it goes down the diagonal. On the other hand, those elements found off the 

diagonal represent the number of utterances wrongly classified. The misclassification 

mostly occurs in the adult speakers in large numbers; misclassified as either young or 

senior (old) speakers as it shares boundary with both classes. Hence the accuracy can 

be computed as the average of the elements along the diagonal if the classes are 

evenly distributed. If there are irregularities in the number of utterances in each class, 

then the accuracy is computed as the sum of correctly classified utterances divided 

by the total number of test set utterances given by the equation (5.3) below: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
#𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑢𝑡𝑡𝑒𝑟𝑎𝑛𝑐𝑒𝑠

#𝑡𝑒𝑠𝑡 𝑠𝑒𝑡 𝑢𝑡𝑡𝑒𝑟𝑎𝑛𝑐𝑒𝑠
      (5.3) 

where the hashtag # represents number of something.  
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6. RESULTS AND DISCUSSION  

This chapter is presented in 2 subsections. The first one presents experimental results 

with using tables and figures. Short discussions are provided right after each table 

and figure. The second subsection gives in-depth analysis and discussion on selected 

results and unexpected outcomes. 

6.1. Results 

Experimental results of the research study are presented graphically as well as using 

tables and a short discussion follows in this subsection. However, in-depth analysis 

and discussion is provided in section 6.2. The results are presented in 4 categories; 

the first category is matched-language scenario carried out on German and Turkish 

databases, secondly performance evaluation of bilingual, multilingual and cross-

language evaluation results which consists of utterances from English, German and 

Turkish languages, thirdly regression results for the least square support vector 

regression (LSSVR) model and speech length (duration) analysis for selected feature 

sets and finally performance evaluation of deep learning based classification models. 

6.1.1. Performance evaluation of CDS, GMM and PLDA classifiers on matched-

language baseline scenarios 

This subsection presents the performance evaluation of three classifiers and ten 

feature sets for the German and Turkish databases. Table 6.1 presents speaker age 

classification performance in terms of accuracy for; CDS, GMM and PLDA 

classifiers over the female dataset of aGender database by applying VAD with an 

energy threshold of -55dB to remove non-speech and silent frames. If the maximum 

energy among all frames is greater than -25dB, the threshold is raised to 30dB below 

the maximum energy. The former follows absolute criteria whereas the latter uses a 

relative approach to remove non-speech frames. The table also presents evaluation 

results for non-VAD scenarios in which silence and noise frames are kept. 
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Table 6.1. Comparing the proposed PFMFCC in 

female datasets of the aGender database with and 

without VAD 

a) Female 

without VAD 
Accuracies in % 

 CDS GMM PLDA  

F
ea

tu
re

 s
e
ts

 

MFCC 56.436 57.033 57.033 

IMFCC 46.632 43.904 50.127 

LFCC 52.783 57.739 52.956 

RFCC 53.565 58.522 53.367 

PFMFCC 50.440 52.740 58.140 

SCMF 51.321 52.173 51.321 

Cosine_ph 53.623 49.616 44.245 

SSFC 52.429 50.639 51.15 

MODGD 56.947 57.971 50.724 

RASTA-PLP 46.717 53.367 55.413 
b) Female with VAD Accuracies in % 

CDS GMM PLDA  

F
ea

tu
re

 s
e
ts

 

MFCC 56.265 57.033 46.973 

IMFCC 53.793 51.577 29.497 

LFCC 52.941 52.429 42.966 

RFCC 54.305 51.832 44.330 

PFMFCC 50.350 55.390 52.170 

SCMF 57.033 53.623 44.586 

Cosine_ph 47.058 44.842 39.471 

SSFC 53.878 51.065 38.704 

MODGD 50.895 50.127 35.720 

RASTA-PLP 47.826 50.639 47.996 

 A maximum of 57.03% accuracy using SCMF on CDS and MFCC on GMM 

classifier is achieved applying voice activity detection (VAD)[122] for all feature 

extractions over the female dataset of the aGender database. However, PLDA 

generally delivered poor performances in this regard. It offered accuracies below 50% 

with all feature sets except PFMFCC which showed 52.17% and 51.3% accuracies in 

correctly predicting the age classes for female and male test samples respectively. 

Similarly a maximum of 47.729% accuracy using RFCC on cosine scoring, 47.358% 

using RASTA-PLP on GMM classifier and 46.987% accuracy using IMFCC on 

PLDA classifier is achieved for male dataset. Table 6.2 below presents speaker age 

performances of the three classifiers; CDS, GMM and PLDA over male dataset of 

the aGender database using the 10 feature sets discussed in chapter 2. The table 

presents for both with VAD and without VAD scenarios.  
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Table 6.2.  Comparing the proposed PFMFCC in 

male datasets of the aGender database with and 

without VAD 

a) Male without 

VAD 

Accuracies in % 

CDS  GMM PLDA  

F
ea

tu
re

 s
e
ts

 

MFCC 41.797 42.632 55.144 

IMFCC 41.149 40.963 54.587 

LFCC 47.544 46.339 52.641 

RFCC 43.837 40.963 56.348 

PFMFCC 51.060 56.010 57.230 

SCMF 43.466 41.334 52.641 

Cosine_ph 39.295 33.271 31.417 

SSFC 37.256 37.905 48.656 

MODGD 46.153 51.159 45.319 

RASTA-PLP 43.188 40.685 48.285 
b) Male with VAD Accuracies in % 

CDS  GMM PLDA  

F
ea

tu
re

 s
e
ts

 

MFCC 43.929 42.354 43.651 

IMFCC 40.871 41.797 46.987 

LFCC 42.354 42.910 39.851 

RFCC 47.729 41.705 38.832 

PFMFCC 45.320 42.170 51.300 

SCMF 45.968 44.763 45.783 

Cosine_ph 35.866 33.827 39.202 

SSFC 37.998 39.573 33.456 

MODGD 36.793 35.495 40.500 

RASTA-PLP 42.724 47.358 42.910 

Without VAD, CDS classifier offered 56.95% with MODGD feature and 51.06% 

with the PFMFCC feature for female and male test sets respectively. Similarly the 

