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ALANDA PROGRAMLANABİLİR KAPI DİZİLERİ İLE EN KÜÇÜK 

TOPLAM KARESEL HATA SÜZGECİ TEMELLİ İZLEYİCİ 

ALGORİTMASININ GERÇEKLENMESİ 

ÖZET 

Bu yazıda, kızılötesi odak düzlemi dizileri (IRFPA) için en küçük toplam karesel hata 

(Minimum Output Sum of Squared Error (MOSSE) temelli hedef takip algoritmasının 

alanda programlanabilir kapı dizileri (FPGA) üzerindeki donanım mimarisi 

sunulmuştur. Mimari, yüksek seviyeli sentez yaklaşımı (High-Level Synthesis (HLS)) 

ile C++ dili kullanılarak modellenmştir. Geliştirilen donanım mimarisi daha sonra 

16nm teknolojide üretilen bir FPGA yongasında gerçeklenmiş ve test edilmiştir. 

Çalışmalar 640×480 çözünürlüğündeki video çerçeveleri üzerinde gerçekleştrilmiştir. 

Geliştirme süreçlerinde Xilinx firmasının Vivado HLS yazılımı kullanılmıştır. 

Deneysel sonuçlara göre, 25 BRAM kullanan ve maksimum 300 MHz çalışma 

frekansına sahip bir mimari elde edilmiştr. Yazılım ve donanım benzetimleri 

karşılaştırılarak algoritmayı yüksek doğrulukla gerçekleyen bir donanım mimarsi 

geliştrilmiştir. 

Anahtar Kelimeler: FPGA, MOSSE Takipçisi,Yüksek Seviye Sentez (HLS). 
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FIELD PROGRAMMABLE GATE ARRAY IMPLEMENTATION OF 

MINIMUM OUTPUT SUM OF SQUARED ERROR TRACKER ALGORITHM  

ABSTRACT  

In this thesis, a novel hardware architecture for the minimum output sum of squared 

error (MOSSE) tracker algorithm is presented. The proposed architecture is 

implemented on 16 nm field programmable gate array (FPGA). The hardware 

architecture is modeled with high level synthesis approach by using C++ by using 

Xilinx Vivado HLS tool. The proposed hardware architecture is implemented on an 

FPGA device fabricated at a 16nm technology node. Thermal camera development kit 

is used for experiments in which ULIS PICO Gen2 microbolometer is installed. The 

Pico Gen2 thermal imaging sensor has a video resolution of 640×480 pixels with 30 

frames/second. According to experimental results, the implemented design uses 25 

BRAMs and a maximum frequency of 300MHz. According to the the RTL simulation 

and MATLAB simulation results there is negligible difference between HW and SW 

implementation. 

Keywords: FPGA, MOSSE Tracker, High-Level Synthesis (HLS).  
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INTRODUCTION 

The process of detecting the position of an object in each frame of a video is called 

visual tracking [1]. The technology is widely used in the military, medicine, traffic 

control, and aerospace. Tracking an object helps to extract details that are used for 

further processing depending on the field of application [1]. 

The appearance of an object and the background information of an image make it 

difficult for visual tracking. Lighting, natural variations, and non-rigid transformation 

cause object appearance to change [2]. When objects move out of the frame or are 

occluded by other objects, it is not easy to continue tracking. When an object moves 

out of the tracking video, the tracker might start tracking another object or continue 

tracking the object that caused occlusion [2].  

Examples of robust techniques used for tracking include boosting tracker [3], multiple 

instance learning (MIL) tracker [4], the median flow tracker [5], minimum output sum 

of squared error (MOSSE) [6], tracking learning detection (TLD) [7], kernelized 

correlation filters (KCF) based tracking [8], generic object tracking using regression 

networks (GOTURN) [2], channel and spatial reliability tracker (CSRT) [9] 

The thesis is subdivided into 5 chapters. In Chapter 1, an overview of object tracking 

algorithm is given. An introductory study of microstrip of MOSSE tracker algorithm 

is discussed in Chapter 2. In Chapter 3, the implementation of MOSSE tracker in 

hardware is explained in details. In Chapter 4, the simulation and real-time test results 

are presented and discussed. Chapter 7 concludes this thesis and gives some 

recommendations. 
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1. OBJECT TRACKING ALGORITHMS  

1.1. Boosting Tracker 

Boosting tracker method is proposed in [3]. This method is an improved version of the 

AdaBoost feature selection algorithm. The boosting tracker is an online version and 

maintains a global classifier pool with multiple selectors with weak classifiers [3]. 

