BİLEŞİK ISI GÜÇ SİSTEMLERİ ve MATEMATİKSEL MODELENMESİ

YÜKSEK LİSANS TEZİ
Elk. Müh. Mehlika ŞENGÜL

Ana Bilim Dalı: Elektrik
Danışman: Prof. Dr. Nesrin TARKAN

HAZİRAN 2000
BİLEŞİK ISI GÜÇ SİSTEMLERİ ve MATEMATİKSEL MODELLENMESİ

YÜKSEK LİSANS TEZİ

Elk. Müh. Mehlika ŞENGÜL

Tezin Enstitüye Verildiği Tarih : 23 Haziran 2000
Tezin Savunulduğu Tarih : 31 Temmuz 2000

Tez Danışmanı Üye Üye
Prof. Dr. Nesrin TARKAN Prof. Dr. Semra ÖZTÜRK Prof. Dr. Hüseyin ÇAKIR

HAZİRAN 2000
BİLEŞİK ISI GÜÇ SİSTEMLERİ ve MATEMATİKSEL MODELLENMESİ

Mehlika ŞENGÜL

Anahtar Kelimeler: Bileşik Isı-Güç, Kojenerasyon, Matematiksel Model, Simülasyon


Ayrıca klasik sistemler oluşabilecek enerji kesintilerinden etkilenebilir. Özellikle imalat endüstrileri için kesintisiz enerji ve proses buhari büyük bir öneme sahiptir. Kısa süreli enerji kesintileri bile kimya, kağıt, metalurji, gıda ve maya üzerine çalışan firmalar için çok önemli büyük ekonomik kayıplara yol açabilir. Halbuki bileşik ısı-güç üretim sistemleri şebeke ile uyumlu çalışarak enerji kesintilerinden etkilenme oranını en aza indirir.

Bu tezde, verimli enerji üretebilen geliştirilmiş sistemler olan elektrik ve ısıyı aynı sistemde üreten bileşik ısı-güç üretim sistemlerinin çalışmalarını incelenmiştir. Ayrıca ele alınan örnek bir sistemin matematiksel modeli oluşturularak simülasyonu yapılmış ve elektrik üretimi kontrolü hakkında çalışma yapılmıştır.
COMBINED HEAT - POWER SYSTEMS and MATHEMATICAL MODELLING

Mehlika ŞENGÜL

Keywords: Combined Heat and Power, Cogeneration, Mathematical Modelling, Simulation

Abstract: In order not to be found any kind of energy to solve the problems about energy by the recent technology which has important high efficiency has to be obtained by the primer energy resources in use. In classical systems, electrical energy reuired is got from power grids and heat energy is from steam boiler. The cogeneration which is defined as combined production of heat and power is an combined production of mechanical power and heat energy in the same central over a single energy source.

Besides this, classical systems could be effected by possible energy interruption. Especially for the manufacturing industry, an uninterrupted supply of power, proses steam and cooling is of existential importance. Even short-term outages can cause major economic losses for companies in the chemicals, paper, metallurgical, food and brewing industries. However, operating combined heat and power production systems computed with grids, ratio effected by power interruption is reduced minimum.

In this thesis, operating of combined heat and power generating systems which produce electricity and heat that is developed for transferring efficient energy at the same system are discussed. Generated electricity control is examined by acquiring mathematical model of a selected system.
ÖNSÖZ ve TEŞEKKÜR

Bileşik Işı- Güç Üretim Sistemleri'nin incelenmesi ve daha verimli kullanılması için kontrol yöntemlerinden faydalanması gerektiğini gösteren bu tezde, çalışmamı yönlendiren ve destek sağlayan sayın, Prof. Dr. Nesrin TARKAN'a, yardımlarından dolayı Arş.Gör. Tanık ERFİDAN'a ve manevi desteklerinden dolayı aileme teşekkürlerimi sunarım.
iÇİNDEKİLER

ÖZET...........................................................................................................i
ABSTRACT..................................................................................................ii
ÖNSÖZ ve TEŞEKKÜR.............................................................................iii
iÇİNDEKİLER............................................................................................iv
SIMGELER DİZİNİ ve KISALTMALAR....................................................viii
ŞEKİLLER DİZİNİ......................................................................................xii
TABLOLAR DİZİNİ..................................................................................xv

BÖLÜM 1. GİRİŞ.........................................................................................1

BÖLÜM 2. BİR GÜÇ SANTRALİNİ OLUŞTURAN ELEMANLAR.............5
  2.1. Buhar Üretim Tesisleri(Kazan).........................................................5
  2.2. İsi İşlemlerindeki Ek Elemanlar.......................................................6
      2.2.1. Atık ısı kazanı.......................................................................6
      2.2.2. Süper ıstıçıl(Süperheater).....................................................7
      2.2.3. Tekrar ıstıçıl(Reheater)........................................................7
      2.2.4. Ekonomizer.........................................................................7
      2.2.5. Hava ön ıstıçılı.................................................................7
      2.2.6. İlave ateşlemeli atık ısı kazanı...........................................8
  2.3. Kompresör....................................................................................9
  2.4. Yanma Odası(Reaktör)................................................................9
  2.5. Türbinler......................................................................................10
      2.5.1. Gaz türbini.......................................................................10
      2.5.2. Buhar türbini.................................................................11
  2.6. Yoğunlaştırıcı(Kondenser)..........................................................12

BÖLÜM 3. ENERJİ ÜRETİM SİSTEMLERİNİN İŞLETİLMESİ....................14
  3.1. Tek Boyutlu Sistemlerde Verim Yükseltme Yöntemleri.............15
      3.1.1. Baca gazından yararlanmak...............................................15
      3.1.2. Türbinlerin çok kademeli yapılması..................................16
      3.1.3. Karşı basınçlı çok kademeli türbin kullanılması.............17
3.2. Tek Boyutlu Sistemlerden Bileşik-İşتز Üretim Sisteme Geçiş……..20
3.3. Atılan İsimin Yararlı Kullanılış Alanları...........................................25
3.4. Sistemin Verimi.................................................................................26

BÖLÜM 4. BİLEŞİK İŞİ-GÜÇ ÜRETİM TÜRLERİ.................................................30
4.1. Alt ve Üst Çevrimli Türler...............................................................30
   4.1.1. Üst çevrimli türler.....................................................................30
   4.1.2. Alt çevrimli türler.....................................................................31
4.2. Buhar Türbinli Sistemler...............................................................31
   4.2.1. Karşılı basınc türbinli bileşik işi-güz üretim sistemi
          (Kondensersiz çevrim).................................................................32
   4.2.2. Yoğuşma/Ekstraksiyon türbinli (Ara buhar çekilen) bileşik
          işi-güz üretim sistemi(Kodenserli çevrim).................................33
4.3. Gaz Türbinli Sistemler.................................................................35
   4.3.1. Çevrim açısından gaz türbinli sistemler....................................37
      4.3.1.1. Açık çevrimli sistemler.....................................................37
      4.3.1.2. Kapalı çevrimli sistemler.....................................................37
   4.3.2. Atık işi kazanı kullanılan türleri.............................................39
      4.3.2.1. Ateşlemesiz atık işi kazanlı sistemler................................39
      4.3.2.2. İlave ateşlemeli atık işi kazanlı sistemler..........................40
   4.3.3. Buhar enjeksiyonlu gaz türbini...............................................40
   4.3.4. Gaz türbinli çevrimde buhar türbini kullanımı..........................41
   4.3.5. Egzos gazlarının doğrudan kullanılanı
gaz türbinli sistemler.................................................................42
4.4. İçten Yanamalı Motorlu Sistemler..................................................43
   4.4.1. Gaz motorlu sistemler............................................................43
   4.4.2. Dizel motorlu sistemler..........................................................45
   4.4.3. İçten yanamalı motorlu santrallerin elektrik düzenleri...............46
      4.4.3.1. Otomatik yolalama düzenleri............................................46
      4.4.3.2. Senkronizasyon düzenleri..................................................47
4.5. Kombine Çevrimli Sistemler.........................................................50
   4.5.1. Karşılı basınçlı türbin ile kombine çevrim............................51
   4.5.2. Yoğuşma/Ekstraksiyon türbini ile kombine çevrim...............52
4.5.3. Alçak ve yüksek basınç kademeli atık ısı kazanı kullanımı .......................................................... 53
4.6. Nükleer Yakıtlı Bileşik Isı-Güç Üretim Sistemi ............................................................................. 54

BÖLÜM 5. BİLEŞİK ISI-GÜÇ ÜRETİM SİSTEMLERİNDE OPTİMUM SİSTEM
KAPASİTESİ ve TÜRÜNÜN SAPTANMASI ........................................................................................... 56
5.1. Enerji Üretiminde Seçenekler ..................................................................................................... 56
5.2. Örnek ............................................................................................................................................. 69

BÖLÜM 6. TÜRKİYE'DE KURULAN BİLEŞİK ISI-GÜÇ ÜRETİM
SANTRALLERİNİN ÖNEMLİ ve ÇEVREYE ETKİLERİ .................................................................... 78
6.1. Türkiye'de Enerji Kaynakları ve Köjenerasyon ...................................................................... 78
6.2. İleriye Dönük Market Araştırması .......................................................................................... 80
6.3. Bileşik Isı Güç Sistemlerinin Çevre Korumaya Katkısı ............................................................. 81
   6.3.1. Fosil yakıtlı santrallerden kaynaklanan çevre sorunları ..................................................... 81
6.3.2. Temiz enerji üretim sistemleri ve yeni teknolojiler ............................................................. 83
   6.3.2.1. Linyitlerin değerlendirilmesi için teknolojiler ................................................................. 83
      6.3.2.1.1. Toz tutma ve baca gazı arıtma teknolojileri ............................................................... 83
      6.3.2.1.2. Akuşkan yataкла yakma teknolojisi .......................................................................... 83
      6.3.2.1.3. Entegre kömür gazlaştırma kombine çevrim teknolojisi ........................................... 84
   6.3.2.2. Doğal gaz ve sıvı yakıt kullanılan enerji üretim teknolojileri .......................................... 84
      6.3.2.2.1. Kombine çevrim santralleri ......................................................................................... 85
      6.3.2.2.2. Bileşik ısı-güç üretim sistemleri .............................................................................. 86

BÖLÜM 7. ELE ALINANÖRNEK TESİSİN MODELİNİN OLUŞTURULMASI
ve SİMÜLASYONU ........................................................................................................................... 87
7.1. Tesisin Tanımı ............................................................................................................................... 87
7.2. Tesisin Modellenmesine İlişkin Çalışma .................................................................................. 89
7.3. S Domeninde Matematiksel Modeli Oluşturulan Tesisin Elektrik Üretim Kontrolü .................. 95
SİMGELELER DİZİSİ ve KISALTMALAR

a  : Birim tesis maliyeti
a_B : Buhar türbini sistemin birim tesis maliyeti
a_G : Gaz türbini sistemde birim tesis masrafi
A  : Tesisin yıllık elektrik enerjisi maliyeti
A_B : Buhar türbini sistemde şebekeden alınan yıllık elektrik enerjisi maliyeti
A_G : Gaz türbini sistemde şebekeden elektrik enerjisinin alın fiyatı
A_K : Kombine çevrimli sistemde elektrik enerjisinin şebekeden alın masrafi
b  : Buhar kazanının yıllık bakım masrafi
b_B : Buhar türbini sistemin yıllık bakım masrafi
b_G : Gaz türbini sistemin yıllık birim bakım masrafi
c  : Ayırı ayrı enerji üretiminde yıllık toplam maliyet
C_B : Buhar türbini sistemde işletme ve bakım masrafi dahil yıllık üretim
      masrafi
C_G : Gaz türbini sistemde yıllık üretim masrafi
C_K : Kombine çevrimli sistemde işletme ve bakım da içeren yıllık toplam
      üretim masrafi
d  : Gaz türbininde 1 kW'lık elektriksel güç üretmek için gerekli olan yakıt
      miktarı
e  : Toplam enerji çıkışının elektriğe olan kısmı
E  : Üretilen elektrik enerjisi
f  : Elektrik enerjisi satan kuruluşun enerji birim satış fiyatı
g  : Elektriğin şebekeye satışındaki birim fiyat
h_C : Türbenden çikıp kondensere giren buharın entalpisi
h_D : Tesiste işlemden geçtikten sonra çevrime geri dönün su, buhar
      entalpisi(kj/kg)
h_G : Tesiste ihitiyaç duyulan buhar entalpisi(kj/kg)
h_T : Kazadan çikıp türbine giren buharın entalpisi
I  : Yıllık işletme ve bakım maliyeti
i  : Buhar kazanının yıllık birim işletme masrafi
I_B : Buhar türbini sistemin yıllık birim işletme masrafi
I_G : Gaz türbini sistemde yıllık birim işletme masrafi
j : Zaman diliminin numarası
k : Tesisin bir yıl boyunca işletmede kaldıği gün sayısı
K_G : Gaz türbinli sistemde atık ısı kazanında kullanılan ek yakıtın masrafi
K_K : Kombine çevrimli sistemde atık ısı kazanında kullanılan yakıt masrafi
m_J : Tesisin j. dilimindeki buhar gerekсинimi (ton/saat)
mtoe : Milyon ton eşdeğer petrol
m_{XJ} : j. Dilimde, kazanın düşük basınçlı bölümünden çıkan buharın debisi
m_{ZJ} : j. Dilimde, kazanın yüksek basınçlı bölümünden çıkan buharın debisi
M : Buhar kazanının tesis maliyeti
M_B : Buhar türbinli sistemde tesis maliyeti
M_G : Gaz türbinli sistemde tesis maliyeti
M_K : Kombine çevrimli sistemde tesis maliyeti
N : Bir gün içindeki zaman dilimlerinin sayısı
P_{BJ} : Buhar türbininin j. dilimde üretiliği elektriksel güç
P_{BTJ} : Buhar türbininin j. dilimde üretiliği mekanik güç
P_d : Tesiste işlemden geçtikten sonra çevrime geri dönen su, buhar basıncı(bar)
P_g : Tesiste ihtiyaç duyulan buhar basıncı
P_{GJ} : Gaz türbini tarafından j. dilimde üretilen elektriksel güç
P_j : Tesisin j. dilimindeki elektrik gücü gereksinimi(kW)
P_{KJ} : Kombine çevrimli sistemde elde edilecek elektriksel güç
Q : Sisteme giren yakıt ısisı
S : Gaz türbini çevrininin ısıl-gürü oranı
S_B : Buhar türbinli sistemde şebekeye elektrik satışından elde edilecek gelir
S_G : Gaz türbinli sistemde şebekeyen elektrik enerjisinin alın fiyatı
S_K : Kombine çevrimli sistemde şebekeye elektrik enerjisi satışından elde edilecek gelir
\( t \) : Bir zaman diliminin süresi
T_{d} : Tesiste işlemden geçtikten sonra çevrime geri dönen su, buhar sıcaklığı(°C)
T_{g} : Tesiste ihtiyaç duyulan buhar sıcaklığı(°C)
y : Birim yakıt fiyatı
Y : Ayrı ayrı enerji üretiminde buhar kazanının yıllık yakıt maliyeti
Y_B : Buhar türbinli sistemde yıllık yakıt masrafi
Y_BJ : Buhar türbinli sistemde j. dilimde gerekli olan yakıt miktarı
$Y_G$ : Gaz türbinli sistemde kullanılan yakıtnın masrafi  
$Y_K$ : Kombine çevrimli sistemde gaz türbininde kullanılan yakıt masrafi  
$\Delta h$ : Kazan tarafından buhara verilen birim enerji(kj/kg)  
$\Delta H_s$ : Sisteme verilen ısı enerjisi  
$\eta_A$ : Ayrı ayrı enerji üretiminde verim  
$\eta_B$ : Bileşik ısı-güç üretiminin verimi  
$\eta_e$ : Elektrik santrali verimi  
$\eta_g$ : Generatör verimi  
$\eta_k$ : Buhar kazanı verimi

A.B.T. : Alçak Basınç Türbini  
A.I.K. : Atık Isı Kazanı  
B.B. : Buhar Basınıcı  
B.I.G.Ü: Bileşik Isı-Güç Üretimi  
B.M. : Buhar Miktarı  
B.T. : Buhar Türbini  
C.H.P. : Bileşik Isı-Güç (Combined Heat and Power)  
Ç.B. : Çürik Buhar  
E.Ç.S. : Egzos Çıkış Sıcaklığı  
E.G.B. : Egzos Giriş Basıncı  
E.K. : Ekonomizer  
E.Ş. : Eşanjör  
E.Ü. : Elektrik Üretimi  
F.G.D. : Baca Gazi Artırma Sistemi  
G. : Generatör  
G.T. : Gaz Türbini  
H.H.V. : Üst Isıl Değeri  
H.P. : Yüksek Basınçlı  
I.G.C.C : Entegre Kömür Gazlaştırma Kombine Çevrim Teknolojisi  
K. : Kondenser(Yoğunlaştırıcı)  
K.P. : Kompresör  
K.Ç.B. : Kompresör Çıkış Basıncı  
K.Ç.S. : Kompresör Çıkış Sıcaklığı
K.G.B. : Kompresör Giriş Basıncı
K.Z. : Kazan
L.P. : Alçak Basınçlı
L.P.G. : Likid Petrol Gazı
O.S. : Ortam Sıcaklığı
P. : Pompa
S.H. : Süper I ısıtı(Süper Heater)
S.S. : Sıcak Su
Y. : Yoğuşturucu(Kondenser)
Y.B.K.B. : Yüksek Basınçlı Kızgı Kuyruk Buhar
Y.B.T. : Yüksek Basınç Türbini
Y.M. : Yakıt Miktarı
Y.O. : Yanma Odası(Reaktör)
Y.O.C.B. : Yanma Odası Çıkış Basıncı
ŞEKİLLER DİZİNİ

Şekil 2.1. Buhar Kurutucu Tesiati........................................................................... 6
Şekil 2.2. Atık ısı Kazanı......................................................................................... 9
Şekil 2.3. Yanma Odası İçinde Hava Akişı.............................................................. 10
Şekil 2.4. Gaz Türbininin Çalışma Prensibi.......................................................... 11
Şekil 2.5. Yoğuşturucu Kapalı Çevrim Şeması..................................................... 12
Şekil 2.6. Yoğuşturucu Açık Çevrim Şeması....................................................... 13
Şekil 2.7. Açık Çevrimli Yoğuşturucuda Fısıkiye Yöntemi..................................... 13
Şekil 3.1. Tek Boyutlu Sistemde Basit Çevrim.................................................... 14
Şekil 3.2. Baca Gazından Yararlanmış Bıçimleri................................................ 16
Şekil 3.3. Çok Kademeli Türbin Kullanım Sistemi.............................................. 17
Şekil 3.4. Karşı Basınçlı ve Çok Kademeli Türbin Sistemi................................. 18
Şekil 3.5. Karşı Basınçlı Çok Kademeli Türbin Sisteminde Buhar Çıktılı Eşanjör Kullanımı.................................................................................................................. 19
Şekil 3.6. Karşı Basınçlı Çok Kademeli Türbin Sisteminde Sıcak Su Çıktılı Eşanjör Kullanımı................................................................. 20
Şekil 3.7. Tek Boyutlu Sistem İle Bileşik Isı-Güç Sistemlerinin Enerji Sağlama Yöntemlerinin Karşılaştırılması................................................................. 22
Şekil 3.8. Tek Boyutlu Sistemlerde Sıcaklık-Entropi Diyagramı........................... 23
Şekil 3.10. Isı ve Elektrijin Beraber Üretilmesi.................................................... 28
Şekil 3.11. Buhar ve Elektrijin Aynı Ayrı Ayrı Üretilmesi................................... 28
Şekil 4.1. Üst Çevrimli Bileşik Isı-Güç Üretim Sistemleri.................................. 30
Şekil 4.2. Alt Çevrimli Bileşik Isı-Güç Üretim Sistemleri................................ 31
Şekil 4.3. Buhar Türbinli ve Kondensersiz Bileşik Isı-Güç Üretim Sisteminin Çevrimi.................................................................................................................. 33
Şekil 4.4. Buhar Türbinli ve Kondenserli Bileşik Isı-Güç Üretim Sisteminin Çevrimi.................................................................................................................. 34
Şekil 4.5. Buhar Türbini Çeşitleri........................................................................... 35
Şekil 4.6. Gaz Türbini Prensiş Şeması................................................................. 36
Şekil 4.7. Açık Çevrimli Gaz Türbinli Sistem..................................................... 37
Şekil 4.8. Kapalı Çevrimli Gaz Türbinli Sistem.................................................. 38
Şekil 4.9. Eşanjör ve Reaktör Kullanılarak Yanma Odası ...........................................38
Şekil 4.10. Ateşleşmesiz Atık Isı Kazanlı Sistem .......................................................39
Şekil 4.11. İlave Ateşlemeli Atık Isı Kazanlı Sistem .................................................40
Şekil 4.12. Buhar Enjeksiyonlu Çevrim Sistemi .....................................................41
Şekil 4.13. Gaz Türbinli Sistemde Buhar Türbininin Kullanıldığı Sistem ...............42
Şekil 4.15. Gaz Motorlu Bileşik Isı-Güç Üretim Sistemi Çevrimi .................43
Şekil 4.16. Dizel Motorlu Bileşik Isı-Güç Üretim Sistemi .................................46
Şekil 4.17. İçten Yanmalı Motorlu Sistemin Otomatik Yol alma Düzeni ...............47
Şekil 4.18. O.G. Kojenerasyon Salt Tesisi(Iki Türbinli Sistem) .................................49
Şekil 4.19. O.G. Kojenerasyon Salt Tesisi(Tek Türbinli Sistem,Regel Trafolu) .........50
Şekil 4.20. Karşı Basınçlı Turbin İle Kombine Çevrim .........................................51
Şekil 4.21. Yoğunlaşma Turbini İle Kombine Çevrim .............................................52
Şekil 4.22. Iki Kademeli Atık Isı Kazanı Kullanım Sistemi .......................................53
Şekil 4.23. Iki Kademeli Atık Isı Kazanı ve Kondenser Kullanım Sistemi ...............54
Şekil 5.1. Klasik Sistemin Şematik Gösterimi ......................................................58
Şekil 5.2. Buhar Türbinli Bir Çevrimin Şematik Gösterimi .....................................60
Şekil 5.3. Gaz Türbinli Basit Çevrimin Şematik Gösterimi ......................................64
Şekil 5.4. Kombine Çevrimin Şematik Gösterimi ...................................................66
Şekil 5.5. Endüstri Tesisinin Ortalama Günlük Elektrik Enerjisi Gereksinimi .........70
Şekil 5.6. Endüstri Tesisinin Ortalama Isı Enerjisi (Buhar) Gereksinimi ...............70
Şekil 5.7. Birim Tesis Maliyetinin Güçe Göre Değişimi .........................................71
Şekil 5.8. Birim İşletme Masrafinın Güçe Göre Değişimi .....................................72
Şekil 5.9. x=10...70 MW Aralığında Mc, Cc ve C’nin x’e Göre Değişimi ...............73
Şekil 5.10. x=10...70 MW Aralığında Yatırımın Geri Ödeme Süresi(H)’nin 
   x’e Göre Değişimi .......................................................................................74
Şekil 5.11. x=19.5...20.5 MW Aralığında, Yatırım Geri Ödeme Süresinin x’e Bağlı 
   Değişimini Daha Hassas Olarak Gösteren Grafik ........................................75
Şekil 5.12. Yatırımın Geri Ödeme Süresinin, Şebekenin Elektrik Satış Fiyatına 
   Göre Değişimi .......................................................................................75
Şekil 5.13. Yatırımın Geri Ödeme Süresinin, Şebekenin Elektriği Geri Alış 
   Fiyatına Göre Değişimi .............................................................................76
Şekil 5.14. Yatırımın Geri Ödeme Süresinin, Yakıt Fiyatına Göre Değişimi ..........77
Şekil 7.1. Ele Alınan Tesisin Basit Modeli.........................................................87
Şekil 7.2. Ele Alınan Tesise İlişkin Güç ve Buhar Talebi Eğrileri.........................88
Şekil 7.3. Sistemin Fonksiyon Blok Diyagramı.....................................................90
Şekil 7.4. Sistemin Ortalama Elektrik Üretim Miktarı........................................91
Şekil 7.5. Sistemde Üretilen Buharın Ortalama Basıncı......................................92
Şekil 7.6. Sistemde Üretilen Ortalama Buhar Miktarı.........................................93
Şekil 7.7. Sistem Çıkış Egzos Gazı Ortalama Sıcaklığı.....................................94
Şekil 7.8. Sistemin S Domenindeki Blok Diyagramı............................................96
Şekil 7.9. Alt-Sistem Blok Diyagramı...............................................................97
Şekil 7.10. Sisteme Uygulanan Adım Fonksiyonu.............................................98
Şekil 7.11. Sisteme Uygulanan Adım Fonksiyonu Cevabı.................................98
Şekil 7.12. Sistemin Kademeli Denetim Diyagramı.........................................100
Şekil 7.13. P Tipi Denetim Sonuç Eğrisi............................................................101
Şekil 7.15. Sistemin PI Denetim Elemanına Cevabı............................................103
Şekil 7.16. Sistemin PID Denetim Elemanlı Diyagramı....................................104
Şekil 7.17. Sistemin PID Denetim Elemanına Cevabı.......................................105
TABLOLAR DİZİNİ

Tablo 4.1. Aktif Buhar Basıncı Seviyelerine Göre Elektrik Enerjisi Üretimi........................................32
Tablo 5.1. Buhar Türbinli Çevrimlere İlişkin Toplam Maliyetler(1990 yılında) ..............................68
Tablo 5.2. Tablo 5.3.’te Verilen Gaz Türbini Modellerinin Kullanıldığı Çevrimlere
İlişki Toplam Yatırım(Tesis) Maliyetleri(M$)..................................................................................68
Tablo 5.3. Değişik Gaz Türbinli Çevrimlere İlişkin Veriler...............................................................69
Tablo 5.4. x=19,8...20,2 MW Aralığında Geri Ödeye Süresinin x’e Bağlı Değişim
Tablosu.............................................................................................................................................74
Tablo 6.1. Elektrik Üretimindeki Yakıt Kullanimi(bin ton petrol).......................................................79
Tablo 6.2. Elektrik................................................................................................................................80
Tablo 6.3. Bileşik İsı Güç Üretim Sistemleri.....................................................................................80
Tablo 6.4. Yıllara Göre Bileşik İsı-Güç Üretim Santrallerindeki Gelişme Beklentileri.................81
BÖLÜM 1

GİRİŞ


Endüstri tesislerinde hem elektrik enerjisine hem de çeşitli basınç seviyelerinde buhar ihtiyaç vardır. Elektrik enerjisi üreten tesislerde ısıtma için ayrıca bir kazan ve ek sistemler kuruludur. Isıtma sistemi için de yakıt tüketilmektedir. Bu sistemlerde buhar, bir atık olarak değerlendirilir. Bileşik Isı-Güç Üretim Sisteminde ise daha önce atık olarak değerlendirilen çeşitli basınç seviyelerindeki buhar,

Bileşik İsti Güç Üretim Sistemlerinde elektrik enerjisi talebinin artması halinde dışarıdan elektrik satın alınabilmeli ve bu sistemler tarafından üretilen elektrik çalışan talepten fazla olması halinde dışarıya elektrik satılması için, elektrik şebekesi ile de uyum sağlanmalıdır.