GMM classifier achieved a maximum of 58.52% and 56.01% with RFCC and 

PFMFCC features for female and male test sets respectively. The phase-based 

feature MODGD also impressed with accuracies of 57.97% and 51.16% using this 

classifier over female and male datasets respectively. These results are shown in 

Tables 6.1 and 6.2 as well as in Figures 6.1 and 6.2 for female and male test sets with 

and without VAD respectively. PLDA performed better without VAD in all the 

features except the cosine phase feature for male test set. The best performances 

without VAD for this classifier are 58.14% and 57.23% using PFMFCC for female 

and male test sets respectively. Figures 6.1 and 6.2 below present the results 

graphically for female and male test sets respectively in order to make the 

comparisons visually clear.  
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Figure 6.1. Graphic representation of evaluation results for female test set 

in a) cosine score b) GMM and c) PLDA classifiers with aGender database 
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Figure 6.2. Graphic representation of evaluation results for male test set in a) 

cosine score b) GMM and c) PLDA classifiers with aGender database 

In summary, the proposed PFMFCC and the adopted RFCC feature sets offered the 

best performances with PLDA and GMM classifiers for male and female datasets 
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respectively. They offered 57.23% and 58.52% correct predictions respectively. 

PFMFCC also offered 58.14% accuracy with PLDA classifier for the female dataset. 

A brief comparison of this feature set with MFCC is presented in section 6.2.  

The male dataset of the Turkish database generally showed poor performance in all 

setups comparatively. This is obviously because of imbalance in the database where 

it presents a large number of adults but, relatively very few senior male speakers. 

This has also been observed in a previous study with the same database where the 

confusion matrix shows 0 correct classifications for senior male speakers [53]. The 

female dataset on the other hand, performed well as it constitutes diversity not only 

in utterances and speakers but also in age classes comparatively in a balanced 

manner. Selected experimental results are depicted in Table 6.3 for both genders of 

the Turkish database.  

Table 6.3. Comparing the proposed PFMFCC for female and male datasets in 

the Turkish database 

 Female accuracies in  % Male accuracies in  % 

CDS  GMM PLDA  CDS  GMM PLDA  

F
ea

tu
re

 s
e
ts

 MFCC 62.24 70.45 51.98 47.44 34.16 47.56 

LFCC 64.70 70.42 29.29 42.31 37.46 28.76 

RFCC 62.98 70.60 30.83 47.19 41.65 49.42 

PFMFCC 57.18 69.50 49.30 44.12 38.74 49.85 

MODGD 36.14 36.47 34.75 37.04 37.68 50.25 

6.1.2. Performance evaluation of CDS, GMM and PLDA classifiers on bilingual, 

multilingual and cross-language scenarios 

The essence of this study is to find out the effect of language in speaker age 

estimation along with other factors such as number of speech frames involved in 

training and test sets. Table 6.4 presents experimental results of multilingual 

(bilingual) training setup for speaker age classification tested with female and male 

datasets of the German (aGender) and Turkish databases. This table presents 

performance evaluation of the three models; CDS, GMM and PLDA trained with 

data composed of audio data in German and Turkish languages. 
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Table 6.4. Bilingual training tested with German and Turkish 

female and male datasets for speaker age classification 

a) Female 

Test sets (accuracies in %) 

German  Turkish  

CDS GMM PLDA  CDS GMM PLDA  
B

il
in

g
u

a
l 

T
ra

in
in

g
 MFCC 37.22 55.22 47.65 62.24 70.45 48.94 

LFCC 54.26 52.17 37.3 65.03 70.16 48.68 

RFCC 36.00 57.30 35.48 62.68 70.93 44.87 

PFMFCC 44.00 54.00 45.65 54.84 68.99 49.23 

MODGD 35.65 36.09 32.35 36.03 34.53 21.59 

b) Male   

B
il

in
g

u
a

l 

T
ra

in
in

g
 MFCC 35.22 30.31 40.41 48.52 32.37 56.43 

LFCC 33.64 33.18 34.66 45.69 37.46 30.02 

RFCC 34.57 32.44 30.95 47.57 41.65 49.42 

PFMFCC 34.29 36.70 37.81 44.12 38.74 51.13 

MODGD 35.87 30.03 35.77 37.04 37.68 51.48 

The multi-language training with only German and Turkish utterances a.k.a. 

bilingual scenario degraded the matched performance significantly for the aGender 

database with few exceptions in the GMM classifier over the female dataset. Notable 

deficits in accuracy include 28.57% and 25.4% decline with PLDA classifier applied 

on PFMFCC and RFCC features for female and male datasets respectively. This 

could partly be due to the differences in an audio recording devices and sampling 

rate. The German audios are recorded from telephone conversations with a sampling 

rate of 8 kHz whereas the Turkish utterances are recorded with a computer at a 

sampling rate of 16 kHz. More discussion on what caused these degradations is 

provided in subsection 6.2 and compares it with multilingual for three language and 

cross-language scenarios. On the other hand, the performance remained not much 

affected on the Turkish database compared to matched-language scenarios. The 

PLDA classifier performed even better with MFCC, PFMFCC and MODGD feature 

sets especially for the male gender. This could possibly be due to the nature of 

phoneme sequences in the training utterances that made these features more 

classifiable than others with the PLDA classifier. It indicates addition of German 

utterances to the training has contributed for the performance improvement for the 

PLDA classifier with these features.  

Effect of adding a third language to the multi-language (multilingual) training setup 

is investigated and the results are presented in Table 6.5 below. In this table the 
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columns represent the language of test sets used for performance evaluation whereas, 

the training constitutes three languages; German from the aGender database, Turkish 

and English from Age-Vox-Celeb database. 