Each weak classifier in the pool is updated using the new training samples. The system 

contains numerous cascaded selectors in which the first selector initializes the current 

sample’s significance, chooses the weak classifier with the slightest error The 

estimated importance is passed to the subsequent selector until all the selectors have 

been updated. Finally, the weak classifier is replaced with the robust classifier chosen 

from the best weak classifier. The initial target in the current frame is utilized as a 

positive example, and the exact size is used to exploit other areas surrounding the 

target as a negative example. The trained classifier searches the potential targets from 

the neighbourhood in the next frame. The boosting tracker is fit to handle complex 

backgrounds and occlusions. 

1.2. Multiple Instance Learning (MIL) Tracker 

Multiple instance learning tracker that advances boosting algorithm through a bag that 

is a set of image patches instead of using one sample for training is proposed in [4]. A 

bag containing only negative samples is called a negative bag. If it has at least one 

positive bag, it is called a positive bag. The best positive example is chosen when the 

MIL tracker collects lots of small bags centred at the tracking object as the potential 

positive bags. The method prevents the MIL tracker from losing necessary details and 

mislabelling problems. 

1.3. MedianFlow Tracker 

Medianflow tracker is an approach that involves forward-backward tracking [5]. The 

consistency in forward-backward tracking is analyzed as a quality measure in tracking. 

The corresponding error between forward-backward trajectories constructed by the
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 medianflow tracker is estimated at each instant time. The trajectory forward-backward 

error is selected as the sample for the subsequent tracking. In conclusion, the 

medianflow Tracker is more reliable when tracking consistent movement.  

1.4. Tracking Learning Detection (TLD) 

Tracking learning detection (TLD) is composed of three parts: a tracker, a learner, and 

a detector [7]. The tracker follows the object through subsequent frames. The learner 

depends on a P-expert and N-expert to detect false alarms and misdetection and then 

updates the detector. According to an appearance structure, the detector identifies the 

possible targets, sends the output to the learner, and corrects the learner if needed. The 

TLD has the capability of failure recovery at the expense of instability. Compared to 

other trackers with the problem of accumulating errors, tracking and detection make 

the TLD tracker more robust for long-term tracking. 

1.5. Kernelized Correlation Filters (KCF) Based Tracking 

Kernelized correlation filters based tracking takes advantage of overlapping regions in 

multiple positive samples. The abundant data is computed in the frequency domain 

using the Fourier series computational techniques to increase the learning speed. 

Moreover, the technique depicts the usefulness of negative samples and uses more 

samples for improved training. A cyclic shift is applied to each critical sample to 

generate more samples. The features of circulant matrices are utilized to increase the 

computation. Furthermore, known kernel techniques are used to deal with nonlinear 

regression problems. The KCF tracker extracts the Histogram of Gradient (HoG) 

characteristics to improve the tracking accuracy instead of scanning through the raw 

pixels. 

1.6. The Generic Object Tracking Using Regression Networks Tracker  

Generic object tracking using regression networks (GOTURN) based on convolution 

neural networks (CNN) is proposed in [2].  GOTURN tracker adopts an offline dataset 

used to train CNN. The online tracking uses the generated pre-trained model, and the 

pretraining process uses the available information in offline datasets to learn both the 

motion and target appearance relationship. The GOTURN tracker achieves maximum 
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speed during the tracking process since CNN updates are offline. Although it is not a 

prerequisite to adding specific training targets in the dataset for pretraining, the 

GOTURN tracker tends to track the training set compared to the dataset, not in the 

training set. The main problem with GOTURN can result from the quality of the pre-

trained model that can affect the performance of the online tracking process. 

1.7. The Channel and Spatial Reliability Tracker (CSRT)  

Channel and spatial reliability tracker (CSRT) is a discriminative correlation filter 

(DCF) based algorithm [9]. It extends the DCF tracker by  adding spatial and channel 

reliability. The optimal filter size is calculated using the spatial reliability map. The 

CSRT can adjust the filter size that makes it better than the traditional DCF algorithm, 

excluding the unwanted samples. Furthermore, a spatial reliability map is capable of 

handling nonrectangular targets. The channel reliability is calculated to weigh the 

significance of each channel filter, then combine all to find the final response map. 