Mühendislikte gerçek sistemlerde deney yapmanın pratik olmadığı durumlarda fiziksel modeller kullanılır. Bu fiziksel modelleri temsil eden matematiksel modeller vardır. Bileşik İsti Güç Sistemlerinin matematiksel modeli oluşturularak sistemin kontrolü gerçekleştirilmiştir. Oluşturulan matematiksel model kullanılarak
sistem denetimi yapılır. Bu santrallerde, kontrol sistemleri kullanılarak verim daha da artırılabilir.


Bileşik ısı ve güç santrallerinde elektrik ve ısı üretiminin gerçekleşmesi için geçen safhalar vardır. Bu safhalarında etkisi bulunan sıcaklık, basınç, hız gibi etkenlerin denetim sistemlerinden faydalanılır.


Bölüm 2 'de Bileşik ısı ve güç sistemlerinde kullanılan başlıca yardımcı elemanların işlevleri anlatılmıştır.

Bölüm 3 'de genel elektrik enerji üretiminde kullanılan sistemler hakkında bilgi verilmiş, çeşitli verim arturma yöntemleri ve Bileşik İş- Güç Üretim Sistemlerine geçişin nedenleri açıklanmıştır.

Bölüm 4 'te Bileşik İş- Güç Üretim Sistemlerinin değişik tipleri ve çevrim şekilleri incelenmiştir.

Bölüm 5 'te Bileşik İş- Güç Üretim Sistem kapasitesi ve türünün belirlenmesi, kullanılacak tesis ve üretim maliyet denklemleri, bütün çevrimler için oluşturulmuştur.

Bölüm 6 'da Türkiye’deki Bileşik İş- Güç Üretim Sistemleri hakkında istatistiksel bilgiler verilmiştir. Ayrıca çevre kirliliği açısından güç üretim sistemleri incelenip
bileşik ısı güç üretim sisteminin çevreye en az zararı olan sistem olduğu gösterilmiştir.

Bölüm 7’de örnek alınan tesisin dataları temel alınarak oluşturulan model hakkında bilgi verilmiştir. Sistemin fonksiyonel modeli ve kontrol amacı S domeninde modeli oluşturulmuştur. Bu sistemin elektrik üretimi kontrolü yapılmıştır.

Çalışmadan elde edilen sonuçlara göre Bileşik Isı Güç Üretim Sistemlerinin hangi durumlarda kullanılabileceğine ilişkin öneriler ve çevre açısından üstünlükleri ve bu sistemde kullanılabilecek otomatik sistem denetiminin yararları vurgulanmıştır.
BÖLÜM 2

BİR GÜÇ SANTRALİNDE YARARLANILAN ÖZEL ELEMANLAR


2.1. Buhar Üretim Tesisi (Kazan)

Buhar üretim tesislerinin amacı: yakacaklarda kimyasal enerji olarak depo edilmiş olan enerjiyi bir buhar kazanı içinde kontrollü olarak yakıp ısı enerjisine çevirmek ve bu ısı ile özel olarak hazırlanmış olan sudan faydalanılarak, atmosfer basıncından daha yüksek basınçlı buhar elde etmektir. (Bayram 1978)

Şekil 2.1. Buhar Kurutucu Tesisatı

Buhar tesişi yalnızca kazandan oluşmaz. Buhar tesişi, su soğutmalı fırın, süper ısıtıcı (süperheater), tekrar ısıtıcı (reheater), ekonomizer ve hava ısıtıcısı gibi ek ünitelerin bileşimidir. Maksimum güvenilirlik ve ekonomiklik için bütün bu birimler diğeriyile uyumlu bir biçimde çalışmalıdır (Güney 1993).

2.2. İşlemlerindeki Ek Elemanlar


2.2.1. Atık ısı kazanı

2.2.2. Süper ıstıcı (Süperheater)


2.2.3. Tekrar ıstıcı (Reheater)


2.2.4. Ekonomizer


2.2.5. Hava ön-ısticişi

2.2.6. İlave ateslenemi atık ısı kazanı

Gaz türbinin egzost sıçaklığının yükseltmek amacıyla ilave yakıt kullanılmaktadır. Bir gaz türbini egzostu, yanma işleminde kullanılabilecek yeterlilikte oksijeni (% 15) içermekte olup, bu atık ısı kazanında yakıtın yanmasını da sağlamaktadır. Dolayısıyla, aynı miktarda buharı üretmek için çevre(atmosfer) havasını kullanan bir kazanınkinden yaklaşık % 10 – 20 daha az yakıt tüketilmesi sağlanmaktadır.


2.3. Kompresör

Bu cihaz, gazın hacmini düşürerek basıncını artırır. Hava, en sık kullanılan gazdır. Fakat doğal gaz, oksijen, azot ve endüstriyel açıdan diğer önemli gazlar da sıkıştırılabilir (Britannica)

2.4. Yanma Odası (Reaktör)

Sıkıştırılmış hava 7 - 11.5 bar basınç ve takriben 360°C lik bir sıcaklıkla kompresörden çıkar ve ters yönlü olarak yanma odası ile kovan arasındaki dairesel hacme girer. Memelerden püskürtülen yakıt ile eksenel kompresörden gelen havanın bir kısmı karıştırılır. Sicak yanma gazları sıkıştırılan havanın geri kalan kısmını ıtırlar. Bu olay geniş bir hava / yakıt oranı aralığı içerisinde çalışma karalamını koruyarak meydana gelmelidir.

![Diagram](image)

**Şekil 2.3. Yanma Odası İçinde Hava Akışı**

2.5. Türbinler


2.5.1. Gaz türbini

Gaz türbini bir araba motoru gibi yakıt enerjisini mekanik enerjiye çeviren bir makinedir. Sıkıştırılmış havayı ısrıtıp memelerde genişleten türbin, çıkış şafı ile bir generatör veya kompresörü çalıştırır. Makinenin içerisindeki sıkıştırılmış havanın sağlanması bir kompresör ile gerçekleştirir. Sıkıştırılmış hava, yakıtlı ısıtılığı çok saydaki yanma odaları
içerisine gönderilir. Burada yakıt, ağır yağ, motorin, kerozen, doğal gaz, gaz veya sıvı yakıt kombinasyonlarından biri olabilir.

Gaz turbinlerinde önemli olan yakılan yakıtın türü değil, kızgın havanın elde edilmesidir. Yakaşık 1200°C deki kızgın hava memelerde kısmen hız enerjisine dönüştülecek olan belli miktardaki ısıyı ihtiiva eder. Yüksek hız kazanan hava gaz türbini seyyar kanatlarında yön değiştirir ve turbin tekerlegenin dönmesini sağlayan bir itme kuvveti oluşturur (Gaz Türbini 1997).

Şekil 2.4. Gaz Türbininin Çalışma Prensibi

2.5.2. Buhar türbini

Buhar türbini, iki farklı enerji değişiminin yer aldığı ısı motorunun bir çeşididir. Buharın elde edilebilir ısı enerjisi önce uygun şekillendirilmiş bölülerde veya fişkurma olarak dağılmışını sağlayan memelerdeki buharın genişlemesi vâyasıyla kinetik enerjiye çevrilir. Daha sonra bu kinetik enerjinin bir kısmı döner disk veya
silindire monte edilen bükümülü kanatlara doğru uygun açıda püskürmeyi yönlendirilir. Böylece bükümülü kısmı terk ederken oluşan püskürme reaksiyonuya mekanik enerjiye çevrilir.

Döner harekete neden olan kanatlardaki basınç, bu kanatçıkların bulunduğu bölüm boyunca oluşan püskürme akınının momentini değiştirmek için kullanılır.


2.6. Yoğuşturucu (Kondenser)

Yoğuşturucu atık ısı enerjisinin soğutma suyuna aktarır. Soğutma suyunun çevrim şeklinine göre sınıflandırılır. Çevrim şekli çevrede bol miktarda su olup olmamasına ve iklim koşullarına göre belirlenir.

a) Kapalı Çevrim

![Diagram](image)

**Şekil 2.5. Yoğuşturucu Kapalı Çevrim Şeması**

T1 sıcaklığıyla yoğunlaştırılan T2 sıcaklığında ısıtılmış olarak çıkan su, soğutucu olarak isimlendirilen cihaza verilir. Bu yöntem suyun az bulunduğu ve buharlaşma ihlalını yüksek olan yerlerde kullanılır.
b) Açık Çevrim

1. Yöntem

![Şekil 2.6. Yoğuşturucu Açık Çevrim Şemasi](image)

Bu yöntem su kaynağı olarak akarsu veya göl gibi yerlerin bulunduğu bölgelerde kullanılır.

2. Yöntem

Bu yöntemde fısıkiye yöntemi denir. Suyun buharlaşmasını çok önemli olmadığı ve buharlaşmanın az olduğu yerlerde kullanılır. Püskürtülen suyun soğuma yüzeyi çok büyüdüğü için havayla temas edince kendiliğinden soğur. Hazneye dökülen su pompa ile yoğunlaştırucuya verilir.

![Şekil 2.7. Açık Çevrili Yoğuşturucuda Fısıkiye Yöntemi](image)
BÖLÜM - 3

ENERJİ ÜRETİM SİSTEMLERİNİN İŞLETİLMESİ

Buhar ve elektrik, sanayi için en gerekli enerji kaynaklarıdır. Tek boyutlu sistemlerde buhar; katı yakıt, fiil-oil veya gaz gibi yakıtların brülörlerde yakılması sonucu kazan ünitelerinde üretilmektedir. Elektrik ise, genellikle satın alınarak proseslere kullanım için verilir veya santralde üretilir (Sill, Zörner 1996).

Şekil 3.1. Tek Boyutlu Sistemde Basit Çevrim

Şekil 3.1. deki sistemde buhar üretim tesisi olan kazandan baca gazı ve yüksek basınçlı kızgın buhar çıkar. Yakıt enerjisinin %18'i baca gazına, % 82'si yüksek basınçlı buhara verilir.

Yüksek basınçlı kızgın buharın enerjisi yüksektir. Buhar türbininde enerjisi azalır ve çürük buhar olarak çıkar. Buhar türbinine verilen enerji, mekanik enerjiye ve alternatörle elektrik enerjisine dönüştürülür. Türbinden çıkan çürük buhar

Tek boyutlu sistemlerde baca gazı ve soğutma suyuna verilen enerjiden yaralanarak verim yükseltilebilir.

3.1. Tek Boyutlu Sistemlerde Verimi Yükseltme Yöntemleri

Bu sistemlerde verimi yükseltmek için değişik uygulamalar yapılır. Bunlar:
- atık olarak görünen baca gazından faydalanmak,
- türbinlerin çok kademeli yapılması,
- karşı basınçlı çok kademeli türbinlerin kullanılmasıdır.

3.1.1. Baca gazından yaralanmak

a) Üretilen yüksek basınçlı kızgun buhar, baca gazından geçirilerek enerjisi yükselttilir. Böylece türbin ve generator sisteminden daha yüksek verim elde edilebilir.

b) Geri besleme suyunun sıcaklığı artırılabilir. Böylece daha önce kazanda yakıt tüketilerek elde edilmiş besleme suyuna verilen ısınin bir kısmı, baca gazından karşılanmış olur. Bu durum yakıtın tüketiminde de azalmaya neden olur.


d) Baca gazı ile yakıt kurutularak yakıtın yanma verimi yükselttilir.

Şekil 3.2. de baca gazından yaralanmış biçimleri açıklanmıştır. Burada T1 baca gazının bu işlemlere tabi tutulmadan önceki ısısına, T2 ısı enerjisinin bir kısmını kazanı terkeden yüksek basınçlı kızgun buhara aktardıktan sonraki ısısına, T3 geri besleme suyu baca gazından geçirildikten sonraki ısısına, T4 baca gazı kazana
üflendikten sonraki ısıyı, T5 ise yakıt kurutulduktan sonra atık olarak filitreden geçirilen baca gazı ısısını göstermektedir.

Şekil 3. 2. Baca Gazının Yararlanış Biçimleri

(T1 > T2 > T3 > T4 > T5 )

3.1.2. Türbinlerin çok kademeli yapılması

Türbinlere alçak basınç bölümünden önce ek olarak bir ara basınç alma donanımının eklenmesi ve oluşturuluran bu tür tesislerde ısı enerjisi oranı geniş sınırlar içinde değiştirilebilir (Bayram 1978).

Bu tür yöntemle soğutma suyuna verilen enerji minimumda tutulmaya çalışılır.

16
Şekil 3.3. Çok Kademeli Türbin Kullanım Sistemi

Şekil 3.3 teki sistemde, kazandandan çıkan yüksek basınçlı buhar, süper ısıticidé enerjisi artırılıp yüksek basınçlı türbine verilir. Çıkan buhar baca gazından yararlanarak çalışan tekrar ısıticidé geçirlerek enerjisi artırılıp alçak basınç türbinine verilir. Türbine verilen enerji, mekanik enerjiye ve alternatörle elektrik enerjisine dönüşür. Türbinden çıkan buhar yoğunşturucuya verilir ve geri besleme suyu elde edilir.

3.1.3. Karşı basınçlı çok kademeli türbin kullanılması

a) Karıştırıcı Kullanıldığı Durum

Şekil 3.4. Karşı Basınçlı ve Çok Kademeli Türbin Sistemi

(T4 > T3 > T2 > T1) (P1 > P2 > P3 > P4)

Şekil 3.4. te alçak basınç türbininden çıkan buhar yoğunturucudan çıkan su ile karıştırıcıda karıştırılıp su haline getirilir ve geri besleme suyunun da sıcaklığı artırılmış olur. Burada P1, türbinin yüksek basınçlı bölümünden alınan basınç, P2, P3 ve P4 ise türbinin alçak basınç bölümünden alınan buharın farklı basınç seviyeleridir.
b) Eşanjör Kullanıldığını Durum


**Şekil 3.5.** Karıştı Basınçlı Çok Kademeli Turbin Sisteminde Buhar Çıkışlı Eşanjör Kullanımı

Şekil 3.5. te eşanjöre verilen buharın sıcaklığı artırılırıp yoğunlurucuya verilir. Böylece geri besleme suyu sıcak elde edilir. (T₄ > T₃ > T₂ > T₁)
Şekil 3.6. da eşanjörden çıkan sıcak su geri besleme suyuna katılarak geri besleme suyunun sıcaklığı artırılur. (T4>T3>T2>T1)

![Diagram](image-url)

Şekil 3.6. Karşılı Basınçlı Çok Kademeli Türbin Sisteminde Sıcak Su Çıkışlı Eşanjör Kullanılacağı Durum

3.2. Tek Boyutlu Sistemden Bileşik İst-Güç Üretim Sisteminine Geçiş

Bu tip tek boyutlu santrallerde yakıtta yüksek sıcaklık ve basınçta elde edilen buhar, bir türbine gönderilmek suretiyle elektrik üretilmesi sağlanmaktadır. En verimli
santrallerde bile yakıt enerjisinin çoğu zaman % 40’dan daha az elektrik enerjisine çevrilebilmektedir. Geri kalan enerji kaybolmaktadır.

Buharın yoğunlaştırılması sırasında soğutma suyuna verilen enerjidenden yaralanılmaya çalışmalıdır. Bu atık isidan faydalanılabilir. Isı miktarı çok yüksek olmasına rağmen ilave olarak elektrik üretemek için sıcaklık çok düşüktür.


İsı ve elektriğin bu şekilde tek bir merkezde üretilmesinin, yüksek oranlarda enerji tasarrufu sağlaması nedeniyle, üretim proseslerinde değişiklik yapılmaksızın enerji maliyetlerinde önemli düşüşlere imkan vermektedir.

Bileşik ısı-gücü üretimi tesisi kurulmasının amacı, ısı ve elektrik talebinin bir bütün olarak tek bir merkezden karşılanma isteğidir. Bununla birlikte, elektrik enerjisinin talebinin artması halinde dışarıdan elektrik satın alınabilmesi ve tesis tarafında üretilen elektriğin talepten fazla olması durumunda dışarıya elektrik sатılabilmesi için sistem, convansiyonel elektrik (enterkonnekte sistem) şebekesi ile uyumlu olmalıdır. Bu durum Şekil 3.7.’de gösterilmiştir.

Şekil-3.8.’de tek boyutlu sistemlerde güç üretilimi için ideal sıcaklık-entropi diyagramı gösterilmiştir. Bu diyagramda 1’den 2’ye ısı verilir, 2’den 3’e türbenden iş elde edilir, 3’ten 4’e kondenserde ısı atılır. Verim % 34-43 arasındadır.

Şekil-3.9.’de bileşik ısı-gücü sistemleri için sıcaklık-entropi diyagramı gösterilmiştir. Burada kondenserdeki büyük kayıplar olmadığı için verim % 70-80 dolaylarına yükselir.
Şekil 3.7. Tek Boyutlu Sistem ile Bileşik Isı-Güç Sistemlerinin Enerji Sağlama Yöntemlerinin Karşılaştırılması
Şekil 3.8. Tek Boyutlu Sistemlerde Sıcaklık- Entropi Diyagramı
3.3. Atılan Isının Yararı Kullanılış Alanları

Atılan isının uygulama alanını saptamaya en önemli parametre düşük ve yüksek nitelikli; bir başka deyişle düşük veya yüksek sıcaklıkta olmasına bağlıdır (Kıçıman 1997).

a) Düşük Nitelikli Atık Isı Uygulaması

Kondenserden geçirilen atık ısı

- Isıtmda
- Tarımda ( sıcak su, soğuk sulama suyuna katılarak bitkilerin çok soğuk sudan göreceği zarar önlenir.
  - Seraların ısıtılması
  - Tavukçulukta; binaların ısıtmasında kullanılır.

b) Yüksek Nitelikli Atık Su Uygulaması

Buhar veya sıcak su halinde olabilir.

- Endüstriyel proses ısısı olarak
- Kentlerin merkezi ısıtılmaları ve klima tesisleri için
- Atık arıtmada
- Su damıtılmasında kullanılır
3.4. Sistemin Verimi

Elektrik ve ısının ayrı ayrı üretildiği sistemlerde birim toplam enerji çıktısı başına sisteme girecek yakıt-ısı enerjisi miktarı;

$$\frac{e}{\eta_e} \frac{(1-e)}{\eta_h}$$ (3.1)

olar. Bu denklemdede;
e : Toplam enerji çıktısının elektriğe ait olan kısmını göstermektedir.
Bu değer (e) aşağıdaki gibi verilebilir,

$$e = \frac{E}{(E + \Delta H_s)}$$ (3.2)

Burada
E : Üretilen elektrik enerjisinin ;
$\Delta H_s$ : Sisteme verilen ısın enerjisinin (bu değer, işleme giden buharın entalpisi ile işlemden dönen yoğunmuş buharın entalpisi arasındaki farka eşittir.)
$\eta_e$ : Elektrik santrali verimi ;
$\eta_h$ : Kazan verimini

göstermektedir.

Yukarıdaki veriler ışığında ayrı ayrı enerji üretiminde birleşik verim;

$$\eta_A = \frac{1}{\left(\frac{e}{\eta_e} + \frac{(1-e)}{\eta_h}\right)}$$ (3.3)

$\eta_A$ : Ayrı ayrı enerji üretiminde birleşik verim
olacaktır.
Aynı aynı enerji üretiminin veriminin düşük olmasını nedeni çıkış buhari olarak atılan çürük buharın kullanılmamasıdır. Birleşik ısı- güç üretiminin gerçekleştirilmesiyle sistemin toplam verimi %85-90 mertebesine yükseltilebilmiştir.

Verimin bu kadar yükseltilebilmesinin nedeni, çıkış buharının çok düşük sıcaklık ve basınca düşürülmeden, birkaç yüz derece sıcaklıkta, buhar türbininin ara kademelerinden alınarak, türbinde buhar enerjisinden daha az yaralanılmakla beraber çıkış buharının tam olarak değerlendirilebilmesidir.

Şu halde birleşik ısı- güç sisteminin verimi

\[ \eta_B = \frac{(E + \Delta H_S)}{Q_A} \]  \hspace{1cm} (3.4)

şeklinde olup, burada:

- \( Q_A \) : Sisteme giren yakıt ısıtı,
- \( \eta_B \) : Birleşik ısı- güç üretimmin verimi,

olarak ifade edilebilir.

Yukarıda açıklaması yapılan bu iki durumun daha iyi anlaşılabilmesi için Şekil 3.10 ve Şekil 3.11. in değerlendirilmesi yararlı olacaktır. İhtiyaç duyduğu elektrik enerjisini ve buhari temin etmek hususunda iki seçeneği olan bir endüstriyel tesisin elektrik enerjisini, %35 verimle elektrik üreten bir şebeke santralinden ve buharı da %94 verimle çalışan bir buhar kazanından, ya da elektrik ve ısı enerjisini eş zamanlı olarak, %33.5 elektrik, %54.3 ısı verime sahip bir birleşik ısı- güç üretimmin sağlandığını varsayılışın.
Şekil 3.10. Isı ve Elektrîğin Beraber Üretilmesi

Şekil 3.11. Buhar ve Elektrîğin Aynî Aynî Üretilmesi
giriş enerjisinden sağlanan ekonomiklik,

\[
\frac{(153 - 100)}{153} \times 100 = \%34.6
\]

(3.5)

olarak bulunabilir.