Table 6.5. Multi-language training performance evaluation for female and male 

datasets with German (aGender), Turkish and English (Age-Vox-Celeb) databases  

a) Female datasets                                                

 

Test sets (accuracies in %) 

German  Turkish   English 

CDS     GMM      PLDA CDS     GMM      PLDA CDS     GMM      PLDA 

M
u

lt
il

in
g

u
a

l 

T
ra

in
in

g
 

MFCC 44.96 46.17 35.22 65.28 65.07 47.98 36.93 42.67 36.58 

LFCC 35.13 48.17 31.57 63.75 70.12 30.06 29.76 42.42 31.71 

RFCC 30.61 49.04 30 64.08 70.13 27.97 30.79 42.58 31.00 

PFMFCC 39.74 47.22 34.52 65.10 66.31 50.26 31.27 45.92 36.17 

MODGD 32.17 34.52 34.17 47.51 53.08 27.46 34.55 26.56 22.48 

b) Male datasets  

M
u

lt
il

in
g

u
a

l 

T
ra

in
in

g
 

MFCC 37.16 35.59 32.34 54.10 32.47 44.88 36.50 44.85 42.13 

LFCC 33.73 39.48 29.19 51.22 44.00 38.50 37.53 44.76 43.25 

RFCC 32.07 38.27 34.94 53.65 43.59 37.56 38.99 44.33 43.67 

PFMFCC 35.03 36.89 29.84 39.31 42.03 35.84 36.27 47.54 37.29 

MODGD 31.88 31.05 26.14 45.75 36.41 45.07 34.36 36.66 36.81 

Adding English to the multi-language scenario has improved performance of some 

feature sets on certain classifiers for some datasets notably; MFCC and RFCC 

features on CDS classifier for male Turkish and German dataset.  In addition, the 

GMM classifier showed a slight improvement in LFCC, RFCC and PFMFCC feature 

sets. Significant increase in accuracy is scored for all the three classifiers on MFCC 

feature over the German female dataset. Likewise, the MODGD feature also offered 

significant improvement for the female dataset of the Turkish dataset with addition 

of the Age-Vox-Celeb database to the multilingual setup. Major degradations in 

performance most likely due to addition of the English dataset occur in the PLDA 

classifier for the male Turkish dataset with the exception of the LFCC feature which 

improved the prediction accuracy by 4.87% in this regard. 

On the contrary to the multilingual scenarios, language mismatches between training 

and test sets have been investigated to degrade the performance dramatically and 

results are presented in Table 6.6 below. In this table the cells located along the 

diagonal are accuracies of matched-language setups whereas, the cells off-diagonal 

are language mismatch (cross-language) performance evaluations the rows and 

columns being training and test sets respectively. The performance has been affected 
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dramatically for language mismatches in most of the cases compared to matched-

language and multilingual scenarios. However, quite few evaluations surprisingly 

showed better performances than matched-language scenarios.  

Table 6.6. Cross-language and matched language performance evaluation for 

female and male datasets trained with German, Turkish and English databases 

tested with German, Turkish and English test sets 

a) Female datasets                                                    

 

Test sets  (accuracies in %) 

German  Turkish   English 

CDS     GMM      PLDA CDS     GMM      PLDA CDS     GMM      PLDA 

G
er

m
a

n
 

T
ra

in
in

g
 MFCC 56.44 57.03 57.03 53.41 23.64 25.55 38.18 41.34 24.13 

LFCC 52.78 57.74 52.96 41.13 37.72 19.90 23.30 42.02 24.32 

RFCC 53.57 58.52 53.37 51.98 26.43 31.67 26.79 33.01 27.62 

PFMFCC 50.44 52.74 58.14 44.39 53.01 21.19 39.39 32.90 23.57 

MODGD 56.95 57.97 50.72 45.05 52.79 45.01 32.77 37.96 25.49 

T
u

rk
is

h
  

T
ra

in
in

g
 MFCC 34.96 35.65 30.17 62.24 70.45 51.98 24.68 21.65 19.48 

LFCC 31.57 33.57 33.48 64.70 70.42 29.29 20.73 20.08 20.27 

RFCC 30.61 33.57 33.48 62.98 70.60 30.83 20.02 19.89 20.13 

PFMFCC 34.35 37.04 30.61 57.18 69.50 49.30 21.35 22.73 19.67 

MODGD 34.61 32.78 34.26 36.14 36.47 34.75 28.73 24.27 23.00 

E
n

g
li

sh
 

T
ra

in
in

g
 MFCC 33.56 29.22 25.91 41.83 37.94 57.63 43.26 45.81 45.86 

LFCC 32.09 26.00 31.57 34.71 40.83 52.02 39.23 42.91 43.70 

RFCC 30.52 24.00 26.43 37.87 40.84 53.56 37.58 43.37 43.59 

PFMFCC 32.69 24.78 25.30 43.51 28.99 60.56 42.94 46.27 45.78 

MODGD 34.17 32.61 33.22 35.23 25.51 42.89 32.79 35.42 39.04 

b) Male datasets  

G
er

m
a

n
 

T
ra

in
in

g
 MFCC 41.79 42.63 55.14 25.72 30.24 29.80 40.62 40.47 35.60 

LFCC 47.54 46.34 52.64 22.32 13.43 34.92 34.48 38.29 36.41 

RFCC 43.84 40.96 56.35 15.73 26.55 29.86 32.37 40.59 34.06 

PFMFCC 51.06 56.01 57.23 23.58 33.75 17.31 35.78 34.78 33.18 

MODGD 46.15 51.16 45.32 26.98 19.78 33.56 36.66 36.60 35.96 

T
u

rk
is

h
  

T
ra

in
in

g
 MFCC 26.41 30.70 33.92 47.44 34.16 47.56 34.75 30.70 27.26 

LFCC 29.01 28.82 33.36 42.31 37.46 28.76 31.64 27.14 33.24 

RFCC 30.02 26.32 36.61 47.19 41.65 49.42 29.50 26.90 34.48 

PFMFCC 30.31 32.53 34.19 44.12 38.74 49.85 30.70 29.07 28.08 

MODGD 28.27 17.05 30.77 37.04 37.68 50.25 32.64 27.59 32.16 

E
n

g
li

sh
 

T
ra

in
in

g
 MFCC 32.16 24.28 42.73 54.65 32.90 34.25 47.45 45.97 51.44 

LFCC 35.96 33.64 34.11 40.12 43.05 34.65 44.39 44.03 49.32 

RFCC 30.49 32.07 39.30 42.57 42.85 28.85 41.31 43.64 47.72 

PFMFCC 31.14 27.90 34.11 43.21 38.55 34.33 45.88 46.99 50.68 

MODGD 35.77 33.46 36.15 34.09 29.71 27.93 34.03 35.06 33.73 

For instance, it is quite strange to see 57.63% and 60.57% accuracies for MFCC and 

PFMFCC for PLDA model trained with English utterances of the female dataset 

tested with Turkish female datasets respectively. PLDA generally showed better 

performance. 