The CSRT tracker can achieve accurate results with real-time speed using the HoGs 

and Colorname standard characteristics sets. 

1.8. Minimum Output Sum of Squared Error (MOSSE) Tracker 

The paper focuses on MOSSE and its application in visual tracking [6]. The filter 

creates correlation filters that perform better than simple templates and map the images 

to their ideal outputs [2]. These correlation filters reduce the background interference 

and achieve better performance. The filters apply techniques to overcome the changes 

in lighting, scale pose, and shape of an object [2]. The MOSSE advances the ASEF 

[10] filter that has the problem of overfitting [2]. The filter’s flexibility allows the 

target initialization at any position instead of other filters that require the target to be 

at the center of the image.  

Initialization and tracking are the main components of the MOSSE tracking algorithm 

[6]. The first frame is used for initialization, and a later update of the kernel is done 

for the other frames. However, few frames can be used for initialization with no update 

filter for a simple tracker. First, the region of interest is identified (ROI) and cropped 

to initialize the filter. The filter is then correlated with a tracking window to find the 

new location of the object [6]. The process continues as the filter continues updating.  
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An object is selected by placing it at the center of the window during the real-time test. 

However, in Matlab testing, the object is selected by drawing a window around the 

object. Before initializing the filter, a pre-processing stage is undertaken on each frame 

of the cropped region. The ROI is converted to the Fourier domain, and a synthetic 

output is generated to initialize and update the filter [11]. The synthetic output is also 

in the Fourier domain, and the correlation is done in the Fourier domain. The advantage 

of using the Fourier domain is to make the computation faster [12]. The correlated 

output is converted to the time domain to identify the new location of the object.  

The images used for test contains a person making different movements to test the 

robustness of the tracker. Figure. 1.1 shows the initialization of the filter at the 7th 

frame. The person stays for one position for almost 100 frames to test if the filter is 

initialized correctly. The white bounding box indicates the tracking window. Figure. 

1.2 illustrates the tracking process of the person in the 200th , 300th , 400th , and 1000th 

, respectively. 

Figure 1.1.   Initialization of the target 
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This thesis presents the maths and steps for building the MOSSE filter. Furthermore, 

it shows the hardware architecture implementation modeled in C++ using the High-

Level Synthesis Platform (HLS). Xilinx ZYNQ Ultrascale+ FPGA development board 

is used for field tests [13]. 

1.9. Definition of Terms  

The terms presented in this section have been repeatedly used and helps to understand 

the underlying meaning of the context. 

Object/ Target: An object is a person or a thing with unique features that identify it 

from the other objects. It is also referred to as the target in this paper [14].  

Template: A template is a section of the image that cropped from the larger image and 

is used as the input image to perform the required calculations for the tracking process 

[6].  

  

200th Frame 300th Frame 

  

400th Frame 1000th Frame 

Figure 1.2. Frames tracked in a video 
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Correlation: Correlation is a measure that shows the similarity between two images. 

Template matching uses the correlation of a template and an image to find the location 

of the object. Correlation is achieved after moving the template at different locations 

in the image in which the best match is achieved [11].  

Filter: A filter is a sub-image with a given resolution less than the original image. The 

act of filtering is to use the filter and perform a pairwise sum of the filter and the 

corresponding image pixels [8]. Applying a filter on an image changes the output 

image depending on the function dedicated by the filter.  

Tracking window: Section of the image in which the tracker looks for the object's new 

location. The tracking window is obtained from the incoming video, and it correlates 

with the filter to give the new location of the object on track [6].  

Synthetic target: It is generated with a Gaussian peak at the object's location to be 

tracked. The synthetic target is mapped to the input image to generate a filter [6].  

Occlusion: An occlusion is where the target is blocked by another object in a video 

[2].  

Tracking: The algorithm finds the object's new location throughout the video in a 

process called tracking [15].  

Initialization: Process of training a filter used to identify the tracking object [6].  