Enerji kaynağı bakımından birleşik ısı- güç sistemi, elektrik ve ısının ayrı ayrı üretildiği sisteme göre, birincil enerji kullanımında tasarruf sağluyorsa faydalıdır. Yukarıda giriş enerjisinde giriş enerjisinde %34.6 'lık bir ekonomiklik elde edilmekte, daha az kullanım ile çevresel atık oluşumunu daha da azaltmaktadır (Alboyacı 1998).
BÖLÜM 4

BİLEŞİK ISI-GÜÇ ÜRETİMİ TÜRLERİ

4.1. Alt ve Üst Çevrimli Türler
Sistemden istenilenlere göre iki farklı çevrim tipi vardır. Sitemde ihtiyaç duyulan ana ürün elektrik veya ısı olabilir. Eğer elektrik enerjisi birinci planda ise sistem üst çevrimli türdedir, ısı enerjisi birinci planda ise sistem alt çevrimli türdedir.

4.1.1. Üst çevrimli türler

Bu sistemlerde üretilen elektrik enerjisi birinci plandadır ve önce elektrik enerjisi üretilir. Geri kalan atık ısı ısı işlemlerde kullanılır (Şekil 4.1.)

Burada yakıt, öncelikle elektrik ya da mil gücü üretemek amacıyla kullanılır. Elektrik enerjisi üretiminden geri kalan atık ısı enerjisi ise, ısı işlemlerde kullanabilecek kadar yeterli yüksek kalitede olduğundan, endüstriyel işleme gönderilerek endüstri tesisinin ısı ihtiyacı karşılanmaktadır. Tesisin ısı ihtiyacının fazla olması durumunda yardımcı bir kazana ihtiyaç duyulabilir.

Şekil 4.1. Üst Çevrimli Birleşik 1 ısı-Güç Üretim Sistemleri
4.1.2. Alt çevrimli türler

Birinci amaç tesisin ısı ihtiyacını karşılamaktır. Yakılan yakıtın elde edilen ısı enerjisi tese ti kullanılır, kullanımından arka kalan ısı türbinin enerjisi elde edilir. (Şekil 4.2.)

Bu çevrimde düşük verimle elektrik enerjisi üretilir. Çünkü üretmek için, şebekte termik santrallerinde olduğu gibi kondenserli buhar türbin kullanılır. Buhar türbininden çıkan atık ısı kondenserde harcanacağından verim düşük olur.

Alt çevirim uygulaması, yüksek sıcaklıklar gerektiren çimento firmaların kullanıldığı çimento endüstrisinde ve cam endüstrisinde görülmektedir.

Şekil 4.2. Alt Çevrimli Birleşik İst-Güç Üretim Sistemleri

4.2. Buhar Türbinli Sistemler

Buhar kazanında yakıtın yanmasıyla açığa çıkan enerji suyu buharlaştırır. Daha sonra elde edilen buhar, buhar türbininde genleştir ve türbinde üretilen mekanik enerji alternatörle elektrik enerjisine çevrilir. Türbin çıkışındaki atık ısı ise bir endüstriyel işleme gönderilerek birincil enerjinin daha verimli biçimde kullanımı sağlanmaktadır.
Buhar üretime doğal gaz, fuel-oil, kömürün yanı sıra çöp ve LPG(Likid Petol Gazi)'de yakıt olarak kullanılır.

4.2.1. Karşılık basıncı türbinli bileşik ısı-güç üretim sistemi (Kondensersiz çevrim)


Tablo 4.1. Aktif Buhar Basıncı Seviyelerine ve Miktarlarına Göre Elektrik Enerjisi Üretimi

<table>
<thead>
<tr>
<th>Sicaklık ve Basınç</th>
<th>Elektriksel Güç (MW)</th>
<th>Aktif Buhar Miktarları (ton/h)</th>
<th>Geri Basınç</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 bar, 450 C</td>
<td>4</td>
<td>8</td>
<td>12 bar</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>150</td>
<td>16.5</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80 bar, 500 C</td>
<td>5.7</td>
<td>11</td>
<td>12 bar</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>22.5</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115 bar, 525 C</td>
<td>12</td>
<td>18</td>
<td>12 bar</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>50 bar, 450 C</td>
<td>6</td>
<td>13</td>
<td>6 bar</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>80 bar, 500 C</td>
<td>7</td>
<td>14</td>
<td>6 bar</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>115 bar, 525 C</td>
<td>8</td>
<td>15.5</td>
<td>6 bar</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>
Şekil 4.3. Buhar Türbinli ve Kondersersiz Birleşik İst-Güç Üretim Sisteminin Çevrimi

4.2.2. Yoğuşma / Ekstraksiyon türbinli (Ara buhar çekiilen)
bileşik ist-güç üretim sistemi (Konderserli çevrim)

Karşı basınçlı türbine buharın tamamı belirli bir basınç seviyesine kadar genleşir. Fakat yoğunlaşma / ekstraksiyon türbininde, buharın bir bölümü proses ihtiyaçlarını karşılamak üzere gereken basınç ve sıcaklıkta türbinden alınırken, geri kalan buhar 0,05 bar düşük basınca kadar genleşir ve türbini çevirir.(Şekil 4.4.)

Şekil 4.4. Buhar Türbinli ve Kondenserli Bileşik İsi-Güç Üretim Sistemi

Kondenserli güç üretimi kondersersiz üretim kadar verimli olmamasına rağmen, ekonomikliği birçok endüstriyel uygulamalarda görülmüştür. Bu ekonomikliğin nedeni; çoğunlukla kunderlerli üretilen gücün, şebekeden elektrik enerjisi alımını kontrol etmek (azaltmak) için kullanıldığını,

- Odun, kömür, çöp gibi düşük maliyetli yakıtların kullanılabilendiği,
- Elektrik kesintisinin büyük zarara yol açabileceği,
- Şebekeye enerji satışının elverişli hale geldiği (özellikle düşük yakıt maliyeti nedeniyle), işletmelerde görülmektedir.

Bileşik ısı-güç sistemi için buhar türbinli üç ayrı sistem verilmektedir.

1) Sistem, endüstriyel işleme tek bir basınç düzeyinde buhar sağlamakta olup burada karşı basınçlı bir türbin kullanılır.

2) Sistemde, işleme iki farklı basınçta buhar sağlanmakta olup, yüksek sıcaklıktaki buhar, türbinin orta kısmından, daha alçak basınçlı buhar ise türbinin sonundan alınır. Burada kullanılan türbin ara buhar olmalı ve karşı basınçlı bir türbindir.
3) Sistemde, ek güç çıkışı sağlamak üzere konderserde genleşen buharın yanında, iki farklı basınçta buhar üretilir. Buradaki türbin ara buhar almalı konderserli bir türbimdir.

Şekil 4.5. teki türbin sistemleri gözönüne alınırsa:


![Diagрам](image)

**Şekil 4.5. Buhar Türbin Çeşitleri**

4.3. Gaz Türbinli Sistemler

Gaz türbinli bir tesisin üç önemli elemanı vardır:

- Kompresör (KP)
- Yanma Odası (YO) (reaktör)
- Türbin

Ortam havası kompresör tarafından emilir ve sıkıştırılır. Bu sıradan havanın sıcaklığı da yükselir. 150 °C civarındaki bu kızışan hava yanma odasına (reaktöre) gelir. Diğer yandan yanma odasına yüksek basınçlı yakıt (doğal gaz, LPG, motorin) püskürtülür.

Şekil 4.6. Gaz Türbini Prensiş Şeması

Gaz türbinli bileşik ısı-gücü sisteminin buhar türbinli bileşik ısı-gücü sistemine göre üstünülükleri şunlardır:

- Daha ucuzdur
- Verimi daha yüksektdir
- Devreye giriş süreleri daha kısıdır
- Kapladığı alan daha küçüktür
- Montaj ve tesis süresi daha kısıdır
- Enerji üretimi ile ısı üretimi oranları isteğe bağlı değiştirilebilir
- Yüksek güvenilirlikte çalışır

Gaz türbinli bileşik ısı-gücü üretimi sistemleri genellikle gıda, süt ürünlerleri, petrokimya, tekstil, kağıt ve kağıt hamuru gibi endüstriyel sektörlerde kullanılır.
4.3.1. Çevrim açısından gaz türbinli sistemler


4.3.1.1. Açık çevrimli sistemler

Şekil 4.7. de gaz türbinli sistemin açık çevrimine ilişkin model verilmektedir.

![Şekil 4.7. Açık Çevrimli Gaz Türbinli Sistem](image)


4.3.1.2. Kapalı çevrimli sistemler

Şekil 4.8. de görüldüğü gibi çıkış gazı, tekrar kompresörde kullanılır hale getirilmiş
olur. Kapalı olduğu için çevre kirliliği olmaz ve verim de artılmış olur.

Şekil 4.8. Kapalı Çevrimli Gaz Türbinli Sistem

Kapalı çevrim olduğu için başka gazlar da kullanılabilir. Örneğin, karbondioksit, helyum, hidrojen. Fakat, tehlikeli gazlar kullanıldığıında endirekt yöntemli reaktörlerin kullanılması daha güvenirlidir (Şekil 4.9.).

Şekil 4.9. Eşanjör ve Reaktör Kullanılan Yanma Odası

Yakıtın yakıldığı yerden (reaktörden) ısı enerjisi eşanjöre aktarılır. Kompresörden gelen gaz yanma odasında (reaktörde) değil eşanjöerde ısıtlır.
4.3.2. Atık ısı kazanı kullanılan sistemler

Atık egzost gazının en etkin ve yaygın kullanımı, atık ısı kazanları ile buhar üretmektedir.

4.3.2.1. Ateşlesmez atık ısı kazanlı sistemler

Sadece gaz türbinini ekzostundaki enerji kullanılarak buhar üretilir. Üretilen buhar miktarı kullanılan yakıt ve basınca bağlı olarak değişir. Buhar basıncı düştürkçe kullanılan buhar miktarı artır.

Şekil 4.10. Ateşlesmez Atık Isı Kazanlı Sistem

Şekil 4.10 da görüldüğü gibi türbinden çıkan sıcak gazlar bir atık ısı kazanına girerek endüstriyel proses uygulaması ve alan ısıtması için buhar üretirler ya da direkt olarak proses uygulamasında kullanılırlar.
4.3.2.2. İlave ateşlemeli atık ısı kazandı sistemler

Gaz türbininden çıkan ekzost gazının sıcaklığını yükseltmek amacıyla ilave yakıt kullanılır.

![Diagram](image)

**Şekil 4.11. İlave Ateşlemeli Atık Isı Kazandı Sistem**

Gaz türbinlerinin ekzost gazları yanma yapmaya yetecek kadar oksijen (ortalama % 15 O₂ ) içerir. Şekil 4.11 de görüldüğü gibi türbinden çıkan ekzost gazı, atık ısı kazanına girmeden ilave bir yanma odasında yakılarak gazın sıcaklığı ve basınıç artırılabilir. Böylece daha fazla buhar elde edilebilir. Böylece elektrik ve buhar bağımsız üretilebilir.

4.3.3. Buhar enjeksiyonlu gaz türbini

Elektrik üretimini artırmak için atık ısı kazanından elde edilen buharın bir kısmı gaz türbininin yanma odasına enjekte edilir(Şekil 4.12.).
Bu yöntemin faydaları şunlardır:

- Enjekte edilen buhar miktarı ayarlanabildiği için işletmenin ihtiyaçına göre elektrik üretimini gerçekleştirilir. Burada kullanılan buhar miktarının hava miktarına oranı % 15 dolayındadır.

- Bu ek sistem elektrik üretimini % 60-80 oranında artırır.

**Şekil 4.12. Buhar Enjeksiyonlu Çevrim Sistemi**

4.3.4.Gaz türbinli çevrimde buhar türbini kullanımı

Şekil 4.13. Gaz Türbinli Sistemde Buhar Türbininin Kullanıldığı Sistem

4.3.5. Egzost gazlarının doğrudan kullanıldığı gaz türbinli sistemler

Egzost gazlarının endüstriyel proseslerde doğrudan kullanılabilmesi de olur. Kurutma prosesi bu tip bir sistemdir. İlave yanma odası ile üretilen ısı miktarı ayarlanabilir.

4.4. İçten Yanmalı Motorlu Sistemler

Kombine ısı güç sistemlerinde kullanılan motorlar otomobillerde kullanılan benzin ve dizel motorlara benzyen içten yanmalı motorlardır. Gaz ve dizel motorları içten yanmalı motorlardır.

4.4.1. Gaz motorlu sistemler


![Diagram](image)

**Şekil 4.15. Gaz Motorlu Bileşik İș-Ğüz Üretim Sistem Çevrimi**

Enerji dağılımında % 7-10 oranında görülen radyasyonla kaybolan ısından faydalanılması mümkün değildir. Geriye kalan % 50 oranındaki kayıptan faydalanarak toplam verim % 90’e çıkarılabilir.

Bir motorun ısı olarak kaybettiği enerjinin geri kazanılmasının en basit yolu, motorun radyatörü üzerinden sağlanan sıcak havanın değerlendirilmesidir. Motor
gövdesinden ve egzost ısı dönüşürcüden (eşanjörden) sıcak su sağlayan sistemlerle ısı, geri kazanılabilir.

Gaz motorları elektrik ihtiyacıının yanı sıra ısıtma veya soğutma amaçlı ısı enerjisi gerektirmesi duyuulan, toplu konut bölgeleri, tatil köyleri, üniversite kampüsleri, hastaneler, yüzme havuzları spor kompleksleri gibi uygulama alanlarında çok uygun çözümlerdir.

Sistemde doğal gaz, çöp gazı, antma tesisi gazı, kok gazı, sıvı gaz, biogaz, diesel veya kalorifer yakıtı kullanılır.

Böyle bir sistemden elde edilebilecek sıcaklık seviyeleri incelenirse;

- Egzost gazı makineyi 400 °C- 500 °C sıcaklıkta terkedeye.
- Çeşitli egzost-kasketlere ile sıcaklık seviyesinin 200 °C sıcaklıkta işlem buharına dönüştürülebilir.
- Eğer egzost gazı ısı dönüşürcüzü sıcak sulu ısıtma çevrimine yönelik çalıştırılıyorsa, ısı dönüşürcüzünün su tarafının 90°C- 130 °C arasında sıcaklık seviyesine getirilebilir.
- Kullanılabilir motor soğutma suyu sıcaklık seviyesinin, normal soğutulan motorlarda 75°C - 90°C, kızgün soğutulan motorlarda 120 °C olur.
- Yağ soğutma ısı ısı dönüşürcüleri ile su devresinde 60°C -75 °C’lik sıcaklık elde edilir.

Motordaki bu ısı kaynakları faydalı bir çevrimle kullanılır hale getirilebilir. Eğer ısıtma sistemi için gerekli sıcaklık seviyesi, motorun ısıtma çevirimile ile elde edilememiysorsa sisteme bağlanan bir kazan ile sıcaklık seviyesi daha yukarı çekilabilir.
Ayrıca ısılarının kullanılmadığı durumlarda, motorun çalışmasını kesintiye uğratmamak için acil soğutma ısı dönüşürcüleri veya soğutma kuleleri ile ısı dışarı atılmalıdır.
Fazla ısının atılması yerine bunun bir ısı deposunda depolanması daha verimli olmakta, diğer tarafta bu yolla ısı talebinin de yaklaşık olarak sabitleşmesi sağlanmaktadır.
Kojenerasyon sistemlerde gaz motoru kısa zamanda devreye alınıp yine kısa zamanda devre dışı bırakılır. Aynı zamanda, gaz motoru tesisinin az devre elemanı içermesinden dolayı diğer sistemlere göre daha kısa sürelerde tesis edilebilmesi ve iç tüketimlerinin az olması da gaz motorunun bir avantajıdır. (Turna 1994)

4.4.2. Dizel motorlu sistemler

Dizel motorlarda enjeksiyon sistemlerde içten yanma sağlanır. Dizel motorlarda hava, yüksek basınçla sıkıştırılır. Sıkıştırılma sonucu sıcaklığı yükselen havanın içine yakıt enjekte edilerek ateşleme yapılır.

Dizel motorlu sistemler, kullanılan ilk bileşik santrallerdir. Doğal gazın kullanımının artmasıyla yeniden önem kazanmıştır. Doğal gaz ile çalışan motorların az bakım gerektirmesi, daha uzun ömürlü olması, egzost gazlarındaki atık ısının daha çok geri kazanılması iyi bir avantaj sağlamaktadır.

Dizel motorlarda yakıt olarak doğal gaz kullanılmaktadır. Toplam enerjinin % 95 - 99'u doğal gaz, % 1- 5'i ise dizel yakıtı ile sağlanmaktadır. 200-250 bar yüksek basınçtaki doğal gaz, dizel yakıt ile silindire basılmaktadır.

Egzost gazından atılan ve motorun soğutulmasından sonra radyatörle havaya atılan atık ısı enerjisini değerlendirek sıcak su ve ya buhar elde edilir. Şekil 4.16. da bu sisteme ait bir modeldir.

Dizel motorları küçük ölçekli projelerin yanı sıra endüstriyel kojenerasyon projelerine de uygundur. Dizel motorun elektrik motorun elektrik verimi fazla olmasına rağmen ısı verimi o kadar yüksek değildir
Şekil 4.16. Dizel Motorlu Bileşik İst-Güç Üretim Sistemi

4.4.3. İçten yanmalı motorlu santrallerin elektrik düzenleri

İçten yanmalı motorlu santrallerin elektrik düzenlerini iki bölümde ele alabiliriz. Bunlar: otomatik yol alma düzenleri ve senkronizasyon düzenleridir.

4.4.3.1. Otomatik yol alma düzenleri

Otomatik yol alma düzenleri enerji kesintisinden otomatik olarak yol vermeysağlayan mikroişlemeler ve açma kapama cihazlardır. Söz konusu mikroişlemeler, enerji kesintisinden dizel motoru çalıştırır. Herhangi bir sebeple dizel motor çalışmamışında 2 defa daha çalıştırmayı dener, çalışmasızsa uyarı sinyali verir.

Bu sistem özellikle şebekeyle veya birbirleriyle paralel çalışmayacak dizel sistemler için söz konusudur.
Şekil 4.17. İçten Yanmalı Motorlu Sistemin Otomatik Yol alma Düzeni

Şebekle ile içten yanmalı motor sistemi beraber çalışacaksa şalterler arası kilitleme yapılır (El-Wakil 1984).

Yedek enerji üretiminde sistem, şebekeyle beraber çalışmaz.

Şebek enerjisi gelince mikrojilemcı şebekenin enerjisinin sürekli kazanmasını bekler. Daha sonra jeneratörün açma-kapama cihazını açıp şebekenin açma-kapama cihazını kapatır.

4.4.3.2. Senkronizasyon Düzenleri

Şebekle ile paralel çalışma varsa veya birden fazla içten yanmalı motor sistemi varsa uniteler arası senkronizasyon sağlanmalıdır. İki elektriksel sistemin birbirleriyle paralel çalışması için senkronizasyon koşullarına uygun olmalıdır:

1) Gerilimlerin genlikleri aynı olmalı
2) Faz sırası aynı olmalı
3) Faz farkı olmamalı
4) Frekansları birbirleriyle aynı olmalı
Sanayi tesislerimizin hemen hemen büyük bir çoğunluğu 30 kV şebeke gerilimi hattı üzerinden beslenmektedir.

MW sınıfında üretim yapan gaz türbinli veya dizel motorlu santrallerin generatör çıkışları ise O.G. seviyesinde genelde 6,3 kV veya 11 kV olmaktadır. Dolayısıyla şebeke ile paralel çalışma imkanını yaratmak için bu gerilim önce bir yükseltici trafo ile şebeke gerilimine bağlı olarak 30 – 34,5 kV arasındaki bara gerilim seviyesine çıkarılır. Kullanıcı fabrikada 6,3 kV gerilim varsa generatör direk olarak 6,3 kV baraya bağlanabilmektedir.

Paralel çalışma sırasında, şebeke tarafından bir arıza olması durumunda veya şebeke gerilimi ve frekansı değerlerinde set edilen limitleri aşan bir daglamanma olursa ve tek tarafından şebeke dijital kesilirse vektor şift diye adlandırılan şebeke rolüşi kuplaj kesicisini açarak şebekeyi baradan ayırır ve santral kesintisiz bir şekilde ada moduna geçerek barayı beslemeye devam eder.

Generatör üzerindeki korumalar ise şunlardır:
Aşırı akım, kısa devre, ters güç, diferansiyel röle, aşırı gerilim, toprak hatası, uyarma kayıpları, aşırı uyarma korumaları.

. Burada esas olan hem şebeke ile uyumlu şekilde paralel olarak çalışabilme, hem de şebeke durumunun ve sistem kalitesi edebilecek arızalarda kesintisiz bir şekilde ada moduna geçerek fabrikaya sürekli ve kaliteli elektrik sağlayabilmektedir.
. Tipik bir iki türbinli kojenerasyon santrallerinin 34,5 kV şalt tesisini incelediğimizde dolap dizayını Şekil 4.18. deki gibidir. Bu dolapta şu hücreler bulunur:
Ayırtıcı giriş hücresi
2 adet tedaş hücre ölçüsü hücresi. Her hücrede tek bir sayıç hem enerji alış ve satışını hem de aktiv ve reaktif enerjiyi gösterebilmektedir.
1 adet senkronizasyon ve kuplaj hücresi: Bu dolapta şebeke gerilimi ölçü referans trasfoları şebekeyi santralden ayıran kesici bulunmaktadır.
1 adet bara ölçü hücresi
2 adet generatör trasfoları besleme hücresi
1 adet santral binası için ihtiyaç trasfosu besleme hücresi
1 veya ihtiyaca göre yeterli sayıda çıkış hücreleri.

Şayet santralin kuruluşu fabrikadaki makineler aşırı derecede hassas makinelerse ve şebekedeki frekans / gerilim dalgalanmalarında santralin şebeke ile paralel kalması isteniyorsa sistemin önüne Şekil 4.19'da görüldüğü gibi ayarlı bir regeltrafo koyulabilir. Sistemde şebeke ile paralel girme veya generatörlerin birbirleriyle paralel çalışması için ihtiyaç duyulan gerilimler üç ayrı noktadan alınan gerilim referansları ile sağlanır. Bu noktalar:
Kuplaj kesici önündeki gerilim trafoları(şebeke gerilimi)
Bara ölçü hücreindeki gerilim trafoları(generatör gerilimi)
Trafo besleme hücreindeki gerilim trafoları(generatör gerilimi) (Dural 1999)

![Diagram](image)

**Örnek 1: İki türbinli sistem**

**Şekil 4.18.** O.G. Kojenerasyon Şalt Tesisi (İki Türbinli Sistem)
Şekil 4.19. O.G. Kojenerasyon Şalt Tesisi (Tek Türbinli Sistem, Regel Trafolu)

4.5. Kombine Çevrimli Sistemler

4.5.1. Karşı basınçlı türbin ile kombine çevrim


Şekil 4.20. Karşı Basınçlı Türbin ile Kombine Çevrim

Şekil 4.21. Yoğunlaştırma Türbini ile Kombine Çevrim

Şekil 4.21. deki sistemde türbinin yoğunlaşma (konderser) bölümü, proses buharının üretimini azaltıp elektrik üretimini artırır.
4.5.3. Alçak ve yüksek basınç kademeli atık ısı kazanı kullanımı

Şekil 4.22. İki Kademeli Atık İsi Kazanı Kullanım Sistemi

Birden fazla basınç düzeyli atık ısı kazanlarında, gaz türbini egzost enerjisi, tek basınçlı kazanlara göre daha verimli kullanılır. Yani şekil 4.20 deki sisteme göre egzos gazının geri kazanımında artış sağlanmıştır.

Şekil 4.23. te ise Şekil 4.22 deki sisteme ek olarak bir yoğunşurucu bölüm vardır. Buhar türbinindeki yoğunlaşma bölümü, proses buhar talebine göre buhar üretiminin esnek olarak kullanımını sağlar.
Şekil 4.23. İki Kademeli Atık Isı Kazanı ve Kondenser Kullanım Sistemi

Buhar türbini tarafından kondenser, ısı-güç oranının artmasına neden olur. İşleme giden buhar az geldiğinde, türbinin düşük basınç bölümünden gerekken miktarda buhar çekilerek eksik kapatılabilir. İşleme giden buharın fazla gelmesi halinde, bu fazlalık, buhar türbininin düşük basınç bölümünde genleşikten sonra kondenserde enerjisini kaybeder ve buhar türbininde üretilen güç artar. Dolayısıyla ısı ve güç üretimi değişimlerinde büyük bir esneklik sağlanmış olur.