The extent of performance degradation due to language mismatch can go as low as 

accuracy levels of 19.89% and 13.43% in the female and male datasets. These lowest 

accuracies are recorded for RFCC feature on Turkish trained GMM classifier tested 
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with English utterances and LFCC feature set on Turkish trained GMM classifier 

tested with German utterances respectively.  

With the Turkish male dataset for instance, a maximum of 32.54%, 37.92% and 

33.64% accuracy gains are recorded over a cross-language performance against 

German trained model using matched-language, multilingual and bilingual training 

setups respectively. These improvements are made with a feature-classifier pairs of 

PFMFCC-PLDA, RFCC-CDS and RFCC-CDS in their respective order. Likewise, 

22.32%, 11.66% and 16.11% maximum accuracy improvements are made over 

cross-language evaluation of English trained MODGD-PLDA, MODGD-CDS and 

MODGD-PLDA feature-classifier models respectively. Table 6.7 presents a 

comparison of best performances in each 6 dataset for the marched-language training 

setup with Multilanguage and cross-language scenarios. In addition the performance 

evaluation of a bilingual setup is also included for German and Turkish databases. 

These figures should only be compared horizontally as they represent evaluation of 

the same feature-classifier pair along a certain row. However, if we look at vertically 

down for a given column the values may not be from the same model.  

Table 6.7. Performance comparison of best matched-language classification 

accuracies with multilingual and cross-language scenarios  

  

  

  

  Training setups (accuracies in %) 
Feature-classifier 

pairs 

  

  Cross-language 

Matched Multilingual Bilingual English German Turkish 

Turkish male MODGD-PLDA 50.25 45.07 44.04 33.56 27.93   

Turkish female RFCC-GMM 70.60 70.13 70.93 26.43 40.84   

German male PFMFCC-PLDA 57.23 29.84 37.81  34.11    34.19 

German female RFCC-GMM 58.52 49.04 57.30 24.00   33.57 

English male MFCC-PLDA 51.44 42.13  32.70    24.13  27.26 

English female PFMFCC-GMM 46.27 45.92  25.60   32.90 22.73 

The bilingual training setup is composed of utterances from German and Turkish 

databases. English test sets are applied to this scenario to see how the absence of a 

language can affect the performance. Indeed it showed 20.32% and 9.43% decline in 

performance compared to the multilingual setup with the three databases for female 

and male English datasets respectively. The PLDA classifier failed to make a 

positive contribution in the German male test set for bilingual and multilingual 

scenarios. It even performed worse than the cross-language setups. This could be due 

to the imbalance in the Turkish male dataset and differences in sequence of 
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phonemes in test and training samples which might have played a negative role the 

performance. However, some features made improvements with this classifier. For 

example  

6.1.3. Regression results and speech duration analysis 

LSSVR results are presented in Tables 6.7 and 6.8 for male and female datasets of 

the aGender database. Two scenarios are considered; LSSVR applied on i-vectors of 

5 spectral feature sets and directly on the acoustic feature sets concatenated to form a 

supper vector. The unit 𝑓 stands for frames which basically contain 20 milliseconds 

of speech.  

Table 6.8. Performance evaluation in a) MAE b) 𝜌  of 

feature+i-vector+LSSVR method for male dataset 

a) Mean absolute error (MAE) for male dataset 

Male frames PFMFCC MFCC RFCC LFCC MODGD 

50f 7.598 7.842 7.997 8.272 8.189 

100f 6.809 6.733 7.288 7.423 7.284 

200f 6.340 6.231 7.131 6.969 6.776 

400f 6.142 6.027 7.458 6.955 6.570 

800f 6.130 6.022 7.072 6.925 6.515 

1000f 6.129 6.015 7.046 6.924 6.501 

b) Pearson correlation coefficient 𝜌 for male dataset 

Male frames PFMFCC MFCC RFCC LFCC MODGD 

50f 0.601 0.578 0.558 0.528 0.543 

100f 0.682 0.690 0.632 0.620 0.578 

200f 0.724 0.731 0.650 0.666 0.679 

400f 0.748 0.757 0.609 0.671 0.696 

800f 0.747 0.758 0.652 0.674 0.701 

1000f 0.746 0.746 0.654 0.674 0.702 

Table 6.9. Performance evaluation in a) MAE b) 𝜌  of 

feature+i-vector+LSSVR method for female dataset 

a) Mean absolute error (MAE) for female dataset 

Female frames PFMFCC MFCC RFCC LFCC MODGD 

50f 8.004 8.369 8.643 8.520 8.535 

100f 7.103 7.615 7.415 7.462 7.297 

200f 6.633 7.222 6.731 6.804 6.862 

400f 6.411 6.836 6.348 6.547 6.610 

800f 6.363 6.825 6.247 6.460 6.604 

1000f 6.363 6.816 6.219 6.457 6.583 
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b) Pearson correlation coefficient 𝜌 for female dataset 

Female frames PFMFCC  MFCC RFCC LFCC MODGD 

50f 0.653 0.619 0.601 0.618 0.603 

100f 0.721 0.674 0.701 0.700 0.698 

200f 0.763 0.722 0.765 0.771 0.736 

400f 0.779 0.753 0.790 0.791 0.752 

800f 0.782 0.753 0.797 0.796 0.753 

1000f 0.782 0.753 0.799 0.797 0.755 

 

Figure 6.3. MAE of LSSVR expressed along increasing number of 

frames for male aGender dataset 

 

Figure 6.4. ρ as frames increase for LSSVR for male aGender dataset 
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Figure 6.5.  MAE of LSSVR expressed along increasing number of 

frames for female aGender dataset 

 

Figure 6.6. ρ as frames increase for LSSVR over female aGender dataset 

In addition, Figures 6.3 and 6.4 above present the MAE and 𝜌  graphically for 

different speech durations expressed in terms of number of frames for the male 

dataset. Figures 6.5 and 6.6 present for the female dataset likewise.  