Updating: It is the process of changing the filter information because of template 

change. The changes can be object rotation, scaling among others [6].  
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2. MOSSE TARGET TRACKING ALGORITHM 

The Minimum Output Sum of Squared Error (MOSSE) [6] is an extension of the 

Average Synthetic Exact Filter (ASEF) [16]. Therefore the section gives a detailed 

information of ASEF that is an advancement of the Exact filter [16].  The following 

steps are required during filter initialization: (1) obtain a template and process it, (2) 

create a synthetic target, (3) convert both synthetic target and preprocessed template 

from the time domain to frequency domain using Fourier transform equations [17]. 

2.1. Comparing an Image to a Template. 

The template matching technique is used to find the similarity between a template and 

an image by comparing the pixels. This technique uses the dot product method that 

helps to compare between the image and a template [8]. The dot product in our case is 

computed with the following equation. 

( , ) . i i

i

F x y x y x y= =                   (2.1) 

In Equation (2.1) [6], y represents, the image and x represents the template. The dot 

product of different images is low as compared to two similar images. Therefore, a 

threshold value can be determined to find the target in an image. The template slides 

over an image to find every possible similarity of the template over the image in a 

process called template matching. The pixels with the possibility of similarity are 

compared through the dot product method to find the similarity score. Fig. 2.1 shows 

a thermal camera image with a resolution of 640×480, and Fig. 2.2 shows a template 

of 64×64 pixels. Fig 2.3 shows how the correlation process is done over an image for 

every possible pixel combination. The correlation happens after every pixel from the 

left to the right and top to bottom. The peak obtained after correlation is used to find 

the new location of the target.  

Correlation involves calculating the mean of the image of the cropped region N×N. 

Every pixel is subtracted from the mean value, and later the cropped region is
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normalized to make it a unit vector. Therefore, correlation is a y-unit vector sphere 

that resembles taking the cosine of the angles between the vectors. The technique 

works well only when matching the same type of objects with similar appearances 

instead of matching the different objects with similar features. In conclusion, the 

matching does not work well for variations in lighting, nonrigid transformations, or 

natural variation [6]. 

2.2. Preprocessing 

The MOSSE filter-tracking algorithm has two main stages that include initializing the 

filter and tracking the object. Preprocessing step is an important step to be carried out 

before initializing the filter or tracking. Furthermore, the step is performed to every 

frame of the video before they are used for tracking [6]. The following steps are the 

essential steps that are required in the preprocessing stage.  

1. A template of 64×64 centered on the object is cropped from an image of resolution 

640×480.  

2. This step involves the conversion of the template to a grayscale image although in 

our case the image from the thermal camera is grayscale hence the conversation will 

not be required.  

3. The following equation is used to perform log transformation on the template. The 

log transformation enhances contrast reduces lighting effects, making high contrast 

features available for the filter to initialize [6]. 

ln( 1)x y= +                                           (2.2) 

In Equation (2.2) [6], x represents the input image, and y the output image after the 

transformation.  

4. After log transformation, the pixels are normalized to get a mean of zero and a 

normal of one. The process helps in maintaining consistency in illumination and 

reducing the effects of change in illumination between the different frames.  

5. The results are converted to the frequency domain using the Fourier transform 

equation. The following equation is a 2D DFT that is applied to the image.  
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1 1 2

0 0

( , ) ( , ) ... 0,..., 1; 0,..., 1

xu yvM N i
M N

x y

F u v f x y e u M v N

 − − − + 
 

= =

= = − = −             (2.3) 

In Equation (2.3) [6], f(x,y) represents the image in the spatial domain and F(u,v) 

represents the image in frequency domain [12]. As discussed earlier to identify the 

new location the image has to be converted to the time domain using inverse Fourier 

transform given by the following equation: 

1 1 2

0 0

1
( , ) ( , ) ... 0,..., 1; 0,..., 1

xu yvM N i
M N

u v

f x y F u v e x M y N
NM


 − − − + 
 

= =

= = − = −             (2.4) 

In Equation (2.4), f(x,y) represents the image in the time domain while F(u,v) 

represents the image in the Fourier domain [18]. 

Fig 2.1 shows the preprocessing stages in a flow diagram. A video of 640×480 

resolution is the input and the template is the output.  

    Figure 2.1. Preprocessing flow chart
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2.3. Synthetic Target 

A synthetic target is a target that contains a Gaussian peak centered on the object 

synthetically generated. The synthetic target has the role of initializing the target and 

updating the filter. The following equation illustrates how the synthetic target is 

generated.  