4.6. Nükleer Yakıtlı Bileşik Isı-Güç Üretim Sistemleri

Nükleer yakıtlı sistemler, radyasyondan korunmak için, ısıtılan yerlerin merkezinden 20-50 km uzaga kurulmalıdır. Bu nedenle merkezi ısıtımda kullanılacak ısı enerjisinin kanallar vasıtasıyla yerleşim yerlerine taşınması gerekir.


Boru hattının uzun olması ısı kayıplarını ve yatırım maliyetlerini artırmakta ve dolayısıyla sistemin ekonomikliliğini olumsuz yönde etkiler.
BÖLÜM 5

BİRLEŞİK İŞI-GÜÇ ÜRETİM SİSTEMLERİNDE OPTİMUM SİSTEM KAPASİTESİ ve TÜRÜNÜN SAPTANMASI

5.1. Enerji Üretiminde Seçenekler

Bu bölümde, elektrik enerjisi ve buhar şeklindeki ısı enerjisi gereksinimlerini karşılamak üzere bir B.I.G.Ü.(Bileşik İsi Güç Üretim) çevrimi kurmak isteyen bir endüstri tesisinin, böyle bir çevrim kurmasının ekonomik olup olmayacağının, hangi tür ve güçte bir çevrim kurmasının ekonomik olacağını tespiti ele alınmıştır(Alboyacı 1998).

Daha önceki bölümlere de sözü edildiği gibi birleşik ısı-guç üretiminin beş seçeneği vardır. Bu seçenekler,

1. Seçenek: Buhar ihtiyacının bir buhar kazanından, elektrik enerjisi ihtiyacının ise elektrik şebekesinden sağlanması biçiminde olan klasik sistem,

2. Seçenek: Buhar türbinli sistem,

3. Seçenek: Gaz türbini ve ateşlemesiz veya ilave ateşlemeli atık ısı kazanından oluşan bir sistem,

4. Seçenek: Gaz türbini, ateşlemesiz veya ilave ateşlemeli atık ısı kazanı ve buhar türbininden oluşan bir kombine çevrim sistemi,

5. Seçenek: Gaz veya Diesel motorlu bir çevrim sistemi, olarak verilebilir.

Burada, ele alınan sanayi tesisinin elektrik gücü ve buhar gereksinimlerinin zamanla değiştiğini göstermek üzere, ele alınan bir günlük sürenin, daha küçük zaman dilimlerine bölündüğü ve her dilim boyunca gereksinimin sabit kaldığı, ancak her bir ayrı dilimdeki değer, günlük yük değişiminin geregisi olarak, birbirinden farklı olduğu kabul edilmiştir (sürekli değişimin basamak halindeki bir değişime dönüştürülmesi). Tesisin, günlük yük karakteristiklerinin yıl boyunca aynı kaldığını varsayarak (ortalama günlük eğrisi kabul), çözüm basitleştirilmiştir (Şekil 5.5 ve 5.6’ daki gibi). Ancak, bu varsayımın, çözümünün doğruluğ derecesini azalttiği bir gerçektir. Böyle bir varsayımın yapılması, denklemlerdeki bilinmeyen sayısını azaltacağı için, çözüm daha basit olacaktır. Ayrıca, bir günlük süre içindeki zaman dilimlerinin sayısının arttırılmasa da doğruluğu pozitif yönde etkilemekle beraber, bilinmeyen sayısını çoğaltması nedeniyle karmaşıklığın artmasına yol açacaktır.

Bu inceleme de ele alınan endüstri tesisi ile ilgili olarak, aşağıdaki tanımlar yapılmıştır. Bunlar şunlardır:

\[
\begin{align*}
N & : \text{bir gün içindeki zaman dilimlerinin sayısı,} \\
j & : \text{zaman diliminin numarası,} \\
t & : \text{bir zaman diliminin süresi (saat),} \\
k & : \text{tesisin bir yıl boyunca işletmede kaldığı gün sayısı,} \\
P_j & : \text{tesisin j. dilimindeki elektrik gücü gereksinimi (kW),} \\
m_j & : \text{tesisin j. dilimindeki buhar gereksinimi (ton/saat),} \\
p_{g,T_g,h_g} & : \text{tesiste ihtiyaç duyulan buhar basıncı, sıcaklığı ve entalpisi (bar, °C, kJ/kg),} \\
p_{d,T_d,h_d} & : \text{tesiste işlemden geçtikten sonra çevrime geri dönün su ya da buhar basıncı, sıcaklığı ve entalpisi (bar, °C, kJ/kg),}
\end{align*}
\]

Buna göre, seçenekler sırayla ele alındı, gerekli incelemler yapılmaktır.

1. Seçenek: Buhar ihtiyacının bir buhar kazanından, elektrik enerjisi ihtiyacının ise elektrik şebekesinden sağlanması

Burada, ilk adımda, \( h_g \) ve \( h_d \) parametreleri gidiş ve dönüş buhar koşullarına göre termodinamik tablolardan bulunmaktadır. Kolaylık açısından, geri besleme suyu
pompasının, entalpide yapacağı değişiklik ihmal edilerek $h_p = h_d$ alınrsa, kazan tarafından buhara verilen birim enerji,

\[ \Delta h = h_e - h_d \]  

\[ (5.1) \]

biçiminde ifade edilebilir.

Endüstri tesisinin yıllık elektrik enerji maliyeti,

\[ A = k \cdot t \cdot \sum_{j=1}^{N} P_j \cdot f \]  

\[ (5.2) \]

buhar kazanında kullandığı yıllık yakıt maliyeti,

\[ Y = k \cdot t \cdot \sum_{j=1}^{N} m_j \cdot \Delta h \cdot y / \eta_k \]  

\[ (5.3) \]

buhar kazanından yıllık işletme bakım maliyeti,

\[ I = \text{Max}(m_1,m_2,\ldots,m_N) \cdot \Delta h \cdot (i + b) \]  

\[ (5.4) \]
bir yıllık toplam maliyet,

\[ C = A + Y + I \quad (\text{$/yıl}) \]  

biçiminde olacaktır. Yukarıdaki denklemlerde,

- \( f \) : elektrik enerjisi satan kuruluşun enerji birim satış fiyatı ($/kWh),
- \( y \) : birim yakıt fiyatı ($/milyon kJ),
- \( \eta_k \) : buhar kazanının verimi,
- \( \text{Max}(m_1,m_2,\ldots,m_N) : m_1,m_2,\ldots,m_N \) içinde en büyük değerde olanı,
- \( i,b \) : buhar kazanının yıllık birim işletme ve bakım masraflı [($/yıl) / (kJ/h)] olarak tanımlanmıştır.

Buhar kazanının tesis maliyeti ise,

\[ M = a \cdot \text{Max}(m_1,m_2,\ldots,m_N) \cdot \Delta h \quad ($) \]  

biçiminde olup, burada,

- \( a \) : birim tesis maliyeti ($/kJ/h)'dir.

2. Seçenek: Buhar türbinli sistem

Buhar türbininin j. dilimde üretiltiği mekanik güç,

\[ P_{BTJ} = [m_{dJ} \cdot (h_T - h_g) + (m_{dJ} - m_{yJ}) \cdot (h_g - h_{}\ell)] \cdot 1/3600 \quad (\text{kW}) \]  

dir. Elektriksel güç ise, geri besleme suyu pompasının çektiği gücün iç ihtiyaç gücü olarak düşünülmesi ve bunun üretilen elektriksel gücün yaklaşık %64’ü olduğu kabulü ile,

\[ P_{BiJ} = P_{BTJ} \cdot \eta_{\ell} \cdot 0,96 \quad (\text{kW}) \]  

biçiminde hesaplanacaktır.
Şekil 5.2. Buhar Türbinli Bir Çevrimin Şematik Gösterilişi

Yukarıdaki denklemlerde,

- \( h_T \) : kazanandan çıkıp turbine giren buharın entalpisi (kJ/kg),
- \( h_c \) : türbenden çıkıp kondensere giren buharın entalpisi (kJ/kg),
- \( m_{xj} \) : j. dilimde, kazanın yüksek basınçlı bölümünden çıkan buharın debisi (ton/saat),
- \( m_{xj} \) : j. dilimde, kazanın düşük basınçlı bölümünden çıkan buharın debisi (ton/saat),
- \( m_{yj} \) : j. dilimde, türbinin arıb alma noktasından çekilen ya da bu noktadan turbine giren çıkan buharın debisi (ton/saat),
- \( \eta_g \) : generator verimi,

olarak tanımlanmıştır.
j. dilimde gerekli olan birim yakıt miktarı,

\[ Y_{BJ} = [m_{xj} \cdot h_g + m_{sj} \cdot h_T - (m_{xj} + m_{sj}) \cdot h_d] / \eta_k \ (kJ/h) \]  

(5.9)

Bu çevrimde, şebekeden alınan, yıllık elektrik enerjisinin maliyeti,

\[ A_B = k \cdot t \cdot \sum_{j=1}^{N} \text{Max}[(P_j - P_{BJ}),0] \cdot f \]  

(5.10)

Şebekeye elektrik enerjisi satışından elde edilecek yıllık gelir,

\[ S_B = k \cdot t \cdot \sum_{j=1}^{N} \text{Max}[(P_{BJ} - P_j),0] \cdot g \]  

(5.11)

Yıllık yakıt masrafları ise,

\[ Y_B = k \cdot t \cdot \sum_{j=1}^{N} Y_{BJ} \cdot f \]  

(5.12)

bölümünde hesaplanacaktır.

Burada,

\[ g : \text{elektrin şebekeye satışındaki birim fiyatı ($/kWh)} \]

dir. \( \text{Max} [(P_j - P_{BJ}),0] \) ifadesi, \( (P_j - P_{BJ}) \)’ın kontrolunu yapıp, bu değerin sıfırdan büyük olduğu durumlarda \( (P_j - P_{BJ}) \) değerinin alınacağını, sıfırdan küçük olduğu aksi durumlarda ise bu değerin sıfır olarak alınacağını göstermektedir.

Bu çevrimde, işletme ve bakım masrafları dahil yıllık üretim masrafları,

\[ C_B = A_B - S_B + Y_B + \text{Max}(P_{BT1},P_{BT2},...,P_{BTN}) \cdot (i_B + b_B) \ ($/yıl) \]  

(5.13)

tesisin maliyeti,

\[ M_B = a_B \cdot \text{Max}(P_{BT1},P_{BT2},...,P_{BTN}) \ ($) \]  

(5.14)

şeklinde ifade edilebilir.

Burada,

\[ i_B, b_B : \text{buhar türbinli çevrimin yıllık birim işletme ve bakım masrafları ($/yıl/kW)}, \]


\[ a_B : \text{buhar türbinli çevrimin birim tesis maliyeti ($/kW)}, \]

olup, bu değerler çevrimin gücüne göre değişmektedir. Değişik güçlerdeki buhar türbinli çevrimlerin maliyetleri ve yıllık işletme masrafları kullanılarak, \( a_B \) ve \( i_B \) nin değerleri için bazı ampirik formüller (\( P_{BT} \) ve bağlı), eğri uydurma yöntemiyle bulunabilmekte olup, bu işlemler için mevcut bir takım paket programlardan faydalanabilir. Genellikle, birim bakım masrafi (\( B_B \), birim tesis masrafinin (\( a_B \)) \( \%3' \) ü mertebesindedir. Bu genellemenin yapılması büyük bir hata getirmemektedir.

Bu matematiksel modellerin amacı, klasik bir sistem olan 1. seçeneğe göre yapılan yatırım farkının, klasik sisteme göre elde edilen yıllık üretim masrafi farkı (avantaj) ile geri ödendiği düşülürse, bu geri ödeme süresini minimum yapan buhar türbin güçü, buhar kazanı kapasitesi ve bu minimum geri ödeme süresini bulmaktır. Burada amac fonksiyonu için,

\[ H(m_{xj},m_{yj},m_{zl},h_T) = (M_B - M) / (C - C_B) \]  \hspace{2cm} (5.15)

ve sınır koşulları ise,

\[ m_j = m_{xj} + m_{yj} \]  \hspace{2cm} (5.16)

\[ m_{xj},m_{yj},h_T \geq 0 \]  \hspace{2cm} (5.17)

\[ P_{BTj} \geq P_{BT\text{min}} \]  \hspace{2cm} (5.18)

ifadeleri yazılabilecektir. Burada, \( P_{BT\text{min}} \), imal edilen en küçük buhar türbini gücüdür.

Amaç fonksiyonu ve sınır koşulları biçiminde verilen bu denklemlerin, matematiksel programlama teknikleri ile çözümü sonucunda, buhar türbini gücü ve buhar kazanı kapasitesi belirlenmiş olmakla kalmayıp, ayrıca bunların gün içindeki çalışma programları da elde edilebilmektedir.
3. Seçenek: Gaz türbini ve ateşlemesiz veya ilave ateşlemeli atık ısı kazanından oluşan bir sistem

Sadece gaz türbini ve atık ısı kazanından oluşan bu çevrimde, Şebekeden elektrik enerjisi alım masrafi,

\[ A_G = k \cdot t \cdot \sum_{j=1}^{N} \text{Max}[(P_j - P_{Gj}),0] \cdot f \]  
(5.19)

Şebekeye elektrik enerjisi satışından elde edilen gelir,

\[ S_G = k \cdot t \cdot \sum_{j=1}^{N} \text{Max}[(P_{Gj} - P_j),0] \cdot g \]  
(5.20)

gaz türbininde kullanılan yakıtın masrafi,

\[ Y_G = k \cdot t \cdot \sum_{j=1}^{N} P_{Gj} \cdot d \cdot y \]  
(5.21)

atık ısı kazanında kullanılan ek yakıtın masrafi ise,

\[ K_G = k \cdot t \cdot \sum_{j=1}^{N} \text{Max}[(M_j \cdot \Delta h - 1 / s \cdot P_{Gj}),0] \cdot y \]  
(5.22)

biçiminde bulunabilir. Burada,

- \( P_{Gj} \): gaz türbini tarafından j. dilimde üretilen elektriksel güç (kW)
- \( d \): gaz türbininde 1 kW'lık elektriksel güç üretemek için gerekli olan yakıt miktarı (kJ/h / kW),
- \( s \): gaz türbinli çevrimin ısı güç oranı (kW / kJ/h),

gösterilmektedir.
Şekil 5.3. Gaz Türbinli Basit Çevrimin Şematik Gösterilişi

Buna göre, bu çevrimin, işletme ve bakım masrafları dahil, yıllık üretim masrafi için,

\[ C_G = A_G - S_G + Y_G + K_G + \max(P_{G1},P_{G2},\ldots,P_{GN}) \cdot (i_G + b_G) \]  \hspace{1cm} (5.23)

ifadesi verilebilir. Burada,

- \( i_G, b_G \) : gaz türbinli basit çevrimin yıllık birim işletme ve bakım masrafları ($/yıl/kW) \ni göstermektedir. Bu çevrimin tesis maliyeti ise,

\[ M_G = a_G \cdot \max(P_{G1},P_{G2},\ldots,P_{GN}) \]  \hspace{1cm} (5.24)

olur.

Burada,

- \( a_G \): birim tesis masrafi ($/kW)

dir.
Daha önceki seçeneklerde olduğu gibi, burada da ac ve ic için ampirik bir formül, bc’ nin değeri için ise \( \%3.a_c \) bağlantısı kullanılabilir. Bu durum için amaç fonksiyonu,

\[
H(P_{G1},P_{G2},...P_{GN}) = (M_G - M) / (C - C_G)
\]  

(5.25)

olup, sınırlı koşulu ise,

\[
P_{Gj} \geq P_{G\text{min}}
\]  

(5.26)

şeklindedir. \( H' \) i minimum yapan \( P_{G1},P_{G2},...,P_{GN} \) değerlerinin bulunmasıyla gaz türbini gücü, atık ısı kazanı kapasitesi ve çevrimin günlük çalışma programı saptanmış olacaktır.

4. Seçenek: Gaz türbini, ateşlemeziz veya ilave ateşlemeli atık ısı kazanı ve buhar türbininden oluşan bir kombine çevrim sistemi

Söz konusu bu çevrimin incelenmesi, 2. ve 3. seçeneklerdeki incelemelerin birleştirilmesiyle gerçekleştirilecek olup, buna göre,

bu çevrimden elde edilecek elektriksel güç,

\[
P_{Kj} = P_{Bj} + P_{Gj}
\]  

(5.27)

bu çevrime ilişkin, elektrik enerjisinin şebekeden alınması farklı,"}

\[
A_K = k \cdot t \cdot \sum_{j=1}^{N} \text{Max}[(P_j - P_{Kj}),0] \cdot f
\]  

(5.28)

şebekeye elektrik enerjisi satışından elde edilecek gelir,

\[
S_K = k \cdot t \cdot \sum_{j=1}^{N} \text{Max}[(P_{Kj} - P_j),0] \cdot g
\]  

(5.29)
gaz türbininde kullanılan yakıt masraflı,

\[ Y_K = k \cdot t \cdot \sum_{j=1}^{N} P_{GJ} \cdot d \cdot y \]  

(5.30)

şeklinde hesaplanır.

\[ K_K = k \cdot t \cdot \sum_{j=1}^{N} \text{Max}(Y_{BJ} \cdot t \cdot \eta_k - 1 / s \cdot P_{GJ}, 0) \cdot y \]

(5.31)

işletme ve bakımı da içeren yıllık toplam üretim masraflı,

\[ C_K = A_K - S_K + Y_K + K_K \cdot \text{Max}(P_{G1}, P_{G2}, \ldots, P_{GN}) \cdot (i_G + b_G) + \]

Şekil 5.4. Kombine Çevrimin Şematik Gösterilisi

Atık ısı kazanında kullanılan ek yakıtın masraflı,
\[ \text{Max} (P_{BT1}, P_{BT2}, \ldots, P_{BTN}) \cdot (i_B + b_B) \]  

(5.32)

tesis maliyeti ise,

\[ M_K = M_B + M_G \]  

(5.33)

ifadesine göre hesaplanacaktır.

Burada \( H \) fonksiyonu,

\[ H(P_{Gj}, m_{xj}, m_{yj}, m_{zj}, h_T) = \frac{(M_K - M)}{(C - C_K)} \]  

(5.34)

ve sınır koşulları,

\[ m_j - m_{xj} + m_{yj} \]  

(5.35)

\[ m_{xj}, m_{yj}, h_T \geq 0 \]  

(5.36)

\[ P_{Bj} \geq P_{B\text{min}} \]  

(5.37)

\[ P_{Gj} \geq P_{G\text{min}} \]  

(5.38)

biçiminde olup, \( H \)' yi minimum yapan \( P_{Gj}, m_{xj}, m_{yj}, m_{zj}, h_T \) değerleri bulunacaktır.

5. Seçenek: Gaz veya Dizel motorlu bir çevrim sistemi


Sonuç olarak, 1.seçenek referans altındığında, 2., 3., 4. ve 5. seçeneklerin bu seçeneğe göre sahip olduklarını geri ödeme süreleri karşılaştırılarak, en kısa geri ödeme süresi seçeneğin uygunluğu kararlaştırılacaktır. Eğer bu seçeneğin geri ödeme süresi, piyasanın ekonomik koşullarına göre yeterince kısa ise, bu yatırımanın gerçekleştirilmesi yönünde karar verilmelidir.

Tablo 5.1. Buhar Türbinli Çevrilmelere İlişkin Toplam Maliyetler (1990 yılında)

<table>
<thead>
<tr>
<th>Sistem</th>
<th>Komür yakıt (SO&lt;sub&gt;2&lt;/sub&gt; andırma)</th>
<th>Komür Yakıt (SO&lt;sub&gt;2&lt;/sub&gt; Andırması)</th>
<th>Doğal Gaz Yakıt (baca filteri)</th>
<th>Çöp yakıt (Elektrik üretimi yok)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yakıt girisi (MkJ/h)</td>
<td>305</td>
<td>305</td>
<td>305</td>
<td>316</td>
</tr>
<tr>
<td>Çıkış gücü (kW)</td>
<td>9350</td>
<td>9150</td>
<td>9350</td>
<td>9050</td>
</tr>
<tr>
<td>Buhar üretimi * (ton/h)</td>
<td>91</td>
<td>91</td>
<td>91</td>
<td>91</td>
</tr>
<tr>
<td>Topl. tesis maliyeti (M$)</td>
<td>29.6</td>
<td>36.7</td>
<td>19.6</td>
<td>40.0</td>
</tr>
<tr>
<td>İşletme masrafı (M$/yıl)</td>
<td>1.9</td>
<td>1.9</td>
<td>1.2</td>
<td>1.9</td>
</tr>
<tr>
<td>Bakım masrafı (M$/yıl)</td>
<td>0.89</td>
<td>1.1</td>
<td>0.56</td>
<td>1.2</td>
</tr>
</tbody>
</table>

- 11.4 bar’da doymuş buhar

Tablo 5.2. Tablo 5.3’de Verilen Gaz Türbini Modellerinin Kullanıldığı Çevrilmelere İlişkin Toplam Yatırım (tesis) Maliyetleri (M$)

<table>
<thead>
<tr>
<th>Sistem</th>
<th>Model 5</th>
<th>Model 6</th>
<th>Model 7</th>
<th>Model 25</th>
<th>Model 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaz türbini basit çevrim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ateşlemez Alık’lı</td>
<td>22.8</td>
<td>28.2</td>
<td>48.7</td>
<td>23.4</td>
<td>31</td>
</tr>
<tr>
<td>Ek ateşleme Alık’lı</td>
<td>26.2</td>
<td>31.6</td>
<td>54.7</td>
<td>26.0</td>
<td>35</td>
</tr>
<tr>
<td>Gaz ve buhar türbini Kombine çevrim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ateşlemez Alık’lı</td>
<td>34.6</td>
<td>42.2</td>
<td>70.7</td>
<td>31.3</td>
<td>34.6</td>
</tr>
<tr>
<td>Ek ateşleme Alık’lı</td>
<td>44.6</td>
<td>51.5</td>
<td>88.8</td>
<td>37.9</td>
<td>38.6</td>
</tr>
</tbody>
</table>

AIK: Atık İşi Kazanı
<table>
<thead>
<tr>
<th>Gaz türbini modeli</th>
<th>Model 5</th>
<th>Model 6</th>
<th>Model 7</th>
<th>Model 25</th>
<th>Model 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sadece gaz türbini</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(25°C deniz seviyesi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yakıt girişsi (Mkj/h)</td>
<td>340</td>
<td>445</td>
<td>939</td>
<td>220</td>
<td>314</td>
</tr>
<tr>
<td>(HHV)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Çıkış gücü (kW)</td>
<td>22400</td>
<td>33900</td>
<td>73200</td>
<td>19400</td>
<td>27300</td>
</tr>
<tr>
<td>Egzost çıkışı (ton/h)</td>
<td>420</td>
<td>474</td>
<td>1000</td>
<td>228</td>
<td>403</td>
</tr>
<tr>
<td>Egzost sıcaklığı (°C)</td>
<td>503</td>
<td>553</td>
<td>543</td>
<td>527</td>
<td>437</td>
</tr>
<tr>
<td>Gaz türb. ısı verimi (%)</td>
<td>%24</td>
<td>%27</td>
<td>%28</td>
<td>%31</td>
<td>%31</td>
</tr>
<tr>
<td>(HHV)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ateşlemesiz atık ısı kazanı</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 (bar), 188 (°C)</td>
<td>66</td>
<td>87</td>
<td>178</td>
<td>39</td>
<td>49</td>
</tr>
<tr>
<td>30 (bar), 346 (°C)</td>
<td>53</td>
<td>72</td>
<td>146.5</td>
<td>32</td>
<td>38</td>
</tr>
<tr>
<td>62.7 (bar), 443 (°C)</td>
<td>45</td>
<td>63.5</td>
<td>129</td>
<td>27.5</td>
<td></td>
</tr>
<tr>
<td>91.7 (bar), 485 (°C) ve</td>
<td>45</td>
<td>60</td>
<td>121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 (bar), 188 (°C)**</td>
<td>13</td>
<td>14</td>
<td>32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Ek ateşlemeli atık ısı kazanı|         |         |         |          |          |
| Ek yakıt girişsi (Mkj/h)    | 213     | 211     | 110     | 239.5    |          |
| Buhar üretimi (ton/h)       |         |         |         |          |          |
| 30 (bar), 346 (°C)         | 131     | 147     | 71      | 126      |          |
| 62.7 (bar), 443 (°C)       | 122     | 137     | 67      | 117      |          |
| 91.7 (bar), 485 (°C)       | 118     | 134     | 65      | 114      |          |

* HHV: Üst ısı değeri
** İki basınç düzeyli atık ısı kazanı

 Ayrıca, burada çözümün basit olması açısından, üretilen gücün, gün boyunca, sabit ve nominal değerde kaldıgı kabulü yapılmıştır. Bu yaklaşımlı, Türkiye gibi, alış ve satış fiyatlarının gün içinde zamanla değişmeyip, sabit kaldıgı (değişken enerji tarifesi kullanılmayan) ülkelerde kurulacak olan B.I.G.Ü. çevrileri için büyük bir hata getirmeyecektir.