Tables 6.9 and 6.10 below, show the performance evaluation of the LSSVR 

regression algorithm on i-vector sequences for different combination of mismatch in 

length of utterances in speech segments assuming 200, 500 and 1000 frames as short 
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medium and long utterances respectively. The values located across the diagonals 

represent matched and the bold values show best mismatch performances. 

Table 6.10. i-Vector followed by LSSVR 

performance evaluation for utterance length mismatch 

in terms of   MAE for female dataset. (Rows are 

training and columns are test frames) 

 

a) PFMFCC-ivector-LSSVR b) MFCC-ivector-LSSVR 

 
Test frames Test frames 

200 500 1000 200 500 1000 

T
ra

in
in

g
 f

ra
m

e 
si

ze
 

200 6.6330 6.4602 6.4346 7.2220 6.8266 6.7969 

500 6.7843 6.4467 6.4255 7.2520 6.8224 6.7935 

1000 6.8052 6.4717 6.3630 7.2793 6.8467 6.8160 

  

c) RFCC-ivector-LSSVR d) LFCC-ivector-LSSVR 

 

Test frames Test frames 

200 500 1000 200 500 1000 

200 6.7310 6.3952 6.3650 6.8040 6.4187 6.3945 

500 6.6540 6.2619 6.2190 6.6744 6.3622 6.3350 

1000 6.6500 6.2607 6.2190 6.6514 6.3380 6.4570 

Table 6.11. i-Vector followed by LSSVR 

performance evaluation for utterance length mismatch in 

terms of   MAE for male dataset. (Rows are training and 

columns are test frames) 

 

a) PFMFCC-ivector-LSSVR b) MFCC-ivector-LSSVR 

 
Test frames Test frames 

200 500 1000 200 500 1000 

T
ra

in
in

g
 f

ra
m

e 
si

ze
 

200 6.3400 6.1726 6.7498 6.2309 6.1849 6.1544 

500 6.4308 6.1736 6.1982 6.1500 6.0680 6.0424 

1000 6.3770 6.1555 6.1285 6.1354 6.0387 6.0147 

 

c) RFCC-ivector-LSSVR d) LFCC-ivector-LSSVR 

 

Test frames Test frames 

200 500 1000 200 500 1000 

200 7.1306 7.0903 7.0717 6.9685 6.9723 6.9873 

500 7.1092 7.0687 7.0480 6.9442 6.9328 6.9380 

1000 7.0919 7.0715 7.0459 6.9337 6.9219 6.9243 

Performance comparison of LSSVR model on direct acoustic spectral features and i-

vectors as a second tier feature extraction for utterance lengths of 3, 5 and 10 seconds 

as short medium and long speech utterances respectively is made and presented in 

Table 6.11  below. The input sequences used in acoustic feature sets with LSSVR 

regression model are extremely long as they are a result of concatenation of several 

frames. Hence the performance is not only poor but also slow due to the length of 

sequences.  
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The LSSVR is not only ineffective, but also slow when applied to the super-vector 

acoustic feature sets directly before i-vectors are generated from them as the 

concatenation of all the frames in the entire speech segment makes the dimension of 

observations extremely large. If we look at the shortest speech segment, i.e. 3 

seconds containing 300 frames for instance, each frame consists of 42 feature values 

which would make up a super-vector of dimension 𝑑 = 300 × 42 = 12600.  

Table 6.12. Performance of LSSVR model on short, medium and long utterances 

for female and male datasets 

Duration  
Female 

MAE/𝜌 

Feature set 

used and 

improvement 

Male  

MAE/𝜌 

Feature set 

used and 

improvement 

3s 

Feature  + 

LSSVR 
11.704/0.580 RFCC,  

44.98% 

improvement 

11.093/ 0.500 MFCC, 

44.77% 

improvement 
Feat +i-vector + 

LSSVR 
6.439/0.781 6.127/0.746 

5s 

Feature  + 

LSSVR 
11.628/0.592 RFCC,  

46.15% 

improvement 

11.063/0.504 MFCC,  

45.15% 

improvement 
Feat +i-vector + 

LSSVR 
6.262/0.796 6.068/0.7526 

10s 

Feature  + 

LSSVR 
11.555/0.594 RFCC,  

46.179% 

improvement 

11.012/ 0.506 MFCC,  

45.38% 

improvement 
Feat +i-vector + 

LSSVR 
6.219/0.799 6.015/0.746 

 Note: Feat  = {MFCC,  RFCC, LFCC, PFMFCC, MODGD} 

The complexity of regression increases and the speed of operation dramatically 

decreases compared to the regression applied on a fixed 200 i-vectors. The order of 

complexity is crucial especially when we are working with a large data. We need to 

consider every possibility to reduce the hurdles on our computing machines. In this 

regard the i-vector LSSVR approach has made 98.4% dimensionality reduction 

cutting the 12600 long, vector to only 200 identity vectors. 

6.1.4. Performance evaluation of deep learning based classifiers 

Performance evaluation of speaker age classification for both the Turkish and 

aGender databases using x-vector neural network architecture with PLDA classifier 
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is presented in Table 6.12 below. Our model does not perform well for the male 

dataset in the Turkish database compared to other datasets due to imbalance in 

number of utterances in each class. Senior speakers are not represented sufficiently in 

this dataset. 

Table 6.13. Cross-gender speaker 

age evaluation using x-vector 

neural network architecture 

 

German 

Test 

Male female 
T

ra
in

 

male 54.588 35.349 

female 36.372 57.565 
 

 

Turkish 

Test 

male female 

T
ra

in
 

male 44.709 32.828 

female 33.368 64.687 

The x-vector neural network is tested with utterances drawn from an unseen and 

unrepresented datasets. The results shown in Table 6.13 are comparable to cross-

language and multi-language performance evaluation of GMM, SVM and 

feedforward DNN carried out for Turkish and German speech utterances in a 

previous literature [17]. However, it has been observed that a significant increase in 

accuracies was unexpectedly made by different gender evaluations for aGender 

training and Turkish test sets in our experiment.  