2 2

2

( ) ( )j jx x y y

gi e 

− + −
−

=                    (2.5) 

In Equation (2.5) [19], y and x represent the location of the pixels. gi represents the 

synthetically generated target. yi and xi represent the center of the object. σ is the radius 

of the peak region. A value of 9 is used in this paper as it depicted the best performance. 

Figure. 2.2 shows the image of a synthetic targetshowing sigma with different values.  

 

Figure 2.2. Synthetic target  
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2.4. Exact Filter 

Correlating the exact filter with a template on which the filter was initialized produces 

a strong peak at the location of the object and the surrounding is padded with zeros. 

The name exact filter comes because of the ability to transform the input to its target 

output image [16]. Steps followed to initialize the exact filter include the following.  

1. The region of interest is cropped of dimension 64x64. 

2. The template undergoes the preprocessing as discussed in section 2.2.  

3. Synthetic target is generated using Equation (2 5). 

4. Using the Fourier Transform equations, the synthetic target is converted to the 

frequency domain.  

5. The exact filter is obtained by the following equation. 

*
*

*

i i

i i

G F
H

F F 
=

+
                  (2.6) 

In Equation (2.6) [16], F represents the preprocessed template in the Frequency 

domain. 
*H  is a complex conjugate of the filter in the Fourier domain. 

*F i is the 

complex conjugate of Fi and Gi is the synthetic target image in the Frequency domain.  

Furthermore, ε eliminates division by zero.  

2.5. ASEF  

ASEF comprises an average of the multiple exact filters. The ASEF is considered to 

create a more general filter. Taking the average removes the features that are not 

consistent [16]. The ASEF is initialized using the following steps.  

1. The region of interest is cropped of dimension 64×64.  

2. The template undergoes the preprocessing as discussed in section 2.2.  

3. Synthetic target is generated using Equation (2.5). 
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4. Using the Fourier Transform equations, the synthetic target is converted to the 

frequency domain.  

5. The ASEF filter is obtained by the following equation. 

* *

1

1 N

i

i

H H
N =

=                    (2.7) 

Equation (2.7) [16], 
*H  represents the complex conjugate of the filter in the frequency 

domain. N represents the number of the initialized input images. *

iH  is the ith exact 

filter.  

2.6. MOSSE Filter 

The MOSSE filter minimizes the sum of squared error between the real output of the 

correlation and the expected output of the correlation [6]. The initialization of the 

MOSSE filter resembles the initialization of ASEF although ASEF requires a large set 

of initialization input images.  The process starts with acquiring the template by 

cropping the image, then preprocessing and Fourier transform takes place. After that, 

a synthetic target is generated and converted to the Fourier domain. The filter is 

initialized exactly as the exact filter in Equation (2.6).  

2.7. MOSSE Tracker  

This section discusses the detailed information of the MOSSE tracker. The mathematic 

behind the implementation is presented. Stepwise development of the tracker is 

discussed beginning with basic MOSSE and later how the filter is updated in case the 

shape of the target keeps on changing. 

2.7.1. MOSSE tracker mathematics. 

A filter requires a certain number of the template for initialization to achieve accurate 

tracking. Therefore, a set of frames are required to initialize the filter. In this thesis, 7 

frames were set for initialization. The template is preprocessed as discussed in section 

2.2 to get F. As discussed in section 2.3, a synthetic target G is obtained. Having 

obtained F and G, they are used to initialize the filter. 
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*

1( ) (1 )i i i iN G F N  −= + −                 (2.8) 

*

1( ) (1 )i i i iD F F D   −= + + −                (2.9) 

In Equation (2.8) [6] and (2.9) [6], Fi represents the preprocessed template in the ith 

frame. Gi represents the synthetic target for the ith frame in the video. The learning rate 

is represented by η, which ranges between 0 and 1. For a basic MOSSE tracker where 

the update is not required, the value is equivalent to 0. The symbol * and ʘ represent 

complex conjugate and dot product multiplication respectively. Element ε ensures 

there is no division by zero and in this case 0.0001 is used for regularization. Ni and 

Di represent the numerator and denominator results of Equation (2.6). The overall 

equation changes to the following: 

* i
i

i

N
H

D
=                 (2.10) 

Equation (2.10) [6] *

iH  represents the complex conjugate of the MOSSE filter. After 

the filter is initialized the second frame becomes the present frame of the tracker. The 

current frame is preprocessed as discussed in preprocessing steps. The resultant 

template is multiplied with the filter in the frequency domain to get the new location 

of the target using the following equation [6]. 