5.2. Örnek

Ele alınacak olan endüstri tesisi, 11.4 bar' da doymuş buhara gereksinim duymakta ve buhara çeşitli işlemlerle kullanıktan sonra 65.5 °C’de doymuş su olarak çevrime geri göndermektedir. Endüstri tesisinin, bu basınç ve sıcaklıklıkta buhar ihtiyacı mevcut bir buhar kazanından sağladığı ve bu tesisin kullanılması ile düşülenen B.I.G.Ü. çevrime maliyetinin %18 azalığı kabul edilmiştir. Şekil 5.5 ve 5.6' da bu
sanayi tesisine ilişkin, ortalama günlük elektrik ve ısı yükü (buhar debisi) karakteristikleri verilmiş olup, bu tesis yılda 335 gün çalışılmaktadır.

![Diagram](image)

**Şekil 5.5.** Endüstri Tesisinin Ortalama Günlük Elektrik Enerjisi Gereksinimi

![Diagram](image)

**Şekil 5.6.** Endüstri Tesisinin Ortalama Günlük Isı Enerjisi (buhar) Gereksinimi

Kurulması düşünülen gaz türbinli çevrimin optimum gücünün bulunmasında, daha önce "4. Seçenek" adı altında verilmiş olan denklemlerden faydalanılmış ve bu denklemlerdeki $P_G$ değeri, belli sınırlar arasında değiştirilerek, en küçük geri ödeme süresini veren değer, grafik yöntemle saptanmaya çalışılmıştır. Grafiğin minimumdan geçen nokta civarında, $P_G'$nin değişim aralığı daraltılarak daha hassas
bir grafik elde edilmiş, ayrıca, bu civardaki güç ve geri ödeme süresi değerleri bir tabloya aktarılmıştır (Tablo 5.1).

Aşağıda gerçekleştirilen işlemler ve sonuçlar verilmektedir. Burada P₀ değişkeni yerine x değişkeni kullanılmıştır.

\[
\begin{align*}
N &= 6 \\
 t &= 4\text{ saat} \\
k &= 335\text{ gün} \\
\Delta h &= 2503\text{ kJ/kg} \\
f &= 0,05\text{ $/kWh} \\
g &= 0,04\text{ $/kWh} \\
P &= [20.10^3, 40.10^3, 30.10^3, 50.10^3, 30.10^3, 20.10^3]\text{ kW} \\
m &= [45.10^3, 70.10^3, 90.10^3, 80.10^3, 50.10^3, 45.10^3]\text{ kg/saat}
\end{align*}
\]

\[a_G = \text{pow}(X, -0.436715) \times 87091.8\]

**Şekil 5.7. Birim Tesis Maliyetinin Güçe Göre Değişimi**
**Şekil 5.8. Birim İşletme Masrafının Güçe Göre Değişimi**

\[ A_k(x) = k \cdot t \cdot f \cdot \sum_{j=1}^{N} \frac{|P_j - x| + P_j - x}{2} \]  \hspace{1cm} (5.39)

\[ S_G(x) = k \cdot t \cdot g \cdot \sum_{j=1}^{N} \frac{x - P_j + x - P_j}{2} \]  \hspace{1cm} (5.40)

\[ Y_G(x) = x \cdot d \cdot t \cdot N \cdot k \cdot y \cdot 10^{6} \]  \hspace{1cm} (5.41)

\[ K_G(x) = k \cdot t \cdot y \cdot 10^{6} \cdot \sum_{j=1}^{N} \frac{|m_j \cdot \Delta h - 1 / s \cdot x| + m_j \cdot \Delta h - 1 / s \cdot x}{2} \]  \hspace{1cm} (5.42)

\[ M_G(x) = x^{(0.436)} \cdot 87091.8 \cdot x \cdot 0.82 \]  \hspace{1cm} (5.43)

\[ C_G(x) = A_G(x) - S_G(x) + Y_G(x) + K_G(x) + 0.03 \cdot M_G(x) + x^{(0.678)} \cdot 45397.2 \cdot x + 2.02 \cdot 10^{6} \]  \hspace{1cm} (5.44)
\[ C = k \cdot t \cdot \sum_{j=1}^{N} \left[ \frac{P_j \cdot f + m_j \cdot \Delta h}{\eta_k \cdot y \cdot 10^{6}} \right] + 0.03 \cdot M + 0.8 \cdot 10^{6} \quad (5.45) \]

\[ x = 10 \cdot 10^{3}, 11 \cdot 10^{3}, \ldots, 70 \cdot 10^{3} \]

\[ H(x) = \frac{M_G(x)}{[C - C_G(x)]} \quad (5.46) \]

Şekil 5.9' da, x' in 10...70 MW aralığındaki değişimine göre elde edilen gaz türbinli çevrime ilişkin tesis maliyeti (M_G(x)), yıllık üretim masrafi (C_G(x)) ve klasik sisteme ilişkin yıllık üretim masrafi (C) grafikleri gösterilmektedir. Şekil 5.10' da ise x' in aynı aralıktaki değişimine karşılık elde edilen yatırım geri ödeme süresi (H(x)) verilmektedir. Şekil 5.10' da görüldüğü gibi H(x), X=20 MW civarında minimumdan geçmekte olup, tam olarak minimum noktası, bu şekil üzerinde tam olarak görülememektedir. Daha doğru bir sonuca ulaşmak amacıyla, X' in 19,5 ... 20,5 MW aralığındaki değişimine karşılık düşen, daha hassas bir H(x) grafiği Şekil 5.11' de gösterilmiştir. Ayrıca X=20 MW civarındaki güç ve geri ödeme süresi değerleri hesaplandırılmış ve elde edilen değerler, Tablo 5.1' de verilmiştir.

![Şekil 5.9. x=10...70 MW Aralığında M_G, C_G ve C' nin x' e Göre Değişimi](image-url)
Şekil 5.10. $x=10...70$ MW Aralığında Yatırımın Geri Ödeme Süresi (H)' nin $x'$ e Göre Değişimi

Tablo 5.4. $x=19,8 ... 20,2$ MW Aralığında Geri Ödeme Süresinin $x'$ e Bağlı Değişim Tablosu

<table>
<thead>
<tr>
<th>$x$</th>
<th>$H(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>19800</td>
<td>5.11172</td>
</tr>
<tr>
<td>19850</td>
<td>5.11074</td>
</tr>
<tr>
<td>19900</td>
<td>5.10975</td>
</tr>
<tr>
<td>19950</td>
<td>5.10875</td>
</tr>
<tr>
<td>20000</td>
<td>5.10775</td>
</tr>
<tr>
<td>20050</td>
<td>5.10858</td>
</tr>
<tr>
<td>20100</td>
<td>5.10940</td>
</tr>
<tr>
<td>20150</td>
<td>5.11021</td>
</tr>
<tr>
<td>20200</td>
<td>5.11100</td>
</tr>
</tbody>
</table>

Değişik şebeke elektrik satış ve geri alış fiyatları ve doğal gaz fiyatları için, her bir fiyat karşılık düşen optimum güç ve bu güçteki yatırımanın geri ödeme süresi değerleri elde edilmiştir. Bu değerler grafik olarak Şekil 5.12, 5.13 ve 5.14' te gösterilmiştir.
Şekil 5.11. $x=19.5...20.5$ MW Aralığında, Yatırım Geri Ödeme Süresinin $x$'e Bağlı Değişimini Daha Hassas Olarak Gösteren Grafik

Şekil 5.11 ve Tablo 5.4' den görüldüğü gibi optimum çevrim gücü '20 MW ve bu güçteki çevrim için yapılan yatırımın geri ödeme süresi yaklaşık 5.1 yıldır.

Şekil 5.12. Yatırımın Geri Ödeme Süresinin, Şebekein Elektrik Satış Fiyatına Göre Değişimi
Şekil 5.12’de görüldüğü gibi, şebekenin elektrik satış fiyatı attıka yatırım geri ödeme süresi düşmektedir. B.I.G.Ü ile elektrik enerjisi üretilerek şebekeden elektrik enerjisi alındıında tasarruf sağlanması ve artan şebekе fiyatlarıyla bu tasarrufun daha da çoğalması nedeniyle böyle bir sonuç ortaya çıkmıştır. Başka bir ifadeyle, şebekenin elektrik satış fiyatının artmasına karşın, endüstri tesisinin ürettiği elektrik enerjisinin birim fiyatı olarak düşünülebilen EDY (Elektriğe Dönüşen Yakıt) oranının sabit kalması bu sonucu doğurmıştır.

Artan şebekе geri alış fiyatıyla yatırım geri ödeme süresinin, belli bir değere kadar fazla değişmediği, bu değerden sonra hızlı bir düşüş gösterdiği Şekil 5.13’den görülmüştür. Burada da gaz türbinli çevrimin EDY oranı sabit olup, şebekenin belirli bir elektrik geri alış fiyatı değerine kadar (yaklaşık 5 ş/kWh), EDY ile elektrik geri alış fiyatını arasında, güç artışının getireceği tesis maliyeti artışlarının karşılayacak kadar yeterli fark oluşmadığı için, şebekeye büyük miktarlarda elektrik satışı uygun değildir.

![Şekil 5.13. Yatırımın Geri Ödeme Süresinin, Şebekenin Elektriği Geri Alış Fiyatına Göre Değişimi](image)

Bu nedenle, bu değere kadar elektrik geri alış fiyatının artması yatırım geri ödeme süresini fazla düşürmemekte, optimum güç fazla artmamaktadır. Bu değerden sonra,
yeterli farklı oluşması nedeniyle şebekeye büyük miktarlarda elektrik satılabilmekte ve geri ödeme süresi hızla düşmektedir. Gerçekte, şebekenin, elektriği sattığı fiyatından daha yüksek bir fiyat attıran geri alması, şebeke açısından kaçınılmamasi gerek bir durumdur.

Şekil 5.14. Yatırımın Geri Ödeme Süresinin, Yakıt Fiyatına Göre Değişimi

Bununla birlikte, değişken elektrik tarihinin uygulandığı ülkelerde, gün içinde, kısa süreli olarak böyle bir durumla karşılaşılmaktadır. Bu ülkelerde B.I.G.Ü. santrallerinin günlük çalışma programları da bu değişime göre planlanmaktadır.

BÖLÜM 6

TÜRKİYE’DE KURULAN BİLEŞİK ISI GÜÇ SANTRALLERİNİN ÖNEMİ ve ÇEVREYE ETKİLERİ

Bu bölümde B.I.G.Ü. sistemleri çevre sorunları bakımından ele alınmış ve diğer santral türleri ile karşılaştırmalı olarak önem ve üstünlükleri açıklanmaya çalışılmıştır.

6.1. Türkiye’de Enerji Kaynakları ve Kojenerasyon


Bu durum hükümetin desteğiyle ilerlemiştir. Bileşik İstı Gıç Üretim santrallerinin önem kazanmasındaki en büyük etken güç üretimindeki kısıtlamalardır.


Türkiye doğal kaynaklarından maksimum şekilde faydalanmalıdır. Bunlar genel
olarak yenilenebilir enerjiler (su, güneş, rüzgar, jeotermal) ve düşük kaliteli kömürdür. Enerji güvenliğini sağlamak için Türkiye, büyüme oranına göre enerji açığını karşılamak için doğal gaz, petrol ve yüksek kalitede kömür ithal etmesi gerekiir.

Türkiye yaklaşık olarak 10 milyar tonluk düşük kalitede kömür rezervine sahiptir. Bu rezervlerin %45'i evsel tüketimler ve termik güç santralleri için yakıt sağlama amaçlı işletilmektedirler.

Türkiye'nin yeterli bir doğal gaz rezervi yoktur. Bilinen rezervler 10 milyar m³ civarı ve yıllık üretim 300 milyon m³ civarındadır. 1987 den beri Türkiye Rusya'dan ve Cezayir'den doğal gaz ithal etmektedir.


Türkiye'de güneş enerjisi bakımından zengindir. Fakat yaz döneminin uzun olduğu ülkenin batı ve güney kısımlarında güneş enerjisinden faydalanılaması daha uygundur.

Jeotermal enerji kaynakları 4.000 MWe kapasitesindedir. Şu anda 32 MWe kısmı kullanılmadadır.


**Tablo 6.1. Elektrik Üretimindeki Yakıt Kullanımı (bin ton petrol)**

<table>
<thead>
<tr>
<th>TAŞKÖMÜRÜ</th>
<th>636</th>
</tr>
</thead>
<tbody>
<tr>
<td>LİNYİT</td>
<td>8,196</td>
</tr>
<tr>
<td>PETROL</td>
<td>2,052</td>
</tr>
<tr>
<td>DOĞAL GAZ</td>
<td>4,193</td>
</tr>
<tr>
<td>JEOTERMAL ENERJİ</td>
<td>71</td>
</tr>
</tbody>
</table>
Kojenerasyon santrallerinde kullanılan ana yakıt doğal gazdır. Kojenerasyon santrallerinin %90’ında doğal gaz, %7’inde LPG, %3’ünde ağır petrol kullanılır.

**Tablo 6.2. Elektrik**

<table>
<thead>
<tr>
<th>KURULU GÜÇ</th>
<th>23,000 MWE</th>
</tr>
</thead>
<tbody>
<tr>
<td>YILLIK ÜRETİM</td>
<td>104,500 GWH</td>
</tr>
</tbody>
</table>

**Tablo 6.3. Bileşik İş Güç Üretim Sistemleri**

<table>
<thead>
<tr>
<th>KURULU GÜÇ</th>
<th>1,100 MWE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEKTRIK ÜRETİMİ</td>
<td>7,500 MWH</td>
</tr>
<tr>
<td>TOPLAMDAKİ PAYI</td>
<td>%7</td>
</tr>
<tr>
<td>ADEDİ</td>
<td>47</td>
</tr>
<tr>
<td>ORTALAMA KAPASİTE</td>
<td>25 MWE</td>
</tr>
<tr>
<td>ORTALAMA BİRİM KAPASİTE</td>
<td>10 MWE</td>
</tr>
</tbody>
</table>

Bileşik İş Güç Üretim santrallerinin büyük çoğunluğu endüstriyel sektörde kullanılmaktadır ve kullanım alanının %70’i tekstil sektörüdür. Türkiye’de B.I.G.Ü. santrallerinden faydalanarak ısıtma ve soğutma henüz yeni başlamıştır. 200 yılında en az 10 santral ısıtma soğutmaya yönelik çalışacak ve yaklaşık olarak 50.000 ev bundan faydalanacaktır (Turkey Cogen 1999).

6.2. İleriye Dönük Market Araştırması

1998’ın sonunda kojenerasyon santrallerinin toplam kapasitesi 2,250 Mwe idi ve bu değer Türkiye’deki toplam kapasitenin %9’unu oluşturuyordu (Turkey Cogen 1999).
Tablo 6.4. Yıllara Göre Bileşik İsı Güç Üretim Sistemlerindeki Gelişme Beklentileri

<table>
<thead>
<tr>
<th>YIL</th>
<th>KAPASİTE (MWE)</th>
<th>TEP</th>
<th>TOPLAM GÜÇ KAP.</th>
<th>CHP PAYI %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>2,250</td>
<td>475</td>
<td>25,000</td>
<td>9</td>
</tr>
<tr>
<td>1999</td>
<td>2,750</td>
<td>515</td>
<td>27,000</td>
<td>10</td>
</tr>
<tr>
<td>2000</td>
<td>3,240</td>
<td>610</td>
<td>29,700</td>
<td>11</td>
</tr>
<tr>
<td>2005</td>
<td>7,543</td>
<td>4,303</td>
<td>42,200</td>
<td>18</td>
</tr>
<tr>
<td>2010</td>
<td>13,447</td>
<td>5,904</td>
<td>62,500</td>
<td>21</td>
</tr>
<tr>
<td>2020</td>
<td>29,552</td>
<td>16,105</td>
<td>113,000</td>
<td>26</td>
</tr>
</tbody>
</table>

6.3. Bileşik İsı Güç Sistemlerinin Çevre Korumaya Katkısı

Elektrik enerjisinin kullanılmaya başlanması ile birlikte fosil kaynaklar ikinci enerji kaynağı olan bu enerjinin elde edilmesinde önemli bir yer almış ve giderek artan bir oranda kullanılmaya devam etmiştir. Çeşitli fosil yakıt türlerinden verimli ve ekonomik olarak yaralanabilme, bir yandan da bu yakıtların kullanımının çevreye olumsuz etkilerini azaltabilmek için çalışmalar sürdürülmektedir.

6.3.1. Fosil yakıtın santrallerden kaynaklanan çevre sorunları

atmosfere yapılan emisyonlar gerek mahalli gerekse bölgesel ölçüte insan ve çevre üzerine çok önemli etkiler yaratmaktadır. Fosil yakıtlı elektrik santrallerinden oluşan emisyonların yayım miktarı kullanılan teknoloji ve yakıt cinsine bağlıdır.

Fosil yakıtların tümünün bileşiminde az veya çok miktarda küükurt bulunur. Yanma sonucu bu küükurt SO₂ ve SO₃ şekline (SOₓ) dönüşür. Küükurt oksitler sonunun yolu enfeksiyonlarına ve kalp rahatsızlıklarına neden olduğu gibi atmosferde su ile reaksiyona girerek asit yağmurlarına neden olurlar ve kültür alanlarında, ormanlarda, doğal bitki örtüsünde, göllerde ve nehirlerde büyük tahrıbat yapar.

Fosil yakıtların yanması sonucu ortaya çıkan diğer bir kirlenti grup azot oksitlerdir. (NOₓ) . azot oksitlerin oluşumu esas olarak yakıtnın bünyesindeki azot elementinin yanması sonucu oluşur, ancak yanma kamarasındaki yüksek sıcaklık hava bileşimindeki azotun da NOₓ 'lere dönüşmesine neden olmaktadır. NOₓ emisyonu CO₂ gibi sera etkisi oluşturmaktadır ayrıca canlılarda akciğer dokusunu tahrıpt etmekte ve asit yağmurlarına dönüşmesi nedeniyle yine doğaya ve çevreye büyük zarar vermektedir.

Fosil yakıtı cinsine ve yanma işleme bağlı olarak değişen miktarlarda zehirli karbon monoksit gazı oluşmaktadır. Y anıma sonucu oluşan bazı kirlenticiler ise kanserojen olarak bilinmektedir.

Katı (kömür) ve sıvı (fuel-oil) yakıtların yakılaması sonucunda termik santral bacalarından atmosferi önemli derecede partikül yayını olabilmektedir. Oluşan küller ise önemli çevre sorunu yaratmaktadır. Gerek havaya atılan partiküllerinerekse katı atık şeklinde oluşan yapısında bulunan ağır metaller toprak ve su kirliliğine neden olmaktadır.

Bileşik ısı – güç üretimini biçiminde olmayan termik santraller, atlam kondenser ısısı nedeniyle çevrede ısı kirlenmeye neden olmaktadır. Ayrıca linyit veya kömür kullanılan termik santraller açısından kömür işletme sahalarındaki doğa tahrıbatı, kömür depolaması ve kömür nakli çevreyi olumsuz yönde etkilemektedir.
Fosil yakıtlı elektrik santrallerinin yerel ve bölgesel ölçüteki olumsuz etkilerini azaltmak amacıyla tüm dünyada baca gazı ve tozu artırım sistemleri kullanılmaya başlanmış, fosil yakıtlara dayalı temiz enerji üretimi ve yeni teknolojilerin uygulamalarına geçilmiştir (Okutan 1999)(Ö zgürel, Şahin 1994).

6.3.2. Temiz enerji üretim sistemleri ve yeni teknolojiler

Ülkemizin hidrolik enerji kapasitesinin uzun dönemdeki talep artışlarını karşılamaya yetmemesi ve yenilenebilir enerji kaynaklarının henüz gelişme saftasında ve küçük ölçeklerde mümkün olabilmesi nedeniyle ağırlıklı olarak kömür ve doğal gaz olmak üzere fosil yakıtların daha uzun bir süre birincil kaynak olma özelliğini koruyacağı bilinmektedir. Enerji üretiminde verimi artırmaya ve çevre ye korumaya yönelik bazı teknolojiler geliştirilmiştir.

6.3.2.1. Linyitlerin değerlendirilmesi için teknolojiler

6.3.2.1.1. Toz tutma ve baca gazı artırma teknolojileri


6.3.2.1.2. Akışkan yatakla yakma teknolojişi

Akışkan yatak teknolojisi, kömür taneciklerinin sıcak akışkanlaştırılmış kum veya kül yatağında yanmasıdır. Kazana verilen primer hava yatak malzemesini (kül veya kum) akışkanlaştırır ve yatağa alttan ya da üstten beslenen kömür taneciklerinin yanmasını sağlar. Yakıt veya yatak malzemesinin hava ile % 100 teması yüksek

6.3.2.1.3. Entegre kömür gazlaştırma kombine çevrim teknolojisi (IGCC)

Bu teknojoloji, kömürün gazlaştırılması ile elde edilen kömür gazının gaz türbinlerinde yakılarak elektrik üretilmesi prensibine dayanmaktadır. Santral esas olarak aşağıda belirtildiği gibi üç ana bölümden meydana gelmektedir.

. Basınçlı kömür gazlaştırma ünitesi
. Gaz türbinleri
. Buhar türbinleri


6.3.2.2. Doğal gaz ve sıvı yakıt kullanılan enerji üretim teknolojileri

Elektrik üretiminde kullanılan sıvı yakıtlar, motorin, fuel-oil, nafta ve LPG dir. Bu yakıtlar elektrik üretimindeki iki farklı teknoloji modeliyle kullanılmaktadır.

a) Sıvı yakıtların tek boyutlu kazanlarda yakılarak önce buhar enerjisi sonra da buhar türbinlerinde elektrik enerjisi elde edilmesi.

b) Sıvı yakıtların gaz ve dizel motorlarında ve gaz türbinlerinde yakılarak doğrudan elektrik enerjisine dönüştürülmesi.
Fuel-oil dışında motorin, nafta, ve LPG 'nin yakılması ile oluşacak gazlarda SO₅, NOₓ ve CO değerleri genelde müsaade edilen sınırların altındadır. Fakat bu yakıtlar fuel-oil’e göre elektrik üretiminde pahalıya gelmektedir. Diğer yandan ülkemiz rafinerilerinden çıkan fuel- oil’in küürt içeriği çok yüksek olup bunların baca gazi artıma tesisi olmadan kullanılması çevre açısından uygun değildir.


6.3.2.2.1.Kombine çevrim santralleri

Kombine çevrim santralleri; düşük yatırıım ve işletme maliyeti, yüksek verim, kısa tesis dönemi, minimum çevresel etki, düşük baca gazi emisyonu, fuel-oil’den doğal gaza kadar geniş yakıt kullanım olanağı, düşük soğutma suyu ihtiyacı, işletme basitlik ve kolaylık, yüksek güvenilirlik gibi avantajları nedeniyle günümüzde en çok tercih edilen üretim sistemlerindendir.

Kombine çevrim terimi esas itibariyle gaz türbin çevrimi ve buhar çevriminin bir sistem içine alınarak birbirini tamamlayıcı şekilde çalıştırılmasını ifade etmekte olup, genel presibi gaz türbin çevriminden çıkan egzos gazlarının yüksek dereceli ısısının su / buhar çevriminde kullanılarak ek bir enerji üretiminin sağlanmasını dair.