Table 6.14.    Cross-language and 

cross-gender speaker age evaluation 

using x-vector neural network 

architecture 

 

Turkish-German 

German test set 

Male Female 

T
u
rk

is
h

 

T
ra

in
 male 31.510 31.814 

female 34.419 40.696 

 

German-Turkish 

Turkish test set 

Male Female 

G
er

m
an

 

T
ra

in
 male 29.935 48.190 

female 41.565 36.000 
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Performance evaluation of 5 classifiers which include both classical and deep neural 

network (DNN) based models on the aGender and Turkish databases are summarized 

in Table 6.14 below. The classical machine learning models include GMM, CDS and 

PLDA. On the other hand the remaining two DNN based classifiers are LSTMM and 

x-vector neural network architecture. LSTM offered accuracies of 51% and 64.88% 

for English and Turkish female datasets respectively with MFCC features as an input. 

A cross-language evaluation on this classifier resulted 41.28% and 35.39% for 

Turkish and German female datasets with the English training setup respectively. 

Likewise, cross-language evaluation on the Turkish trained model offered 35.6% and 

33.31% for German and English female datasets respectively. An end-to-end 

experimental setup with the LSTM classifier offered an accuracy of 58.61% which is 

the highest compared to all other performances on the female dataset of the aGender 

database.  

Table 6.15.  Performance evaluation of 5 

classifiers with MFCC sequences for speaker age 

classification on a) female b) male datasets 

respectively  

 Accuracies in % 

C
la

ss
if

ie
rs

 

 aGender Turkish 

Female Male Female Male 

CDS 56.44 41.80 62.24 47.44 

GMM 57.03 42.63 70.45 34.16 

PLDA 57.03 53.75 51.98 47.56 

LSTM 56.69 47.73 64.88 43.54 

x-Vector 57.57 54.59 64.69 44.71 

6.2. Discussion 

A total of ten feature extraction methods are implemented in our experiments. We 

observed their variation across selected classifiers and regression models. An end-to-

end classification is also carried out with the LSTM deep neural network classifier 

where the feature extraction stage is ignored and offered the best result in the female 

dataset of aGender database. We selected some relevant experimental results and 

presented their interpretation here in this sub section. We conducted the experiments 

a single language (matched-language), bilingual, multilingual and cross-language 

scenarios.    
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6.2.1. PFMFCC versus MFCC for speaker age classification 

The proposed feature set PFMFCC resembles the popular MFCC spectral feature in 

its algorithm. It only replaces the triangular band pass filters with parabolic shapes. 

The sharp corners at the top of each triangular filter bank in MFCC would make it 

hard to imagine practical implementation of these shapes. On the contrary, practical 

low pass, or band pass filters can approximate the parabolic shaped bank of filters to 

generate PFMFCC feature sets. 

After critically examining most research studies carried out on speaker age 

classification we found out that they heavily depend on MFCC features. Their focus 

is on the backend (classifiers). Inspired by the performance of some features for 

speech recognition, speaker recognition, speaker emotion recognition, speaker 

diarisation (diarization) and replay attack detection; we inquired if these features 

could perform well on speaker age classification and decided to apply them in our 

study. Following how the filter band based features are extracted cautiously, we 

developed more efficient, effective and practical algorithm to generate a new set of 

features using parabolic band pass filter banks. Table 6.16 below presents the 

summary of comparisons between the popular MFCC with our proposed feature set 

PFMFCC. Based on this summary we can say that PFMFCC contains more age 

information than MFCC. 

Table 6.16. MFCC versus PFMFCC   

Criteria MFCC PFMFCC 

Filter bank shape  Triangular Parabolic 

No of functions 

used per filter bank 

2 linear functions A single polynomial function 

of degree 2 

Number of features 

in a frame 

13 static + 13 dynamic + 13 

acceleration + 3 Energy 

components = 42 

13 static + 13 dynamic + 13 

acceleration + 3 Energy 

components = 42 

Performance for 

female dataset 

Cosine score 56.44%,  

GMM 57.03%,    PLDA 

57.03% 

Cosine score 51.06%,  GMM 

56.01%,   PLDA 58.14% 

Performance for 

male dataset 

Cosine score 41.8%,   

GMM 42.63%,    PLDA 

53.75% 

Cosine score 50.44%,  GMM 

52.74%,    PLDA 57.23% 

Realizability Not easier to implement as 

it consists of a sharp corner. 

Can be approximated with 

practical filters. 
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6.2.2. Unexpected effect of VAD 

Voice activity detection (VAD) also known as speech activity detection (SAD), 

reduces the amount of data by removing non-speech frames from utterances [123]. It 

usually improves performance in speech recognition, speech coding and other 

linguistic based speech processing applications. However, speaker age is a 

paralinguistic attribute which also depends on non-verbal contents such as tone and 

pitch unlike the former applications that highly rely on linguistic content of speech. 

Therefore, the benefit of VAD seems to be insignificant in this regard or energy 

parameters need to be re-adjusted in order to meet its goal. Surprisingly, VAD 

degraded the performance of age classification in the PLDA classifier noticeably. 

This raises skepticism.  But it could largely be due to double reductions when VAD 

is applied before PLDA scheme. The first one is reduction in the amount of data due 

to removal of non-speech frames mainly consisting silence and noise. The second 

one is dimensionality reduction using LDA right before PLDA scoring.  

The frames removed by VAD may have contained important patterns related to age 

as the energy threshold is not well crafted to preserve age related information in low 

energy frames. Therefore, we suggest different VAD parameters for different speech 

processing applications. Figure 6.7 depicts VAD and non VAD scenarios for speaker 

age classification using PLDA for both male and female datasets of the aGender 

database [76]. 