*G H F=                 (2.11) 

In Equation (2.11) [6] G represents the result after dot product multiplication of F the 

preprocessed template and 
*H  the complex conjugate of the MOSSE filter. G contains 

the peak that indicates the new location of the target. 

2.7.2. Tracking with filter update  

If an occlusion occurs, changes in the object’s size, or light illumination, the tracker 

may lose the object. Therefore a filter update is required that updates with the 

modification of the object [6]. Sometimes the object may rotate, and the shape may 

change, leading to incoherent information with the filter. For that reason, a filter update 

will be able to adapt to the changes of the object. According to Equations (2.8) and 



15 

 

(2.9), η is used as the learning rate. The value ranges between 0 and 1, and during the 

test, we used 0.075 that gave the best results. Figure. 2.3 illustrates the flow of the 

MOSSE tracker algorithm [6]. With the learning rate set to 0.075, the tracker tracks 

more frames than the learning rate at 0. 

 

Figure 2.3. Flow chart for the MOSSE tracking algorithm 
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3. HARDWARE ARCHITECTURE 

3.1. High-Level Synthesis (HLS) 

All the design is modeled in C++ using the Vivado HLS software The tool converts 

the C++ code to the traditional Register Transfer Level RTL, for example, VHDL or 

Verilog [20]. The advantage of using HLS it reduces time to market, especially when 

implementing a complex algorithm. The process involves writing the code, verifying 

the results with the MATLAB results, Performing Co-simulation that can generate 

simulation results for RTL. If the results are satisfactory, one can optimize the code 

through available pragmas or rewrite the functions in a more optimized format. Figure 

3.1 shows a flow diagram of the process to generate and RTL code modeled from C++ 

in the HLS platform [21]. 

 

    Figure 3.1. HLS flow process  
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3.2. FFT Hardware Architecture. 

The design requires the implementation of DFT in hardware. The FFT technique is 

adopted in this design because it requires less computation and resource utilization 

[18]. Several steps need to be followed to perform 2D FFT. The steps include the 

following: 

3.2.1. Bitreverse  

The reverse bits for a 1D array image with 8 pixels are as shown in Table 3.1. 

Table 3.1. Bitreverse 

Index Binary Bit-Reversed Binary Bit reversed Index 

0 000 000 0 

1 001 100 4 

2 010 010 2 

3 011 110 6 

4 100 001 1 

5 101 101 5 

6 110 011 3 

7 111 111 7 

In this project, the length of a 1D array is 64. A LUTRAM is used to hold the address 

in reverse order.  When the array is copied from the array, it is stored directly to its 

reverse position in the line buffer.  

3.2.2.  2D forward FFT 

Once the line buffer is filled with reversed samples, the line buffers are transformed to 

frequency domain line by line using the FFT technique. [22]. FFT technique requires 

the calculation of the twiddle factors [22]. For this case, twiddle factors for both FFT 

and IFFT are calculated and stored in LUTRAM. Again, this is a technique to save on 

computational resources. Every line is stored in transpose format in the DDR memory 

after FFT calculation. The transpose format is a requirement for 2D FFT calculations. 

After that process is completed, the process repeats itself, but this time, the input being 
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the transposed 1D FFT results. The results of 2D are transposed to the DDR memory 

line by line. Figure 3.3 illustrates the theoretical aspect of FFT [12]. Figure 3.4 

illustrates the hardware architecture of 2D FFT. 

3.2.3. 2D IFFT  

According to research, inverse FFT can be achieved by the same method of forward 

FFT [12]. The only difference between the two complex conjugates of the FFT image 

is considered. Figure 3.5 illustrates the IFFT by complex conjugation [22]. In a 

hardware implementation, twiddle factors of the complex conjugate are stored in 

LUTRAM. The result is divided by 64x64, the size of the image used. Figure 3.6 shows 

the hardware architecture. of IFFT. 