6.3.2.2. Bileşik ısı güç üretim sistemleri


BÖLÜM 7

ELE ALINAN ÖRNEK TESISİN MODELLİNİN OLUŞTURULMASI VE SİMÜLASYONU

Bu bölümde Bileşik İsp Gıç Üretim sistemlerinin daha verimli ve kontrollü işletilmesi için kontrol metodlarının sistem üzerindeki etkileri gösterilmiştir. Bu çalışma yapılarken önce ele alınan sistemin modeli oluşturulmuştur.

7.1. Tesisin Tanıtımı

Bu bölümde kullanılan datalar, bir endüstriyel tesisin kojenerasyon santraline ilişkin bir aylık verileridir. Bu tesi bir model olarak basıççe Şekil 7.1.’deki gibi gösterebiliriz.

Şekil 7.1. Ele Alınan Tesisin Basit Modeli
Bu santraldeki dizayn kriterleri, elektrik üretim kapasitesi, proses buhar basıncı ve sıcaklığı gibi değerlerdir. Kullanılan datalar zamanına bağlı olup, ortam koşulları altında alınmıştır (EkA). Şekil 7.2.’de sistemin elektrik güç talebi ve buhar üretimi, zamanına bağlı olarak grafik halinde verilmiştir.

**Şekil 7.2.** Ele Alınan Tesise İlişkin Güç ve Buhar Talebi Eğrileri
7.2. Tesisin Modellemeye İlişkin Yapılan Çalışma

Bu bölümdede yapılan çalışma şunlardır:

Pakmaya fabrikasının kojenerasyon santraline ilişkin bir aylık sürede alınan saatlik datalar kullanılmıştır. Saat başı alınan bu datalar Ek A’da verilmiştir.

Bu datalardan Matlab bilgisayar programı kullanılarak faydalanılmıştır. Öncelikle sistem, blok şemalarla ifade edilebilir hale getirilmiştir. Burada izlenen yol rakamlar arasında ilişki kurmaya dayanmaktadır. Örneğin; kompresöre giren havanın sıcaklığı ile çıkışta ulaşacağı sıcaklık arasında fonksiyonel ilişki kurarak bu değişkenleri birbirleri cinsinden ifade etmeye dayanır. Sistem bloklar haline getirildikten sonra her bir blok için giriş datalari ve çıkış datalari Matlab’a aktarılır ve polyfit(x,y,*) komutu kullanılarak fonksiyon elde edilir. bütün bloklar fonksiyonlarla ifade edilebilir duruma getirilir. Bu durumda elektrik üretimi, buhar üretimi gibi istediğimiz sonuçların yapışık değerlerini görebiliriz(Şekil 7.3.).
Şekil 7.3. Sistemin Fonksiyon Blok Diyagramı
Şekil 7.4. Sistemin Ortalama Elektrik Üretim Miktarı
Şekil 7.5. Sistemde Üretilen Buharın Ortalama Basıncı
Şekil 7.6. Sistemde Üretilen Ortalama Buhar Miktarı
Şekil 7.7. Sistem Çıkış Egzos Gazı Ortalama Sıcaklığı
7.3. S Domeninde Matematiksel Modeli Oluşturulan Tesisin Elektrik Üretim Kontrolü


Daha sonra yapılan çalışmada ise, Şekil 7.3’teki blok diyagram kullanılarak, sistem S domeninde ifade edilmeye çalışılmıştır. Örnek olarak; giriş x, çıkış y olan bir blok ele alınmıştır. İsteneden giriş ve çıkışlara ilişkin datalar matlab’a aktarılıp polyfit(x,y,*) komutu ile fonksiyon belirlenir. Bu fonksiyon y= ax+b veya y= ax²+bx+c gibi ifade edilebilir. Daha sonra bu olayın tam tersi düşünülür. Yani bir sefer giriş y, çıkış x olacaktır. Aynı şekilde x= cy+d veya x= cy²+dy+e gibi bir fonksiyon elde edilir. y=f(x) ve x= f(y) fonksiyonlarının Laplace Transfer Fonksiyonu alınır ve birbirine oranlanarak bu bloğa ilişkin transfer fonksiyonu elde edilir. sistem S domeninde ifade edilmiş olur.


Şekil 7.8’in içinde yer alan alt-sistem bloğunun ayrıntılı şeması Şekil 7.9.’da verilmiştir.
Şekil 7.8. Sistemin S Domenindeki Blok Diyagramı
Şekil 7.9. Alt-Sistem Blok Diyagramı
Sisteme uygulanan adım fonksiyonu Şekil 7.10. da gösterilmiştir. Uygulanan bu adım Fonksiyonuna karşılık sistemin cevabı ise Şekil 7.11’de verilmiştir.

Şekil 7.10. Sisteme Uygulanan Adım Fonksiyonu

Şekil 7.11. Sisteme Uygulanan Adım Fonksiyonu Cevabı

Şekil 7.12. Sistemin Kademeli Denetim Diyagramı
Şekil 7.15. Sistemin PI Denetim Elemanına Cevabı

Şekil 7.16. Sistemin PID Denetim Elemanlı Diyagramı
Şekil 7.17. Sistemin PID Denetim Elemanına Cevabı
SONUÇLAR ve ÖNERİLER


Bu koşullar:

- Hem ısı hem elektrik ihtiyacı olan yeni endüstriyel tesislerin kurulması,
- Var olan tesislerde yapılan büyük genişlemeler,
- Eskiyan buhar üretim donanımının değiştirilmesi,
- Yakıt ve elektrik enerjisi maliyetlerinde önemli değişikliklerin olması,
- Şebekeye elektrik satış fiyatının doğması,

seçilinde sayılabilir.


Üretim sistemlerin matematiksel modeli çıkarılarak otomatik kontrolünün sağlanmasının avantajları vardır. Bileşik İş-Güç Üretim Sistemlerinde elektrik ve ısı üretiminin gerçekleşmesi için çeşitli saflar vardır. Bu safhalarda önemli etkisi bulunan sıcaklık, basınç, hız gibi etkenlerin denetimi otomatik kontrol sistemi ile


Türkiye’deki enerji ihtiyacı ve çevre sorunları göz önüne alınarak daha verimli ve temiz enerji kullanımı için Bileşik İpi- Güç Üretim Sistemleri’nin yaygınlaşması gerekmektedir.
KAYNAKLAR