   

Figure 6.7. Effect of VAD on the PLDA classifier for male and female 

datasets of aGender database from simulation results 
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Using a different energy threshold has improved the performance of PLDA classifier 

with MFCC and PFMFCC feature sets in the Turkish male dataset by 8.81% and 

7.40% respectively. Two criteria are used to remove the silent and noise only frames. 

Either frames with energy below -60dB or if the maximum energy among all the 

frames in an utterance is above -20dB a relative criteria is applied and frames with 

energy below 40dB below the maximum energy will be removed. To make the 

second criteria more clear, let us assume we have 200 frames in a certain utterance. 

After computing the energy of each frame we found out the maximum energy among 

the 200 frames is -30dB. Hence, we use the first criteria (absolute criteria) because 

the maximum energy is below -20dB. Accordingly, those frames with energy below -

60dB will be discarded. However, if the maximum energy was -10dB instead, the 

second criteria (relative criteria) would be applied as -10dB is above -20dB. 

Therefore, those frames with energy below (-10-40=-50dB) would be discarded.  

The performance variations especially in the PLDA classifier for aGender and 

Turkish datasets, indicates that the noise characteristics in the two databases has 

contributed either positively or negatively. In the Turkish database the noise 

characteristics affected the performance negatively as it is proved above. On the 

other hand, it has played a positive role in the performance improvement of the 

PLDA classifier for the German database. Obviously, the noise characteristics in the 

two databases, is different as the recording is done through telephone line and 

directly through computer for the German and Turkish databases respectively.  

On the other hand, GMM and CDS did not show significant difference in 

performance with VAD and without VAD scenarios. Hence we can make a tradeoff 

either to remove non-speech frames from all utterances or ignore it and make the 

training processes busy with less relevant noise and silence frames in these two 

classifiers. The choice is clear; we have to remove these frames as the training step is 

a long process compared to VAD, it would definitely make a difference in improving 

speed. 

6.2.3. Performance of feature fusion 

In addition to standalone performance selection of feature sets based on their 

individual performance is made and feature fusion is carried out on different kinds of 
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features.  At first a fusion of all the ten features was done using concatenation which 

resulted in a performance below the best performance of a single feature set. In the 

next steps few feature sets that showed the worst performances were removed one 

feature set at a time and arrived at a fusion of  seven feature sets that consists of 

MFCC, MODGD, RFCC, SCMF, SSFC, RASTA-PLP and PFMFCC. VAD is not 

applied on these features. The CDS classifier gave the best performance in both 

genders with 62.14% and 59.54% accuracies for female and male datasets 

respectively as shown in Figure 6.8 below.  

 

Figure 6.8  Performance evaluation results of feature 

fusion of seven feature sets on three classifiers on seven and 

three age class arrangements 

The Matlab simulation result carried out on all the seven classes consisting children 

aged 7-14, young female aged 15-24, adult female aged 25-54, old female aged 55-

80, young male aged 15-24, adult male aged 25-54 and old male aged 55-80 resulted 

in overall accuracies of 60.18%, 52.17% and 56.35% using CDS, GMM and PLDA 

respectively. The age classes are made based on the aGender database [20]. 

According to this result the cosine score classifier has made an overall improvement 

of the accuracy by 2.55% compared to speaker age classification study carried out on 

the same database in [119].   

6.2.4. Limitations, solutions and findings 

An apparent limitation of our study lays on the difficulty of finding convenient 

boundaries especially between adult and old speaker age classes where one speaker 

age class ends and the next one begins. For instance putting age 55 together with age 
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80 and putting age 54 in a different speaker age class causes a great deal of error. 

This problem could be solved by using regression instead of classification with a 

large amount of training data which can represent each and every age sufficiently.  

With a large amount of data and sufficient representation of discrete ages, regression 

can avoid the inconvenience of age class boundaries. However, we also suggest 

binary classification of adjacent age bins of selected ages around the boundaries 

before the actual speaker age classification experiment to find suitable boundaries.  

Another limitation of our study is that the databases especially the aGender consist of 

short utterances (2.55 second on average) which also include non-speech frames. 

VAD further reduces the number of frames in an utterance by discarding the non-

speech frames. Non-speech frames contain spectral energy below a certain threshold. 

Furthermore, PLDA reduces dimensıon due to its linear discriminant analysis (LDA) 

function within it. The performances of features with and without VAD on PLDA 

classifier as shown in Figure 6.7 indicates that PFMFCC and fusion of features could 

perform better on a database with longer duration of utterances. 

The imbalance in the size of each class in the Turkish male dataset caused significant 

decline in performance compared to other databases. Addition of the German 

database for a bilingual training scenario improved the performance of the PLDA 

classifier. Additionally, the CDS classifier outperformed with a multilingual scenario 

over matched language setup for certain feature sets such as MFCC, LFCC and 

RFCC. Therefore, it is likely that these features overcome the imbalance problem in 

a single language setup with addition of more languages to the training. It can also be 

imagined that the CDS model in multilingual and PLDA model in bilingual scenarios 

are able to learn age classes from the phoneme sequences of heterogeneous language 

scenarios better compared to a monolingual classification over this dataset.   

The sampling rate in the three databases is different, for this reason down sampling 

was required in order to carry out bilingual and multilingual trainings. As the 

aGender database is most complete and balanced as well as recorded mainly with the 

intension of speaker age classification the age classes and the sampling rates in the 

Turkish and Age-Vox-Celeb databases are brought to be similar with aGender.  
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Apart from few outliers which have been challenging for interpretation, multilingual 

and bilingual scenarios have improved the performance significantly compared to 

cross-language setups. To mention few strange results in the cross-language 

evaluation; 60.56% accurate classification of female Turkish test sets by English 

trained PLDA classifier using PFMFCC feature sets as an input which is more than 

20% better than the matched-language performance with the same classifier and 

feature, 54.56% accurate age classification of Turkish male test audios by English 

trained CDS classifier using MFCC feature sets which showed 7.21% increase 

compared to a Turkish trained CDS classifier performance with the same feature, and 

the MODGD features offered better performances with all the three classifiers over 

German-Turkish cross-language scenario compared to Turkish-Turkish matched 

language setting. This could luckily be due to the phoneme sequences in the test sets 

which may have enabled the models to learn better than matched-language scenarios.  