 

 

 

Figure 3.2. Theoretical aspect of 1D FFT for 8 pixels  

 

Figure 3.3. 2DFFT hardware architecture 
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3.3. Preprocessing Hardware Architecture  

The input video has a resolution of 480p. A template of 64×64 with the target at the 

center is cropped. Equation (2.2) is applied in which the mean value of x is calculated 

along. The output is stored in DDR. Normalization does not happen immediately 

because the standard deviation has to be calculated that depends on o the mean value. 

Therefore, since the processing is done line by line due to limited resources in FPGA, 

it helps to use only one BRAM 64 in length. After the storage, the frame is extracted 

line by line from DDR for normalization and send back to DDR. When normalization 

has been completed, the line-by-line process repeats itself, allowing a dot product of 

the normalized template and Hanning filter. Storing Hanning filter data in LUTRAM 

removes the online calculation process. The advantage of calculating the Hanning filter 

before saves DSPs and reduces latency. The dot product results are then stored in DDR, 

ready for 1D FFT. The process continues as shown in Figure 3.7 until 2D FFT is 

obtained as the required template to initialize the filter. 

 

Figure 3.6. Preprocessing hardware architecture block design 

 

Figure 3.4. Illustration of IFFT by complex conjugation  

 

Figure 3.5. Hardware architecture for IFFT 
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3.4. Hardware Architecture for Initializing MOSSE Filter  

Following Equations (2.8) and (2.9), the learning rate is taken as 0 during initialization. 

The template stored in DDR after preprocessing is used as the input in this stage. 

Furthermore, synthetic target G is calculated in MATLAB and stored as a constant in 

LUTRAM. Accessing the DDR is done line by line in which the dot product of 

synthetic target and the template is calculated. As shown in Figure. 3.8. N stands for 

the numerator parameter and D denominator parameter of Equations (2.8) and (2.9),  

respectively. 
*F  and 

*H  represent the complex conjugate of the respective 

parameters. Every line result in N and D parameters stored in DDR. Using Equation 

(2.10). 
*H  is calculated and stored in DDR as the initialized filter. 

3.5. Hardware Architecture for Finding the Location of the Target  

A new template is preprocessed using the incoming frame. In Figure 3.9 both the inputs 

are loaded from DDR to calculate the dot product R as in Equation (2.11). The template 

is multiplied with the initialized filter 
*H  using the dot product method. The result R 

is stored in DDR. The results need to be converted from frequency domain to spatial 

domain to obtain the maximum response. IFFT of R is taken to achieve the condition. 

The IFFT of R indicted by gi is stored in the DDR The resultant image gi in the spatial 

domain has a peak response considered the new center of the target. Finally, the gi 

image is scanned pixel by pixel extracted from the DDR row by row to find the 

maximum response. If there is more than 1 maximum response pixel, the average is 

calculated, and the new location denoted by dx and dy is identified. The location is 

used to crop the new location of the target object as the whole process repeats itself.  

 

Figure 3.7. MOSSE filter initialization block design 
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Figure 3.8. Finding the location of the target block design 

3.6. Hardware Architecture for Filter Update 

At this point, Equations (2.8) and (2.9) are used. _ prevN and _ prevD  represent the 

previous numerator and denominator parameters stored in DDR. New N and D are 

calculated as in section 3.4. The learning rate represented by the η symbol is selected 

randomly between 0 and 1 to achieve the best tracking. In this case, 0.075 is used for 

the test. The new parameters obtained are used to generate the updated filter as 

explained in Equation (2.10). Furthermore, the updated values of N and D are stored 

in DDR to be used in the next frame as the previous parameters. Figure 3.10 provides 

detailed information on the hardware architecture. 

 

Figure 3.9. Hardware architecture for filter update 



22 

 

3.7. Alternative Hardware Architecture for Filter Update 

The following equation is modified and tested both on MATLAB and FPGA. The 

results compared with the previous design had a close similarity. The advantage of the 

alternative method leads to a reduction in DSP utilization and access to the DDR. 

According to the modified solution, the learning rate is applied to the MOSSE filter 

represented by *H  instead of N and D parameters. The modified equation is as 

follows:  

* * *

_ _ _( ) (1 )new new oldH H H =  + −                   (3.1) 

*

_ newH represents the current MOSSE filter calculated in Equation (2.10) and 
*

_ oldH is 

the previous MOSSE filter stored in DDR. Figure 3.11 shows the hardware 

architecture block design. 