<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>676</td>
<td>10,8</td>
<td>446</td>
<td>147</td>
<td>4786</td>
<td>1</td>
<td>285</td>
<td>0,452</td>
<td>7,5</td>
</tr>
<tr>
<td>6</td>
<td>677</td>
<td>10,8</td>
<td>446</td>
<td>144</td>
<td>4756</td>
<td>1,01</td>
<td>287</td>
<td>0,454</td>
<td>7,3</td>
</tr>
<tr>
<td>7</td>
<td>675</td>
<td>10,8</td>
<td>446</td>
<td>138</td>
<td>4761</td>
<td>1</td>
<td>284</td>
<td>0,454</td>
<td>6,8</td>
</tr>
<tr>
<td>8</td>
<td>677</td>
<td>10,8</td>
<td>446</td>
<td>136</td>
<td>4732</td>
<td>1</td>
<td>282</td>
<td>0,455</td>
<td>7,1</td>
</tr>
<tr>
<td>9</td>
<td>676</td>
<td>10,7</td>
<td>447</td>
<td>142</td>
<td>4695</td>
<td>1,013</td>
<td>285</td>
<td>0,457</td>
<td>6,9</td>
</tr>
<tr>
<td>10</td>
<td>675</td>
<td>10,7</td>
<td>447</td>
<td>146</td>
<td>4658</td>
<td>1,011</td>
<td>283</td>
<td>0,46</td>
<td>7,4</td>
</tr>
<tr>
<td>11</td>
<td>676</td>
<td>10,6</td>
<td>447</td>
<td>149</td>
<td>4635</td>
<td>1</td>
<td>284</td>
<td>0,46</td>
<td>6,9</td>
</tr>
<tr>
<td>11</td>
<td>678</td>
<td>10,7</td>
<td>448</td>
<td>151</td>
<td>4615</td>
<td>1</td>
<td>285</td>
<td>0,46</td>
<td>6,6</td>
</tr>
<tr>
<td>11</td>
<td>676</td>
<td>10,7</td>
<td>448</td>
<td>153</td>
<td>4629</td>
<td>1</td>
<td>285</td>
<td>0,456</td>
<td>7,5</td>
</tr>
<tr>
<td>9</td>
<td>676</td>
<td>10,8</td>
<td>447</td>
<td>148</td>
<td>4703</td>
<td>1,013</td>
<td>285</td>
<td>0,455</td>
<td>7,3</td>
</tr>
<tr>
<td>8</td>
<td>677</td>
<td>10,8</td>
<td>447</td>
<td>145</td>
<td>4733</td>
<td>1,013</td>
<td>287</td>
<td>0,454</td>
<td>6,6</td>
</tr>
<tr>
<td>8</td>
<td>676</td>
<td>10,8</td>
<td>447</td>
<td>146</td>
<td>4715</td>
<td>1</td>
<td>285</td>
<td>0,454</td>
<td>6,8</td>
</tr>
<tr>
<td>7</td>
<td>675</td>
<td>10,8</td>
<td>447</td>
<td>147</td>
<td>4743</td>
<td>1</td>
<td>283</td>
<td>0,454</td>
<td>7,4</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10,8</td>
<td>446</td>
<td>159</td>
<td>4749</td>
<td>1</td>
<td>286</td>
<td>0,454</td>
<td>7,2</td>
</tr>
<tr>
<td>6</td>
<td>677</td>
<td>10,7</td>
<td>446</td>
<td>151</td>
<td>4744</td>
<td>1</td>
<td>285</td>
<td>0,45</td>
<td>7,7</td>
</tr>
<tr>
<td>6</td>
<td>677</td>
<td>10,7</td>
<td>446</td>
<td>150</td>
<td>4751</td>
<td>1</td>
<td>284</td>
<td>0,45</td>
<td>7,3</td>
</tr>
<tr>
<td>6</td>
<td>675</td>
<td>10,9</td>
<td>446</td>
<td>150</td>
<td>4753</td>
<td>1</td>
<td>285</td>
<td>0,45</td>
<td>7,3</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10,8</td>
<td>446</td>
<td>146</td>
<td>4770</td>
<td>1</td>
<td>285</td>
<td>0,45</td>
<td>6,9</td>
</tr>
<tr>
<td>6</td>
<td>677</td>
<td>10,8</td>
<td>446</td>
<td>153</td>
<td>4803</td>
<td>1,011</td>
<td>286</td>
<td>0,45</td>
<td>7,3</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10,9</td>
<td>446</td>
<td>151</td>
<td>4802</td>
<td>1</td>
<td>284</td>
<td>0,448</td>
<td>7,3</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10,8</td>
<td>446</td>
<td>150</td>
<td>4803</td>
<td>1,013</td>
<td>284</td>
<td>0,45</td>
<td>6,9</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>11</td>
<td>446</td>
<td>150</td>
<td>4809</td>
<td>1</td>
<td>284</td>
<td>0,449</td>
<td>7,5</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10,9</td>
<td>447</td>
<td>150</td>
<td>4784</td>
<td>1</td>
<td>284</td>
<td>0,45</td>
<td>7,7</td>
</tr>
<tr>
<td>6</td>
<td>675</td>
<td>10,8</td>
<td>446</td>
<td>146</td>
<td>4774</td>
<td>1</td>
<td>284</td>
<td>0,45</td>
<td>7,5</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10,8</td>
<td>446</td>
<td>146</td>
<td>4766</td>
<td>1</td>
<td>286</td>
<td>0,45</td>
<td>7,4</td>
</tr>
<tr>
<td>6</td>
<td>677</td>
<td>10,8</td>
<td>447</td>
<td>147</td>
<td>4753</td>
<td>1</td>
<td>286</td>
<td>0,448</td>
<td>7,3</td>
</tr>
<tr>
<td>6</td>
<td>675</td>
<td>10,8</td>
<td>447</td>
<td>149</td>
<td>4743</td>
<td>1</td>
<td>284</td>
<td>0,449</td>
<td>7,5</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10,8</td>
<td>450</td>
<td>153</td>
<td>4732</td>
<td>1</td>
<td>285</td>
<td>0,45</td>
<td>7,5</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10,8</td>
<td>446</td>
<td>154</td>
<td>4779</td>
<td>1</td>
<td>285</td>
<td>0,45</td>
<td>7,4</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10,8</td>
<td>446</td>
<td>152</td>
<td>4770</td>
<td>1</td>
<td>285</td>
<td>0,452</td>
<td>7,3</td>
</tr>
<tr>
<td>7</td>
<td>677</td>
<td>10,9</td>
<td>446</td>
<td>151</td>
<td>4783</td>
<td>1</td>
<td>286</td>
<td>0,454</td>
<td>7,3</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10,9</td>
<td>446</td>
<td>156</td>
<td>4782</td>
<td>1</td>
<td>284</td>
<td>0,454</td>
<td>6,8</td>
</tr>
<tr>
<td>8</td>
<td>676</td>
<td>10,7</td>
<td>445</td>
<td>146</td>
<td>4707</td>
<td>1,011</td>
<td>285</td>
<td>0,458</td>
<td>7,6</td>
</tr>
<tr>
<td>8</td>
<td>676</td>
<td>10,8</td>
<td>446</td>
<td>145</td>
<td>4756</td>
<td>1</td>
<td>285</td>
<td>0,458</td>
<td>6,7</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10,7</td>
<td>446</td>
<td>148</td>
<td>4753</td>
<td>1</td>
<td>284</td>
<td>0,45</td>
<td>7,2</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10,8</td>
<td>446</td>
<td>150</td>
<td>4784</td>
<td>1</td>
<td>284</td>
<td>0,45</td>
<td>6,7</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10,8</td>
<td>446</td>
<td>148</td>
<td>4774</td>
<td>1,012</td>
<td>285</td>
<td>0,45</td>
<td>6,6</td>
</tr>
<tr>
<td>5</td>
<td>677</td>
<td>10,8</td>
<td>446</td>
<td>148</td>
<td>4815</td>
<td>1,012</td>
<td>285</td>
<td>0,44</td>
<td>6,4</td>
</tr>
<tr>
<td>5</td>
<td>675</td>
<td>10,8</td>
<td>446</td>
<td>149</td>
<td>4795</td>
<td>1</td>
<td>286</td>
<td>0,443</td>
<td>7,3</td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10,8</td>
<td>446</td>
<td>149</td>
<td>4834</td>
<td>1,013</td>
<td>285</td>
<td>0,45</td>
<td>7,3</td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10,9</td>
<td>446</td>
<td>148</td>
<td>4808</td>
<td>1</td>
<td>285</td>
<td>0,44</td>
<td>6,7</td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10,8</td>
<td>446</td>
<td>153</td>
<td>4818</td>
<td>1</td>
<td>285</td>
<td>0,44</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>675</td>
<td>10,8</td>
<td>445</td>
<td>143</td>
<td>4814</td>
<td>1,01</td>
<td>286</td>
<td>0,45</td>
<td>6,9</td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10,8</td>
<td>445</td>
<td>148</td>
<td>4828</td>
<td>1</td>
<td>285</td>
<td>0,44</td>
<td>7,3</td>
</tr>
<tr>
<td>4</td>
<td>677</td>
<td>10,9</td>
<td>445</td>
<td>155</td>
<td>4856</td>
<td>1</td>
<td>285</td>
<td>0,44</td>
<td>7,3</td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10,8</td>
<td>445</td>
<td>152</td>
<td>4841</td>
<td>1</td>
<td>285</td>
<td>0,43</td>
<td>7,3</td>
</tr>
<tr>
<td>4</td>
<td>677</td>
<td>10,8</td>
<td>445</td>
<td>153</td>
<td>4867</td>
<td>1</td>
<td>286</td>
<td>0,45</td>
<td>7,1</td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>10.8</td>
<td>445</td>
<td>150</td>
<td>4832</td>
<td>1</td>
<td>286</td>
<td>0.43</td>
<td>6,3</td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10.9</td>
<td>445</td>
<td>149</td>
<td>4836</td>
<td>1</td>
<td>285</td>
<td>0.45</td>
<td>7,1</td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10.8</td>
<td>445</td>
<td>149</td>
<td>4842</td>
<td>1</td>
<td>285</td>
<td>0.45</td>
<td>7,4</td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10.9</td>
<td>445</td>
<td>147</td>
<td>4834</td>
<td>1</td>
<td>285</td>
<td>0.45</td>
<td>6,3</td>
</tr>
<tr>
<td>4</td>
<td>677</td>
<td>10.8</td>
<td>445</td>
<td>152</td>
<td>4814</td>
<td>1</td>
<td>285</td>
<td>0.45</td>
<td>7,2</td>
</tr>
<tr>
<td>5</td>
<td>677</td>
<td>10.8</td>
<td>445</td>
<td>148</td>
<td>4796</td>
<td>1</td>
<td>286</td>
<td>0.45</td>
<td>6,4</td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10.8</td>
<td>445</td>
<td>158</td>
<td>4802</td>
<td>1</td>
<td>286</td>
<td>0.45</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10.7</td>
<td>445</td>
<td>149</td>
<td>4764</td>
<td>1,01</td>
<td>286</td>
<td>0.47</td>
<td>6,3</td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10.7</td>
<td>445</td>
<td>146</td>
<td>4764</td>
<td>1</td>
<td>285</td>
<td>0.47</td>
<td>6,8</td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10.7</td>
<td>445</td>
<td>149</td>
<td>4785</td>
<td>1</td>
<td>286</td>
<td>0.446</td>
<td>6,9</td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10.8</td>
<td>446</td>
<td>155</td>
<td>4758</td>
<td>1,013</td>
<td>285</td>
<td>0.45</td>
<td>7,4</td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10.8</td>
<td>446</td>
<td>145</td>
<td>4786</td>
<td>1,011</td>
<td>287</td>
<td>0.45</td>
<td>7,2</td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10.8</td>
<td>445</td>
<td>150</td>
<td>4771</td>
<td>1</td>
<td>284</td>
<td>0.46</td>
<td>6,7</td>
</tr>
<tr>
<td>6</td>
<td>677</td>
<td>10.6</td>
<td>446</td>
<td>154</td>
<td>4732</td>
<td>1</td>
<td>285</td>
<td>0.46</td>
<td>7,6</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10.7</td>
<td>447</td>
<td>148</td>
<td>4713</td>
<td>1</td>
<td>285</td>
<td>0.46</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>677</td>
<td>10.7</td>
<td>446</td>
<td>147</td>
<td>4739</td>
<td>1</td>
<td>285</td>
<td>0.46</td>
<td>7,2</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10.6</td>
<td>446</td>
<td>146</td>
<td>4726</td>
<td>1,013</td>
<td>284</td>
<td>0.458</td>
<td>6,9</td>
</tr>
<tr>
<td>5</td>
<td>675</td>
<td>10.8</td>
<td>446</td>
<td>153</td>
<td>4743</td>
<td>1,013</td>
<td>284</td>
<td>0.444</td>
<td>7,4</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10.7</td>
<td>447</td>
<td>145</td>
<td>4716</td>
<td>1</td>
<td>285</td>
<td>0.445</td>
<td>6,7</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10.7</td>
<td>446</td>
<td>145</td>
<td>4738</td>
<td>1</td>
<td>285</td>
<td>0.443</td>
<td>7,4</td>
</tr>
<tr>
<td>7</td>
<td>675</td>
<td>10.6</td>
<td>446</td>
<td>150</td>
<td>4716</td>
<td>1</td>
<td>285</td>
<td>0.445</td>
<td>7,1</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10.7</td>
<td>447</td>
<td>142</td>
<td>4724</td>
<td>1</td>
<td>287</td>
<td>0.444</td>
<td>6,9</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10.6</td>
<td>447</td>
<td>148</td>
<td>4713</td>
<td>1</td>
<td>285</td>
<td>0.444</td>
<td>7,4</td>
</tr>
<tr>
<td>6</td>
<td>677</td>
<td>10.6</td>
<td>447</td>
<td>150</td>
<td>4698</td>
<td>1</td>
<td>286</td>
<td>0.44</td>
<td>7,3</td>
</tr>
<tr>
<td>6</td>
<td>675</td>
<td>10.7</td>
<td>447</td>
<td>151</td>
<td>4727</td>
<td>1</td>
<td>285</td>
<td>0.45</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10.6</td>
<td>446</td>
<td>146</td>
<td>4751</td>
<td>1,011</td>
<td>285</td>
<td>0.45</td>
<td>6,6</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10.7</td>
<td>447</td>
<td>149</td>
<td>4759</td>
<td>1</td>
<td>284</td>
<td>0.45</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10.8</td>
<td>446</td>
<td>147</td>
<td>4759</td>
<td>1,013</td>
<td>285</td>
<td>0.45</td>
<td>6,8</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10.7</td>
<td>446</td>
<td>145</td>
<td>4761</td>
<td>1</td>
<td>285</td>
<td>0.45</td>
<td>6,6</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10.7</td>
<td>446</td>
<td>151</td>
<td>4752</td>
<td>1</td>
<td>286</td>
<td>0.45</td>
<td>7,3</td>
</tr>
<tr>
<td>6</td>
<td>675</td>
<td>10.6</td>
<td>446</td>
<td>142</td>
<td>4730</td>
<td>1</td>
<td>284</td>
<td>0.46</td>
<td>7,2</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10.7</td>
<td>447</td>
<td>152</td>
<td>4728</td>
<td>1</td>
<td>284</td>
<td>0.458</td>
<td>6,5</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10.7</td>
<td>447</td>
<td>150</td>
<td>4730</td>
<td>1</td>
<td>285</td>
<td>0.459</td>
<td>7,1</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10.7</td>
<td>447</td>
<td>148</td>
<td>4743</td>
<td>1</td>
<td>285</td>
<td>0.45</td>
<td>7,1</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10.7</td>
<td>447</td>
<td>152</td>
<td>4748</td>
<td>1</td>
<td>284</td>
<td>0.457</td>
<td>7,4</td>
</tr>
<tr>
<td>7</td>
<td>675</td>
<td>10.8</td>
<td>446</td>
<td>152</td>
<td>4741</td>
<td>1</td>
<td>284</td>
<td>0.45</td>
<td>6,5</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10.6</td>
<td>451</td>
<td>150</td>
<td>4744</td>
<td>1</td>
<td>286</td>
<td>0.446</td>
<td>7,5</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10.8</td>
<td>447</td>
<td>147</td>
<td>4744</td>
<td>1</td>
<td>284</td>
<td>0.448</td>
<td>7,4</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10.8</td>
<td>446</td>
<td>145</td>
<td>4759</td>
<td>1</td>
<td>285</td>
<td>0.447</td>
<td>7,3</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10.8</td>
<td>447</td>
<td>145</td>
<td>4749</td>
<td>1,011</td>
<td>285</td>
<td>0.45</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>677</td>
<td>10.7</td>
<td>449</td>
<td>155</td>
<td>4739</td>
<td>1</td>
<td>285</td>
<td>0.449</td>
<td>7,5</td>
</tr>
<tr>
<td>6</td>
<td>677</td>
<td>10.8</td>
<td>447</td>
<td>152</td>
<td>4742</td>
<td>1</td>
<td>286</td>
<td>0.448</td>
<td>7,3</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10.7</td>
<td>447</td>
<td>150</td>
<td>4737</td>
<td>1</td>
<td>284</td>
<td>0.449</td>
<td>7,4</td>
</tr>
<tr>
<td>7</td>
<td>677</td>
<td>10.7</td>
<td>446</td>
<td>146</td>
<td>4758</td>
<td>1,012</td>
<td>285</td>
<td>0.45</td>
<td>7,1</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10.7</td>
<td>446</td>
<td>150</td>
<td>4746</td>
<td>1,012</td>
<td>285</td>
<td>0.451</td>
<td>7,5</td>
</tr>
<tr>
<td>7</td>
<td>677</td>
<td>10.6</td>
<td>446</td>
<td>153</td>
<td>4727</td>
<td>1</td>
<td>286</td>
<td>0.452</td>
<td>7,1</td>
</tr>
<tr>
<td>6</td>
<td>677</td>
<td>10.7</td>
<td>446</td>
<td>151</td>
<td>4740</td>
<td>1,013</td>
<td>286</td>
<td>0.44</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>677</td>
<td>10.7</td>
<td>446</td>
<td>152</td>
<td>4738</td>
<td>1</td>
<td>285</td>
<td>0.442</td>
<td>7,5</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10.7</td>
<td>446</td>
<td>154</td>
<td>4744</td>
<td>1</td>
<td>285</td>
<td>0.442</td>
<td>6,9</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10.8</td>
<td>446</td>
<td>144</td>
<td>4736</td>
<td>1,01</td>
<td>286</td>
<td>0.442</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>675</td>
<td>10.6</td>
<td>446</td>
<td>145</td>
<td>4728</td>
<td>1</td>
<td>285</td>
<td>0.44</td>
<td>6,8</td>
</tr>
<tr>
<td>7</td>
<td>675</td>
<td>10.6</td>
<td>446</td>
<td>150</td>
<td>4730</td>
<td>1</td>
<td>285</td>
<td>0.446</td>
<td>6,8</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10.7</td>
<td>446</td>
<td>149</td>
<td>4735</td>
<td>1</td>
<td>285</td>
<td>0.446</td>
<td>7,1</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10.7</td>
<td>446</td>
<td>142</td>
<td>4727</td>
<td>1</td>
<td>286</td>
<td>0.448</td>
<td>6,3</td>
</tr>
<tr>
<td>1</td>
<td>767</td>
<td>10.7</td>
<td>446</td>
<td>153</td>
<td>4715</td>
<td>1</td>
<td>285</td>
<td>0.448</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>676</td>
<td>10.7</td>
<td>447</td>
<td>156</td>
<td>4687</td>
<td>1</td>
<td>285</td>
<td>0.45</td>
<td>7.2</td>
</tr>
<tr>
<td>3</td>
<td>677</td>
<td>10.6</td>
<td>447</td>
<td>154</td>
<td>4671</td>
<td>1</td>
<td>285</td>
<td>0.45</td>
<td>7.3</td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10.7</td>
<td>447</td>
<td>149</td>
<td>4655</td>
<td>1</td>
<td>286</td>
<td>0.45</td>
<td>7.3</td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10.7</td>
<td>445</td>
<td>147</td>
<td>4625</td>
<td>1</td>
<td>285</td>
<td>0.455</td>
<td>7.4</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10.7</td>
<td>447</td>
<td>139</td>
<td>4695</td>
<td>1,011</td>
<td>285</td>
<td>0.446</td>
<td>6.9</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10.7</td>
<td>446</td>
<td>144</td>
<td>4773</td>
<td>1,01</td>
<td>285</td>
<td>0.43</td>
<td>7.4</td>
</tr>
<tr>
<td>8</td>
<td>676</td>
<td>10.8</td>
<td>446</td>
<td>146</td>
<td>4767</td>
<td>1,013</td>
<td>285</td>
<td>0.43</td>
<td>7.4</td>
</tr>
<tr>
<td>9</td>
<td>677</td>
<td>10.7</td>
<td>451</td>
<td>149</td>
<td>4760</td>
<td>1</td>
<td>286</td>
<td>0.43</td>
<td>7.5</td>
</tr>
<tr>
<td>10</td>
<td>676</td>
<td>10.7</td>
<td>450</td>
<td>150</td>
<td>4764</td>
<td>1</td>
<td>286</td>
<td>0.43</td>
<td>7.6</td>
</tr>
<tr>
<td>11</td>
<td>675</td>
<td>10.8</td>
<td>446</td>
<td>151</td>
<td>4784</td>
<td>1</td>
<td>286</td>
<td>0.425</td>
<td>7.3</td>
</tr>
<tr>
<td>12</td>
<td>676</td>
<td>10.7</td>
<td>445</td>
<td>156</td>
<td>4751</td>
<td>1</td>
<td>285</td>
<td>0.425</td>
<td>7.6</td>
</tr>
<tr>
<td>13</td>
<td>676</td>
<td>10.4</td>
<td>419</td>
<td>150</td>
<td>4062</td>
<td>1</td>
<td>286</td>
<td>0.43</td>
<td>7.5</td>
</tr>
<tr>
<td>14</td>
<td>676</td>
<td>10.7</td>
<td>446</td>
<td>151</td>
<td>4742</td>
<td>1,01</td>
<td>284</td>
<td>0.44</td>
<td>7.1</td>
</tr>
<tr>
<td>15</td>
<td>676</td>
<td>10.8</td>
<td>446</td>
<td>152</td>
<td>4777</td>
<td>1</td>
<td>285</td>
<td>0.438</td>
<td>7.2</td>
</tr>
<tr>
<td>16</td>
<td>676</td>
<td>10.8</td>
<td>446</td>
<td>149</td>
<td>4776</td>
<td>1</td>
<td>285</td>
<td>0.43</td>
<td>6.9</td>
</tr>
<tr>
<td>17</td>
<td>675</td>
<td>10.7</td>
<td>447</td>
<td>149</td>
<td>4785</td>
<td>1,013</td>
<td>285</td>
<td>0.43</td>
<td>7.4</td>
</tr>
<tr>
<td>18</td>
<td>677</td>
<td>10.7</td>
<td>445</td>
<td>146</td>
<td>4814</td>
<td>1,011</td>
<td>284</td>
<td>0.423</td>
<td>6.4</td>
</tr>
<tr>
<td>19</td>
<td>676</td>
<td>10.7</td>
<td>445</td>
<td>142</td>
<td>4829</td>
<td>1</td>
<td>284</td>
<td>0.423</td>
<td>6.5</td>
</tr>
<tr>
<td>20</td>
<td>677</td>
<td>10.7</td>
<td>445</td>
<td>153</td>
<td>4807</td>
<td>1</td>
<td>285</td>
<td>0.425</td>
<td>7.3</td>
</tr>
<tr>
<td>21</td>
<td>675</td>
<td>10.9</td>
<td>446</td>
<td>151</td>
<td>4823</td>
<td>1</td>
<td>285</td>
<td>0.425</td>
<td>7.3</td>
</tr>
<tr>
<td>22</td>
<td>676</td>
<td>10.9</td>
<td>445</td>
<td>149</td>
<td>4849</td>
<td>1</td>
<td>285</td>
<td>0.425</td>
<td>6.7</td>
</tr>
<tr>
<td>23</td>
<td>677</td>
<td>10.8</td>
<td>446</td>
<td>152</td>
<td>4844</td>
<td>1,013</td>
<td>287</td>
<td>0.425</td>
<td>6.8</td>
</tr>
<tr>
<td>24</td>
<td>676</td>
<td>10.9</td>
<td>446</td>
<td>146</td>
<td>4857</td>
<td>1,013</td>
<td>285</td>
<td>0.425</td>
<td>6.8</td>
</tr>
<tr>
<td>25</td>
<td>677</td>
<td>10.8</td>
<td>446</td>
<td>142</td>
<td>4837</td>
<td>1</td>
<td>286</td>
<td>0.42</td>
<td>6.8</td>
</tr>
<tr>
<td>26</td>
<td>676</td>
<td>10.8</td>
<td>446</td>
<td>150</td>
<td>4845</td>
<td>1</td>
<td>285</td>
<td>0.42</td>
<td>7.2</td>
</tr>
<tr>
<td>27</td>
<td>676</td>
<td>10.8</td>
<td>446</td>
<td>149</td>
<td>4850</td>
<td>1</td>
<td>285</td>
<td>0.42</td>
<td>7.5</td>
</tr>
<tr>
<td>28</td>
<td>676</td>
<td>10.8</td>
<td>447</td>
<td>145</td>
<td>4846</td>
<td>1</td>
<td>284</td>
<td>0.42</td>
<td>7</td>
</tr>
<tr>
<td>29</td>
<td>676</td>
<td>10.9</td>
<td>446</td>
<td>141</td>
<td>4866</td>
<td>1</td>
<td>285</td>
<td>0.42</td>
<td>7.4</td>
</tr>
<tr>
<td>30</td>
<td>677</td>
<td>10.8</td>
<td>446</td>
<td>148</td>
<td>4817</td>
<td>1</td>
<td>285</td>
<td>0.44</td>
<td>7.3</td>
</tr>
<tr>
<td>31</td>
<td>676</td>
<td>10.8</td>
<td>446</td>
<td>148</td>
<td>4771</td>
<td>1</td>
<td>286</td>
<td>0.443</td>
<td>7.3</td>
</tr>
<tr>
<td>32</td>
<td>676</td>
<td>10.8</td>
<td>446</td>
<td>159</td>
<td>4810</td>
<td>1,011</td>
<td>284</td>
<td>0.445</td>
<td>6.9</td>
</tr>
<tr>
<td>33</td>
<td>677</td>
<td>10.8</td>
<td>446</td>
<td>151</td>
<td>4823</td>
<td>1</td>
<td>284</td>
<td>0.445</td>
<td>7</td>
</tr>
<tr>
<td>34</td>
<td>676</td>
<td>10.8</td>
<td>446</td>
<td>145</td>
<td>4840</td>
<td>1,013</td>
<td>285</td>
<td>0.43</td>
<td>7</td>
</tr>
<tr>
<td>35</td>
<td>677</td>
<td>10.8</td>
<td>445</td>
<td>144</td>
<td>4843</td>
<td>1</td>
<td>285</td>
<td>0.428</td>
<td>7.4</td>
</tr>
<tr>
<td>36</td>
<td>676</td>
<td>10.9</td>
<td>446</td>
<td>141</td>
<td>4843</td>
<td>1</td>
<td>284</td>
<td>0.432</td>
<td>7.3</td>
</tr>
<tr>
<td>37</td>
<td>676</td>
<td>10.9</td>
<td>446</td>
<td>155</td>
<td>4841</td>
<td>1</td>
<td>284</td>
<td>0.432</td>
<td>7.3</td>
</tr>
<tr>
<td>38</td>
<td>676</td>
<td>10.8</td>
<td>446</td>
<td>148</td>
<td>4833</td>
<td>1</td>
<td>286</td>
<td>0.431</td>
<td>7.1</td>
</tr>
<tr>
<td>39</td>
<td>676</td>
<td>10.8</td>
<td>446</td>
<td>143</td>
<td>4862</td>
<td>1</td>
<td>284</td>
<td>0.43</td>
<td>7.4</td>
</tr>
<tr>
<td>40</td>
<td>677</td>
<td>10.9</td>
<td>446</td>
<td>143</td>
<td>4861</td>
<td>1</td>
<td>285</td>
<td>0.43</td>
<td>6.9</td>
</tr>
<tr>
<td>41</td>
<td>676</td>
<td>10.8</td>
<td>446</td>
<td>144</td>
<td>4861</td>
<td>1</td>
<td>285</td>
<td>0.43</td>
<td>7.5</td>
</tr>
<tr>
<td>42</td>
<td>676</td>
<td>11</td>
<td>446</td>
<td>154</td>
<td>4866</td>
<td>1</td>
<td>285</td>
<td>0.43</td>
<td>7.3</td>
</tr>
<tr>
<td>43</td>
<td>676</td>
<td>10.8</td>
<td>446</td>
<td>149</td>
<td>4862</td>
<td>1</td>
<td>286</td>
<td>0.43</td>
<td>6.9</td>
</tr>
<tr>
<td>44</td>
<td>676</td>
<td>10.9</td>
<td>446</td>
<td>150</td>
<td>4866</td>
<td>1</td>
<td>284</td>
<td>0.43</td>
<td>7.7</td>
</tr>
<tr>
<td>45</td>
<td>675</td>
<td>10.9</td>
<td>446</td>
<td>148</td>
<td>4863</td>
<td>1</td>
<td>285</td>
<td>0.43</td>
<td>7.1</td>
</tr>
<tr>
<td>46</td>
<td>675</td>
<td>10.9</td>
<td>446</td>
<td>140</td>
<td>4841</td>
<td>1,011</td>
<td>285</td>
<td>0.438</td>
<td>7.2</td>
</tr>
<tr>
<td>47</td>
<td>676</td>
<td>10.9</td>
<td>446</td>
<td>139</td>
<td>4816</td>
<td>1</td>
<td>286</td>
<td>0.44</td>
<td>7.4</td>
</tr>
<tr>
<td>48</td>
<td>676</td>
<td>10.9</td>
<td>446</td>
<td>148</td>
<td>4807</td>
<td>1</td>
<td>286</td>
<td>0.445</td>
<td>7.5</td>
</tr>
<tr>
<td>49</td>
<td>676</td>
<td>10.9</td>
<td>447</td>
<td>147</td>
<td>4765</td>
<td>1</td>
<td>285</td>
<td>0.45</td>
<td>6.9</td>
</tr>
<tr>
<td>50</td>
<td>677</td>
<td>10.7</td>
<td>447</td>
<td>151</td>
<td>4718</td>
<td>1,012</td>
<td>285</td>
<td>0.48</td>
<td>7.3</td>
</tr>
<tr>
<td>51</td>
<td>676</td>
<td>10.7</td>
<td>447</td>
<td>151</td>
<td>4702</td>
<td>1,012</td>
<td>286</td>
<td>0.48</td>
<td>6.9</td>
</tr>
<tr>
<td>52</td>
<td>675</td>
<td>10.7</td>
<td>447</td>
<td>153</td>
<td>4688</td>
<td>1</td>
<td>285</td>
<td>0.478</td>
<td>7.3</td>
</tr>
<tr>
<td>53</td>
<td>676</td>
<td>10.7</td>
<td>448</td>
<td>145</td>
<td>4602</td>
<td>1,013</td>
<td>285</td>
<td>0.475</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>10</td>
<td>676</td>
<td>10.7</td>
<td>447</td>
<td>145</td>
<td>4711</td>
<td>1</td>
<td>285</td>
<td>0.478</td>
<td>7.3</td>
</tr>
<tr>
<td>10</td>
<td>676</td>
<td>10.7</td>
<td>447</td>
<td>147</td>
<td>4706</td>
<td>1</td>
<td>286</td>
<td>0.478</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td>676</td>
<td>10.8</td>
<td>447</td>
<td>153</td>
<td>4779</td>
<td>1</td>
<td>285</td>
<td>0.46</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10.9</td>
<td>446</td>
<td>148</td>
<td>4861</td>
<td>1</td>
<td>285</td>
<td>0.43</td>
<td>7.4</td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>11</td>
<td>445</td>
<td>152</td>
<td>4936</td>
<td>1</td>
<td>285</td>
<td>0.42</td>
<td>7.4</td>
</tr>
<tr>
<td>0</td>
<td>676</td>
<td>11</td>
<td>449</td>
<td>149</td>
<td>5031</td>
<td>1</td>
<td>286</td>
<td>0.41</td>
<td>7.4</td>
</tr>
<tr>
<td>-2</td>
<td>676</td>
<td>11.1</td>
<td>444</td>
<td>154</td>
<td>5013</td>
<td>1</td>
<td>286</td>
<td>0.4</td>
<td>7</td>
</tr>
<tr>
<td>-2</td>
<td>677</td>
<td>11.2</td>
<td>443</td>
<td>149</td>
<td>5054</td>
<td>1</td>
<td>285</td>
<td>0.4</td>
<td>7.4</td>
</tr>
<tr>
<td>-2</td>
<td>675</td>
<td>11</td>
<td>444</td>
<td>156</td>
<td>5008</td>
<td>1</td>
<td>285</td>
<td>0.41</td>
<td>7.4</td>
</tr>
<tr>
<td>-1</td>
<td>677</td>
<td>11</td>
<td>444</td>
<td>150</td>
<td>5015</td>
<td>1</td>
<td>285</td>
<td>0.41</td>
<td>7.4</td>
</tr>
<tr>
<td>-2</td>
<td>676</td>
<td>11.1</td>
<td>444</td>
<td>148</td>
<td>5044</td>
<td>1</td>
<td>285</td>
<td>0.4</td>
<td>7.4</td>
</tr>
<tr>
<td>-1</td>
<td>676</td>
<td>11.1</td>
<td>444</td>
<td>153</td>
<td>5012</td>
<td>1</td>
<td>286</td>
<td>0.4</td>
<td>7.3</td>
</tr>
<tr>
<td>0</td>
<td>677</td>
<td>11.1</td>
<td>445</td>
<td>156</td>
<td>5031</td>
<td>1</td>
<td>286</td>
<td>0.41</td>
<td>7.5</td>
</tr>
<tr>
<td>1</td>
<td>677</td>
<td>11.1</td>
<td>445</td>
<td>149</td>
<td>4980</td>
<td>1</td>
<td>286</td>
<td>0.42</td>
<td>7.3</td>
</tr>
<tr>
<td>1</td>
<td>675</td>
<td>10.8</td>
<td>446</td>
<td>152</td>
<td>4859</td>
<td>1</td>
<td>286</td>
<td>0.421</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>10.9</td>
<td>446</td>
<td>149</td>
<td>4832</td>
<td>1</td>
<td>284</td>
<td>0.425</td>
<td>7.5</td>
</tr>
<tr>
<td>4</td>
<td>677</td>
<td>10.8</td>
<td>446</td>
<td>152</td>
<td>4792</td>
<td>1</td>
<td>285</td>
<td>0.428</td>
<td>7.1</td>
</tr>
<tr>
<td>6</td>
<td>675</td>
<td>10.7</td>
<td>447</td>
<td>157</td>
<td>4727</td>
<td>1</td>
<td>285</td>
<td>0.435</td>
<td>7.4</td>
</tr>
<tr>
<td>7</td>
<td>677</td>
<td>10.7</td>
<td>447</td>
<td>146</td>
<td>4735</td>
<td>1</td>
<td>285</td>
<td>0.44</td>
<td>7.3</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10.8</td>
<td>446</td>
<td>153</td>
<td>4751</td>
<td>1</td>
<td>284</td>
<td>0.44</td>
<td>7.1</td>
</tr>
<tr>
<td>8</td>
<td>675</td>
<td>10.7</td>
<td>448</td>
<td>145</td>
<td>4656</td>
<td>1</td>
<td>284</td>
<td>0.445</td>
<td>6.8</td>
</tr>
<tr>
<td>5</td>
<td>677</td>
<td>10.7</td>
<td>446</td>
<td>151</td>
<td>4757</td>
<td>1</td>
<td>285</td>
<td>0.43</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>677</td>
<td>10.6</td>
<td>447</td>
<td>153</td>
<td>4739</td>
<td>1</td>
<td>285</td>
<td>0.435</td>
<td>7.1</td>
</tr>
<tr>
<td>7</td>
<td>675</td>
<td>10.7</td>
<td>448</td>
<td>151</td>
<td>4675</td>
<td>1</td>
<td>285</td>
<td>0.44</td>