Nevertheless, the best performances for the matched-language scenario in each 

datasets are in harmony with our expectations compared to other scenarios. The 

summary of best performances by matched-language scenarios for each of the three 

databases and both genders is presented in Table 6.7. These results are compared to 

multilingual, bilingual and cross-language scenarios for the same dataset as well as 

feature-classifier pair and presented in Figure 6.9 for better visualization. If we look 

at same efforts over these datasets especially the German and the Turkish; our results 

showed 5.6% increase in accuracy with MFCC using the PLDA classifier for the 

Turkish male dataset exploiting bilingual training compared to SVM classifier with 

MFCC carried out in [17] which offered 50% accuracy for the same dataset and 

feature. The MODGD and PFMFCC features also showed 1.48% and 1.13% with the 

same classifier and dataset over SVM respectively.  Similarly, accuracies of 54.5%, 

69.2% and 69.6% are reported with GMM, SVM and DNN classifiers respectively 

with a multi-language training of German and Turkish female audios in [17]. On the 

other hand our GMM classification experiment on the same multilingual dataset 

resulted in accuracies of 70.16%, 70.45% and 70.93% with MFCC, LFCC and RFCC 

features respectively. Hence our best result showed an improvement by 1.33% over 

the DNN classification. Our approaches also outperformed in the German female 
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dataset which gained 17.19%, 7.6% and 9.9% accuracy increases with RFCC feature 

and GMM classifier over GMM, SVM and DNN respectively in [17].  

 

Figure 6.9. Performance comparison of matched-language, 

multilingual, bilingual and cross-language training scenarios for speaker 

age classification 
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7. CONCLUSION  

Speaker age prediction has remained one of the most challenging research disciplines 

in speech processing due to the stochastic nature of speech signals despite all the 

consorted efforts to improve age prediction metrics. With the reemergence of DNNs, 

innovation of high speed digital signal processors (DSPs) and intelligent machines 

this area of research has been getting more interest in recent years. A breakdown of 

the difficulties has been made and some solutions have been proposed to resolve 

certain challenges in this research. Additional algorithms and techniques have been 

introduced in order to fill the research gap in this area. PFMFCC has been designed 

and proposed as an alternative to existing spectral feature extraction techniques. 

Several feature sets, which have not been applied to speaker age prediction before, 

are adopted to this research and observed to make a difference with certain classifiers. 

This study has also strengthened the formation of multilingual training scenarios 

which has remained rare in speaker age estimation. 

This study investigated certain factors affecting speaker age prediction. The 

predictions were implemented in the form of classification and regression. Spoken 

language, amount of training data, speech duration, asymmetry of utterances 

representing age classes and environmental noise were the presupposed determinants 

confirmed to alter speaker age prediction.  

Speech duration is confirmed to affect the prediction of speaker age in this study. It 

is in line with the hypothesis we presupposed that longer utterances deliver better 

performances than shorter ones. Speaker age regression using LSSVR experimental 

results confirmed this argument that the improvement continued from 0.5 to 4 

seconds to be bold and started to saturate all the way to 10 second irrespective of 

front end feature set type.  The improvement continued after 4 second but remained 

too little to bargain over computation overheads due to large data size.  Therefore, 

developers are recommended to train their prediction models with medium length 
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utterances typically 4-6 seconds which is capable of tolerating utterance length 

mismatches during performance evaluation.  

Several magnitude, phase and sub-channel based spectral features are employed for 

speaker age estimation with classification given more emphasis in this research. Our 

proposed feature set PFMFCC overwhelmingly outperformed the majority of the 

remaining features and offered relatively close results with the famous MFCC feature 

on all classifiers and regression models. With the PLDA classifier it gave the best 

performance for both genders and all database setups. 

Despite the high order of complexity exhibited during simulations, LSTM offers best 

speaker classification and regression performances for female and male datasets of 

the aGender database with power spectral sequences with no further processing at the 

frontend. PLDA offered comparatively best results among traditional machine 

learning models for speaker age classification.  

Multilingual training has been observed to make up for the poor performance of 

classification models due to language mismatches between training and test datasets. 

The performance for matched language setups is observed to be the best among the 

three scenarios; matched-language, language mismatch (cross-language) and 

multilingual setups. The multilingual training however, does not affect the 

performance of a matched-language significantly while it played a crucial role in 

improving the prediction accuracy for cross-language settings. Increasing the number 

of languages in the multilingual scenario has even improved some of the feature-

classifier pair performances further for certain datasets. The worst case scenario 

appears when the setup is made to be cross-language where the performance dropped 

dramatically. The unbalanced nature of the Turkish male dataset seems to cause 

performance decline with the German male test set during bilingual training 

scenarios. However, this training has offered benefits to the Turkish male evaluation 

significantly. Despite few outliers both the bilingual and multilingual (with the three 

languages) scenarios outperformed the cross-language evaluation in many of feature-

classifier pairs. Therefore, multilingual training is preferred in order to widen the 

domain of incoming test set languages and get relatively acceptable accuracy of 

prediction.   
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Most speech processing applicatıons heavily rely on magnitude based spectral 

feature sets. The impressive speaker age classification accuracies shown by the 

MODGD feature however, indicate age information is lumped in both magnitude and 

phase components of speech spectrum. Therefore, we recommend a combined 

strategy could outperform existing standalone approaches. The classification 

accuracies are as bad as chance level predictions for mismatch scenarios. Hence for 

its versatility, training a certain model with multilingual data is recommended.  

The significant accuracy difference in the VAD and non-VAD experimental setups 

observed in PLDA classifier, suggests that a different energy threshold is required for 

different speech processing applications while removing non speech and noise 

frames from utterances during feature extraction. The nature of our databases may 

have caused the performance degradation of the PLDA classifier in VAD applied 

scenarios. Some frames are not sufficient enough to represent speech sound but, they 

may contain attributes that can enable speaker age recognition. Therefore, a lower 

energy threshold is recommended to retain some non-speech but, paralinguistic 

contents in speaker age estimation. 
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