 

Figure 3.10. Alternative filter update hardware architecture block design 
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4. EXPERIMENTAL RESULTS 

MATLAB results are compared with real-time results. The real-time test is conducted 

using a Fullscale Thermal Camera and Utrascale Zynq Board. The design achieved a 

maximum frequency of 300MHz and has a latency of 261630 clock cycles. According 

to Table 4.1, the number of DSPs is significantly high. This number can be attributed 

to the algorithm that requires more DSPs for computation. Using the DDR 

significantly reduced the number of BRAMs required   

Figure 4.1 shows the ISP generated in VIVADO as the top module function of the 

module. The design has both input and output. The tracker receives the activation 

signal from the crop module for the input section once the cropped data has been stored 

in DDR memory and is ready for use. There are a mean value and learning rate that is 

set externally. The mean value is generated while in the cropping process. The learning 

rate is an external parameter that can be varied between 0 and 1. On the output section, 

there is a memory map stream that reads and writes to DDR memory. Every location 

has a unique address that helps identify where to write and where to read the data. The 

tracker generates the new location and sends it to Figure 4.2 to crop the new location 

for processing.  

Therefore, Figure 4.2 has the input section that consists of the axi4 stream for video 

streaming and the location of the region of interest. The output side has the memory 

map stream that writes the cropped region to DDR at the specified address. It also 

sends the mean value and starts signal to start and stop the tracker. The tracker has to 

start and stop because its latency is lower than the input image, and therefore, it will 

complete the process and repeat the same data leading to loss of synchronization. 

Additionally, the output section has the output stream that sends the video for display. 

Table 4.1. Resources Utilization and Timing 

clock frequency latency LUT BRAMs DSPs Flipflops SRL 

2.89 ns 300 MHz 261630 66596 25 254 48858 1168 
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Figure 4.3 shows the output results from MATLAB. The images include 100th, 200th, 

300th, 400th, 600th, 1000th, 1300th, and 1500th. The same motion was tested in real-time 

the images recorded. Since we could not set the module and collect the initial images, 

the images were recorded from 1000th 1100th, 1200th, 1300th, 1400th, 1600th, 1800th, 

2000th. Figure 4.4 shows the FPGA output results. The results were very promising 

even when the body was rotating. Although when the body rotates at very high motion, 

the tracker could lose the object.  

 

           Figure 4.1.  MOSSE tracker IP 

 

           Figure 4.2.  Cropping window IP 
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    100th frame     200th frame 

  

    300th frame     400th frame 

  

    600th  frame     1000th  frame 

  

    1300th  frame      1500th  frame 

    Figure 4.3. MATLAB results 
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    1000th frame     1100th frame 

  

    1200th frame     1300th  frame 

  

    1400th  frame     1600th  frame 

  

    1800th  frame     2000th  frame 

    Figure 4.4.  FPGA results 
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5. CONCLUSIONS AND FUTURE WORK 

The algorithms for object tracking discussed include the MOSSE tracker, a robust 

tracking algorithm that finds application in many fields. The MOSSE tracker is 

selected for implementation in this thesis due to the ease in implementation. The thesis 

provides a mathematical model behind the implementation of the algorithm. The 

challenges and the advantages of the MOSSE tracker are presented in this thesis. The 

main goal was to implement the MOSSE tracker in FPGA. Hardware architecture for 

FFT block module, preprocessing module and finding the object's current location 

architecture are presented. The thesis discusses an alternative method used to update 

the filter. Adopting the alternative method led to a reduced number of DSPs utilization. 

The hardware architecture is modeled in C++ language using the HLS tool. Finally, 

MATLAB results compared with the real-time results tested on an FPGA board 

showed close similarities. The design achieved a maximum frequency of 300MHz and 

25 BRAMs utilization.  

For future work, the Hanning filter, Gaussian filter, and twiddle factor can be stored 

in DDR memory to reduce LUTRAM utilization. Furthermore, the design handles a 

constant template of 64×64 which can lead to the target losing track if the object moves 

closer or away from the camera, leading to a change in size. Scaling can be applied in 

the future to accommodate the challenge. 
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