<td>7.4</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10.6</td>
<td>448</td>
<td>149</td>
<td>4689</td>
<td>1</td>
<td>287</td>
<td>0.44</td>
<td>7.4</td>
</tr>
<tr>
<td>8</td>
<td>676</td>
<td>10.6</td>
<td>448</td>
<td>151</td>
<td>4670</td>
<td>1</td>
<td>285</td>
<td>0.442</td>
<td>6.8</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10.8</td>
<td>447</td>
<td>152</td>
<td>4780</td>
<td>1</td>
<td>286</td>
<td>0.432</td>
<td>7.3</td>
</tr>
<tr>
<td>8</td>
<td>674</td>
<td>10.7</td>
<td>447</td>
<td>153</td>
<td>4752</td>
<td>1</td>
<td>285</td>
<td>0.444</td>
<td>7.2</td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10.8</td>
<td>446</td>
<td>152</td>
<td>4821</td>
<td>1</td>
<td>285</td>
<td>0.43</td>
<td>7.4</td>
</tr>
<tr>
<td>2</td>
<td>676</td>
<td>10.8</td>
<td>445</td>
<td>150</td>
<td>4836</td>
<td>1</td>
<td>284</td>
<td>0.425</td>
<td>7.4</td>
</tr>
<tr>
<td>2</td>
<td>676</td>
<td>10.9</td>
<td>450</td>
<td>150</td>
<td>4844</td>
<td>1</td>
<td>285</td>
<td>0.425</td>
<td>7.6</td>
</tr>
<tr>
<td>4</td>
<td>675</td>
<td>10.7</td>
<td>449</td>
<td>150</td>
<td>4844</td>
<td>1</td>
<td>286</td>
<td>0.42</td>
<td>7.5</td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>10.8</td>
<td>452</td>
<td>157</td>
<td>4814</td>
<td>1</td>
<td>286</td>
<td>0.42</td>
<td>7.5</td>
</tr>
<tr>
<td>3</td>
<td>677</td>
<td>10.8</td>
<td>446</td>
<td>147</td>
<td>4849</td>
<td>1</td>
<td>284</td>
<td>0.421</td>
<td>7.5</td>
</tr>
<tr>
<td>3</td>
<td>677</td>
<td>10.9</td>
<td>450</td>
<td>151</td>
<td>4874</td>
<td>1</td>
<td>284</td>
<td>0.42</td>
<td>7.6</td>
</tr>
<tr>
<td>2</td>
<td>676</td>
<td>10.8</td>
<td>445</td>
<td>150</td>
<td>4868</td>
<td>1</td>
<td>285</td>
<td>0.418</td>
<td>7.3</td>
</tr>
<tr>
<td>2</td>
<td>676</td>
<td>10.9</td>
<td>446</td>
<td>141</td>
<td>4853</td>
<td>1</td>
<td>285</td>
<td>0.418</td>
<td>6.6</td>
</tr>
<tr>
<td>2</td>
<td>677</td>
<td>11</td>
<td>446</td>
<td>148</td>
<td>4880</td>
<td>1</td>
<td>284</td>
<td>0.418</td>
<td>6.9</td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10.9</td>
<td>446</td>
<td>151</td>
<td>4822</td>
<td>1</td>
<td>284</td>
<td>0.432</td>
<td>7.2</td>
</tr>
<tr>
<td>3</td>
<td>677</td>
<td>10.8</td>
<td>446</td>
<td>148</td>
<td>4862</td>
<td>1</td>
<td>286</td>
<td>0.43</td>
<td>7.4</td>
</tr>
<tr>
<td>4</td>
<td>675</td>
<td>10.8</td>
<td>446</td>
<td>151</td>
<td>4865</td>
<td>1</td>
<td>284</td>
<td>0.435</td>
<td>7.3</td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>10.8</td>
<td>446</td>
<td>149</td>
<td>4872</td>
<td>1</td>
<td>285</td>
<td>0.43</td>
<td>7.1</td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>11</td>
<td>446</td>
<td>148</td>
<td>4877</td>
<td>1</td>
<td>285</td>
<td>0.43</td>
<td>6.7</td>
</tr>
<tr>
<td>4</td>
<td>677</td>
<td>10.8</td>
<td>446</td>
<td>148</td>
<td>4841</td>
<td>1</td>
<td>285</td>
<td>0.433</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10.7</td>
<td>446</td>
<td>151</td>
<td>4844</td>
<td>1</td>
<td>286</td>
<td>0.436</td>
<td>7.1</td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10.8</td>
<td>446</td>
<td>145</td>
<td>4833</td>
<td>1</td>
<td>284</td>
<td>0.433</td>
<td>7.3</td>
</tr>
<tr>
<td>3</td>
<td>675</td>
<td>10.8</td>
<td>445</td>
<td>150</td>
<td>4848</td>
<td>1</td>
<td>285</td>
<td>0.426</td>
<td>7.4</td>
</tr>
<tr>
<td>3</td>
<td>677</td>
<td>10.8</td>
<td>447</td>
<td>151</td>
<td>4834</td>
<td>1</td>
<td>285</td>
<td>0.425</td>
<td>7.2</td>
</tr>
<tr>
<td>2</td>
<td>676</td>
<td>10.9</td>
<td>445</td>
<td>147</td>
<td>4898</td>
<td>1</td>
<td>286</td>
<td>0.42</td>
<td>6.6</td>
</tr>
<tr>
<td>2</td>
<td>676</td>
<td>10.7</td>
<td>445</td>
<td>146</td>
<td>4821</td>
<td>1</td>
<td>285</td>
<td>0.42</td>
<td>7.4</td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10.7</td>
<td>446</td>
<td>146</td>
<td>4769</td>
<td>1</td>
<td>285</td>
<td>0.428</td>
<td>7.3</td>
</tr>
<tr>
<td>6</td>
<td>674</td>
<td>10.7</td>
<td>447</td>
<td>151</td>
<td>4708</td>
<td>1</td>
<td>286</td>
<td>0.44</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>677</td>
<td>10.8</td>
<td>446</td>
<td>144</td>
<td>4799</td>
<td>1</td>
<td>285</td>
<td>0.436</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>677</td>
<td>10.7</td>
<td>446</td>
<td>145</td>
<td>4808</td>
<td>1</td>
<td>286</td>
<td>0.436</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10.8</td>
<td>446</td>
<td>153</td>
<td>4832</td>
<td>1</td>
<td>285</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>675</td>
<td>10.8</td>
<td>446</td>
<td>148</td>
<td>4821</td>
<td>1</td>
<td>285</td>
<td>0.437</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10.8</td>
<td>447</td>
<td>143</td>
<td>4810</td>
<td>1</td>
<td>285</td>
<td>0.437</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>677</td>
<td>10.7</td>
<td>447</td>
<td>152</td>
<td>4769</td>
<td>1</td>
<td>286</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>675</td>
<td>10.8</td>
<td>447</td>
<td>152</td>
<td>4719</td>
<td>1</td>
<td>285</td>
<td>0.442</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>675</td>
<td>10.6</td>
<td>448</td>
<td>150</td>
<td>4606</td>
<td>1</td>
<td>285</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>676</td>
<td>10.6</td>
<td>449</td>
<td>149</td>
<td>4609</td>
<td>1</td>
<td>286</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>676</td>
<td>10.6</td>
<td>449</td>
<td>144</td>
<td>4617</td>
<td>1</td>
<td>286</td>
<td>0.475</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>675</td>
<td>10.6</td>
<td>448</td>
<td>149</td>
<td>4677</td>
<td>1</td>
<td>285</td>
<td>0.465</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>675</td>
<td>10.7</td>
<td>448</td>
<td>148</td>
<td>4700</td>
<td>1</td>
<td>285</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>675</td>
<td>10.8</td>
<td>448</td>
<td>141</td>
<td>4711</td>
<td>1</td>
<td>285</td>
<td>0.462</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>675</td>
<td>10.8</td>
<td>447</td>
<td>143</td>
<td>4797</td>
<td>1</td>
<td>285</td>
<td>0.445</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10.8</td>
<td>447</td>
<td>156</td>
<td>4812</td>
<td>1</td>
<td>286</td>
<td>0.435</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10.8</td>
<td>446</td>
<td>144</td>
<td>4802</td>
<td>1</td>
<td>286</td>
<td>0.432</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10.8</td>
<td>446</td>
<td>148</td>
<td>4839</td>
<td>1</td>
<td>286</td>
<td>0.432</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>10.9</td>
<td>446</td>
<td>149</td>
<td>4831</td>
<td>1</td>
<td>285</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>677</td>
<td>10.8</td>
<td>447</td>
<td>147</td>
<td>4819</td>
<td>1</td>
<td>286</td>
<td>0.435</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>10.9</td>
<td>446</td>
<td>150</td>
<td>4873</td>
<td>1</td>
<td>284</td>
<td>0.435</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>10.8</td>
<td>446</td>
<td>149</td>
<td>4876</td>
<td>1</td>
<td>285</td>
<td>0.435</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>677</td>
<td>10.7</td>
<td>446</td>
<td>148</td>
<td>4821</td>
<td>1</td>
<td>285</td>
<td>0.438</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10.8</td>
<td>446</td>
<td>152</td>
<td>4847</td>
<td>1</td>
<td>285</td>
<td>0.438</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>675</td>
<td>10.8</td>
<td>446</td>
<td>149</td>
<td>4848</td>
<td>1</td>
<td>284</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>675</td>
<td>11</td>
<td>446</td>
<td>155</td>
<td>4869</td>
<td>1</td>
<td>284</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10.8</td>
<td>451</td>
<td>151</td>
<td>4852</td>
<td>1</td>
<td>285</td>
<td>0.438</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10.9</td>
<td>447</td>
<td>153</td>
<td>4856</td>
<td>1</td>
<td>285</td>
<td>0.436</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10.8</td>
<td>447</td>
<td>151</td>
<td>4803</td>
<td>1</td>
<td>285</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10.8</td>
<td>448</td>
<td>153</td>
<td>4843</td>
<td>1</td>
<td>287</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>675</td>
<td>10.7</td>
<td>446</td>
<td>150</td>
<td>4782</td>
<td>1</td>
<td>285</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>675</td>
<td>10.8</td>
<td>446</td>
<td>149</td>
<td>4803</td>
<td>1</td>
<td>286</td>
<td>0.443</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>677</td>
<td>10.9</td>
<td>447</td>
<td>150</td>
<td>4848</td>
<td>1</td>
<td>285</td>
<td>0.432</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10.8</td>
<td>447</td>
<td>149</td>
<td>4807</td>
<td>1</td>
<td>285</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>678</td>
<td>10.8</td>
<td>446</td>
<td>150</td>
<td>4823</td>
<td>1</td>
<td>284</td>
<td>0.438</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>674</td>
<td>10.8</td>
<td>447</td>
<td>149</td>
<td>4781</td>
<td>1</td>
<td>285</td>
<td>0.443</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10.8</td>
<td>446</td>
<td>143</td>
<td>4817</td>
<td>1</td>
<td>285</td>
<td>0.443</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10.9</td>
<td>446</td>
<td>149</td>
<td>4862</td>
<td>1</td>
<td>286</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10.9</td>
<td>446</td>
<td>150</td>
<td>4870</td>
<td>1</td>
<td>284</td>
<td>0.445</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10.8</td>
<td>447</td>
<td>152</td>
<td>4774</td>
<td>1</td>
<td>284</td>
<td>0.445</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>675</td>
<td>10.8</td>
<td>447</td>
<td>145</td>
<td>4813</td>
<td>1</td>
<td>285</td>
<td>0.448</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10.8</td>
<td>446</td>
<td>148</td>
<td>4858</td>
<td>1</td>
<td>285</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10.8</td>
<td>446</td>
<td>158</td>
<td>4865</td>
<td>1</td>
<td>284</td>
<td>0.438</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>675</td>
<td>10.8</td>
<td>447</td>
<td>151</td>
<td>4827</td>
<td>1</td>
<td>284</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10.9</td>
<td>446</td>
<td>152</td>
<td>4903</td>
<td>1</td>
<td>286</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10.9</td>
<td>447</td>
<td>151</td>
<td>4900</td>
<td>1</td>
<td>284</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>11</td>
<td>446</td>
<td>152</td>
<td>4884</td>
<td>1</td>
<td>285</td>
<td>0.428</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>677</td>
<td>10.9</td>
<td>446</td>
<td>149</td>
<td>4873</td>
<td>1</td>
<td>285</td>
<td>0.428</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10.9</td>
<td>446</td>
<td>156</td>
<td>4864</td>
<td>1</td>
<td>285</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10.9</td>
<td>447</td>
<td>151</td>
<td>4890</td>
<td>1</td>
<td>286</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>675</td>
<td>10.8</td>
<td>446</td>
<td>152</td>
<td>4862</td>
<td>1</td>
<td>284</td>
<td>0.428</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>677</td>
<td>10.8</td>
<td>446</td>
<td>152</td>
<td>4886</td>
<td>1</td>
<td>285</td>
<td>0.428</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10.7</td>
<td>450</td>
<td>153</td>
<td>4861</td>
<td>1</td>
<td>285</td>
<td>0.428</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>11</td>
<td>447</td>
<td>152</td>
<td>4923</td>
<td>1</td>
<td>286</td>
<td>0.428</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10,9</td>
<td>446</td>
<td>155</td>
<td>4869</td>
<td>1286</td>
<td>0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10,9</td>
<td>446</td>
<td>150</td>
<td>4860</td>
<td>1285</td>
<td>0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10,8</td>
<td>446</td>
<td>152</td>
<td>4904</td>
<td>1285</td>
<td>0.425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10,9</td>
<td>446</td>
<td>149</td>
<td>4909</td>
<td>1286</td>
<td>0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10,9</td>
<td>444</td>
<td>150</td>
<td>4904</td>
<td>1285</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10,9</td>
<td>446</td>
<td>153</td>
<td>4910</td>
<td>1285</td>
<td>0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>677</td>
<td>10,9</td>
<td>446</td>
<td>153</td>
<td>4925</td>
<td>1285</td>
<td>0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>675</td>
<td>11</td>
<td>446</td>
<td>151</td>
<td>4939</td>
<td>1286</td>
<td>0.425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>11,1</td>
<td>446</td>
<td>152</td>
<td>4933</td>
<td>1285</td>
<td>0.425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>11</td>
<td>446</td>
<td>149</td>
<td>4902</td>
<td>1285</td>
<td>0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10,9</td>
<td>446</td>
<td>151</td>
<td>4896</td>
<td>1285</td>
<td>0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>677</td>
<td>10,9</td>
<td>446</td>
<td>151</td>
<td>4913</td>
<td>1286</td>
<td>0.425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>10,8</td>
<td>446</td>
<td>153</td>
<td>4919</td>
<td>1286</td>
<td>0.425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>11</td>
<td>446</td>
<td>149</td>
<td>4941</td>
<td>1285</td>
<td>0.425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>10,9</td>
<td>445</td>
<td>149</td>
<td>4906</td>
<td>1285</td>
<td>0.425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>11</td>
<td>446</td>
<td>143</td>
<td>4915</td>
<td>1285</td>
<td>0.425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>675</td>
<td>11</td>
<td>446</td>
<td>144</td>
<td>4911</td>
<td>1285</td>
<td>0.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>676</td>
<td>11</td>
<td>446</td>
<td>148</td>
<td>4912</td>
<td>1286</td>
<td>0.418</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>676</td>
<td>10,9</td>
<td>446</td>
<td>152</td>
<td>4939</td>
<td>1286</td>
<td>0.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>675</td>
<td>10,9</td>
<td>446</td>
<td>147</td>
<td>4925</td>
<td>1286</td>
<td>0.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>676</td>
<td>10,9</td>
<td>446</td>
<td>143</td>
<td>4921</td>
<td>1285</td>
<td>0.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>10,9</td>
<td>446</td>
<td>148</td>
<td>4923</td>
<td>1286</td>
<td>0.425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>677</td>
<td>11</td>
<td>449</td>
<td>149</td>
<td>4931</td>
<td>1284</td>
<td>0.425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10,9</td>
<td>446</td>
<td>143</td>
<td>4933</td>
<td>1285</td>
<td>0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>677</td>
<td>10,8</td>
<td>446</td>
<td>146</td>
<td>4884</td>
<td>1285</td>
<td>0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>675</td>
<td>10,8</td>
<td>446</td>
<td>146</td>
<td>4884</td>
<td>1285</td>
<td>0.435</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10,8</td>
<td>446</td>
<td>141</td>
<td>4855</td>
<td>1284</td>
<td>0.445</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>677</td>
<td>10,9</td>
<td>446</td>
<td>147</td>
<td>4862</td>
<td>1284</td>
<td>0.445</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10,8</td>
<td>447</td>
<td>145</td>
<td>4791</td>
<td>1285</td>
<td>0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10,8</td>
<td>447</td>
<td>147</td>
<td>4786</td>
<td>1285</td>
<td>0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>675</td>
<td>10,9</td>
<td>446</td>
<td>151</td>
<td>4869</td>
<td>1285</td>
<td>0.435</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>677</td>
<td>10,9</td>
<td>446</td>
<td>148</td>
<td>4852</td>
<td>1287</td>
<td>0.443</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10,9</td>
<td>446</td>
<td>145</td>
<td>4893</td>
<td>1285</td>
<td>0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>677</td>
<td>10,9</td>
<td>446</td>
<td>153</td>
<td>4887</td>
<td>1286</td>
<td>0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>677</td>
<td>10,9</td>
<td>446</td>
<td>154</td>
<td>4895</td>
<td>1285</td>
<td>0.428</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>677</td>
<td>11</td>
<td>445</td>
<td>150</td>
<td>4914</td>
<td>1285</td>
<td>0.428</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>675</td>
<td>10,9</td>
<td>446</td>
<td>152</td>
<td>4933</td>
<td>1284</td>
<td>0.428</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>10,9</td>
<td>446</td>
<td>151</td>
<td>4914</td>
<td>1285</td>
<td>0.428</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>675</td>
<td>11</td>
<td>445</td>
<td>153</td>
<td>4950</td>
<td>1285</td>
<td>0.415</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>676</td>
<td>10,9</td>
<td>445</td>
<td>154</td>
<td>4920</td>
<td>1286</td>
<td>0.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>10,8</td>
<td>446</td>
<td>147</td>
<td>4907</td>
<td>1284</td>
<td>0.425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>676</td>
<td>10,9</td>
<td>445</td>
<td>146</td>
<td>4939</td>
<td>1284</td>
<td>0.413</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>676</td>
<td>10,9</td>
<td>450</td>
<td>145</td>
<td>4913</td>
<td>1285</td>
<td>0.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>676</td>
<td>10,9</td>
<td>446</td>
<td>146</td>
<td>4913</td>
<td>1285</td>
<td>0.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>677</td>
<td>11</td>
<td>450</td>
<td>144</td>
<td>4940</td>
<td>1284</td>
<td>0.425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>10,9</td>
<td>446</td>
<td>149</td>
<td>4920</td>
<td>1284</td>
<td>0.425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>677</td>
<td>10,9</td>
<td>445</td>
<td>148</td>
<td>4952</td>
<td>1286</td>
<td>0.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>10,9</td>
<td>446</td>
<td>148</td>
<td>4892</td>
<td>1284</td>
<td>0.423</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10,9</td>
<td>446</td>
<td>148</td>
<td>4895</td>
<td>1285</td>
<td>0.432</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>677</td>
<td>10,8</td>
<td>446</td>
<td>149</td>
<td>4839</td>
<td>1285</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>675</td>
<td>10,8</td>
<td>446</td>
<td>151</td>
<td>4825</td>
<td>1285</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>677</td>
<td>10,8</td>
<td>446</td>
<td>144</td>
<td>4831</td>
<td>1286</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>675</td>
<td>10,8</td>
<td>446</td>
<td>148</td>
<td>4838</td>
<td>1284</td>
<td>0.436</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10,7</td>
<td>446</td>
<td>146</td>
<td>4818</td>
<td>1285</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>677</td>
<td>10.7</td>
<td>446</td>
<td>147</td>
<td>4764</td>
<td>1</td>
<td>285</td>
<td>0.44</td>
<td>6.9</td>
</tr>
<tr>
<td>2</td>
<td>677</td>
<td>10.8</td>
<td>445</td>
<td>150</td>
<td>4875</td>
<td>1</td>
<td>286</td>
<td>0.42</td>
<td>7.0</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10.6</td>
<td>448</td>
<td>150</td>
<td>4763</td>
<td>1,013</td>
<td>286</td>
<td>0.442</td>
<td>7.3</td>
</tr>
<tr>
<td>5</td>
<td>677</td>
<td>10.8</td>
<td>446</td>
<td>147</td>
<td>4827</td>
<td>1,013</td>
<td>285</td>
<td>0.435</td>
<td>6.9</td>
</tr>
<tr>
<td>5</td>
<td>674</td>
<td>10.8</td>
<td>447</td>
<td>150</td>
<td>4792</td>
<td>1</td>
<td>285</td>
<td>0.435</td>
<td>7.4</td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10.6</td>
<td>447</td>
<td>149</td>
<td>4827</td>
<td>1</td>
<td>286</td>
<td>0.43</td>
<td>7.4</td>
</tr>
<tr>
<td>4</td>
<td>677</td>
<td>10.7</td>
<td>448</td>
<td>148</td>
<td>4813</td>
<td>1</td>
<td>285</td>
<td>0.43</td>
<td>6.9</td>
</tr>
<tr>
<td>4</td>
<td>675</td>
<td>10.7</td>
<td>447</td>
<td>149</td>
<td>4843</td>
<td>1</td>
<td>285</td>
<td>0.43</td>
<td>7.2</td>
</tr>
<tr>
<td>4</td>
<td>675</td>
<td>10.7</td>
<td>448</td>
<td>148</td>
<td>4810</td>
<td>1</td>
<td>285</td>
<td>0.43</td>
<td>7.6</td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10.8</td>
<td>448</td>
<td>147</td>
<td>4820</td>
<td>1</td>
<td>286</td>
<td>0.43</td>
<td>7.5</td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10.7</td>
<td>448</td>
<td>152</td>
<td>4839</td>
<td>1</td>
<td>285</td>
<td>0.431</td>
<td>7.5</td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10.8</td>
<td>447</td>
<td>153</td>
<td>4823</td>
<td>1,011</td>
<td>285</td>
<td>0.43</td>
<td>7.4</td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10.7</td>
<td>447</td>
<td>154</td>
<td>4825</td>
<td>1</td>
<td>285</td>
<td>0.432</td>
<td>6.8</td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10.7</td>
<td>449</td>
<td>151</td>
<td>4821</td>
<td>1,013</td>
<td>286</td>
<td>0.432</td>
<td>7.5</td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10.7</td>
<td>447</td>
<td>151</td>
<td>4815</td>
<td>1</td>
<td>286</td>
<td>0.435</td>
<td>7.4</td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10.7</td>
<td>448</td>
<td>144</td>
<td>4777</td>
<td>1</td>
<td>285</td>
<td>0.435</td>
<td>7.1</td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10.7</td>
<td>448</td>
<td>137</td>
<td>4779</td>
<td>1</td>
<td>285</td>
<td>0.44</td>
<td>6.7</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10.7</td>
<td>448</td>
<td>145</td>
<td>4771</td>
<td>1</td>
<td>285</td>
<td>0.44</td>
<td>7.2</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10.6</td>
<td>448</td>
<td>145</td>
<td>4771</td>
<td>1</td>
<td>285</td>
<td>0.44</td>
<td>7.2</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10.6</td>
<td>448</td>
<td>142</td>
<td>4740</td>
<td>1</td>
<td>286</td>
<td>0.445</td>
<td>6.7</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10.6</td>
<td>448</td>
<td>145</td>
<td>4749</td>
<td>1</td>
<td>286</td>
<td>0.45</td>
<td>7.1</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10.7</td>
<td>450</td>
<td>153</td>
<td>4750</td>
<td>1</td>
<td>286</td>
<td>0.45</td>
<td>7.6</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10.6</td>
<td>448</td>
<td>146</td>
<td>4753</td>
<td>1</td>
<td>285</td>
<td>0.45</td>
<td>7.1</td>
</tr>
<tr>
<td>9</td>
<td>676</td>
<td>10.6</td>
<td>449</td>
<td>149</td>
<td>4702</td>
<td>1</td>
<td>286</td>
<td>0.465</td>
<td>7.4</td>
</tr>
<tr>
<td>14</td>
<td>675</td>
<td>10.4</td>
<td>453</td>
<td>144</td>
<td>4487</td>
<td>1</td>
<td>284</td>
<td>0.495</td>
<td>7.4</td>
</tr>
<tr>
<td>14</td>
<td>675</td>
<td>10.4</td>
<td>451</td>
<td>146</td>
<td>4479</td>
<td>1,011</td>
<td>285</td>
<td>0.495</td>
<td>7.4</td>
</tr>
<tr>
<td>14</td>
<td>676</td>
<td>10.4</td>
<td>451</td>
<td>146</td>
<td>4501</td>
<td>1</td>
<td>285</td>
<td>0.495</td>
<td>7.4</td>
</tr>
<tr>
<td>14</td>
<td>676</td>
<td>10.4</td>
<td>451</td>
<td>146</td>
<td>4501</td>
<td>1</td>
<td>285</td>
<td>0.495</td>
<td>7.4</td>
</tr>
<tr>
<td>9</td>
<td>677</td>
<td>10.7</td>
<td>455</td>
<td>149</td>
<td>4672</td>
<td>1</td>
<td>284</td>
<td>0.47</td>
<td>7.5</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10.6</td>
<td>448</td>
<td>149</td>
<td>4783</td>
<td>1,012</td>
<td>284</td>
<td>0.45</td>
<td>7.5</td>
</tr>
<tr>
<td>3</td>
<td>677</td>
<td>10.8</td>
<td>447</td>
<td>152</td>
<td>4871</td>
<td>1,012</td>
<td>285</td>
<td>0.432</td>
<td>7.3</td>
</tr>
<tr>
<td>2</td>
<td>675</td>
<td>10.8</td>
<td>446</td>
<td>156</td>
<td>4879</td>
<td>1</td>
<td>285</td>
<td>0.42</td>
<td>7.4</td>
</tr>
<tr>
<td>2</td>
<td>677</td>
<td>10.9</td>
<td>446</td>
<td>148</td>
<td>4890</td>
<td>1,013</td>
<td>285</td>
<td>0.42</td>
<td>6.3</td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>10.9</td>
<td>447</td>
<td>151</td>
<td>4864</td>
<td>1</td>
<td>287</td>
<td>0.425</td>
<td>6.7</td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>10.8</td>
<td>450</td>
<td>156</td>
<td>4838</td>
<td>1</td>
<td>285</td>
<td>0.425</td>
<td>7.4</td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10.7</td>
<td>449</td>
<td>152</td>
<td>4846</td>
<td>1,01</td>
<td>286</td>
<td>0.435</td>
<td>7.6</td>
</tr>
<tr>
<td>5</td>
<td>677</td>
<td>10.8</td>
<td>448</td>
<td>154</td>
<td>4815</td>
<td>1</td>
<td>285</td>
<td>0.435</td>
<td>7.5</td>
</tr>
<tr>
<td>6</td>
<td>675</td>
<td>10.6</td>
<td>448</td>
<td>151</td>
<td>4754</td>
<td>1</td>
<td>285</td>
<td>0.44</td>
<td>6.8</td>
</tr>
<tr>
<td>6</td>
<td>675</td>
<td>10.7</td>
<td>452</td>
<td>145</td>
<td>4797</td>
<td>1</td>
<td>284</td>
<td>0.44</td>
<td>7.4</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10.6</td>
<td>448</td>
<td>150</td>
<td>4719</td>
<td>1</td>
<td>285</td>
<td>0.445</td>
<td>7.1</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10.7</td>
<td>448</td>
<td>154</td>
<td>4756</td>
<td>1</td>
<td>285</td>
<td>0.445</td>
<td>7.5</td>
</tr>
<tr>
<td>7</td>
<td>675</td>
<td>10.7</td>
<td>448</td>
<td>152</td>
<td>4731</td>
<td>1</td>
<td>286</td>
<td>0.445</td>
<td>7.3</td>
</tr>
<tr>
<td>9</td>
<td>675</td>
<td>10.7</td>
<td>448</td>
<td>152</td>
<td>4683</td>
<td>1</td>
<td>284</td>
<td>0.46</td>
<td>6.9</td>
</tr>
<tr>
<td>10</td>
<td>675</td>
<td>10.6</td>
<td>449</td>
<td>152</td>
<td>4665</td>
<td>1</td>
<td>284</td>
<td>0.465</td>
<td>7.2</td>
</tr>
<tr>
<td>13</td>
<td>676</td>
<td>10.6</td>
<td>450</td>
<td>154</td>
<td>4597</td>
<td>1</td>
<td>285</td>
<td>0.48</td>
<td>7.3</td>
</tr>
<tr>
<td>15</td>
<td>676</td>
<td>10.6</td>
<td>450</td>
<td>143</td>
<td>4552</td>
<td>1</td>
<td>285</td>
<td>0.5</td>
<td>6.9</td>
</tr>
<tr>
<td>15</td>
<td>675</td>
<td>10.6</td>
<td>451</td>
<td>136</td>
<td>4544</td>
<td>1</td>
<td>284</td>
<td>0.5</td>
<td>6.1</td>
</tr>
<tr>
<td>15</td>
<td>676</td>
<td>10.6</td>
<td>451</td>
<td>140</td>
<td>4530</td>
<td>1,01</td>
<td>284</td>
<td>0.5</td>
<td>7.3</td>
</tr>
<tr>
<td>14</td>
<td>675</td>
<td>10.6</td>
<td>450</td>
<td>144</td>
<td>4554</td>
<td>1</td>
<td>286</td>
<td>0.495</td>
<td>7.1</td>
</tr>
<tr>
<td>14</td>
<td>676</td>
<td>10.6</td>
<td>450</td>
<td>149</td>
<td>4587</td>
<td>1</td>
<td>284</td>
<td>0.495</td>
<td>7.7</td>
</tr>
<tr>
<td>12</td>
<td>677</td>
<td>10.6</td>
<td>450</td>
<td>142</td>
<td>4630</td>
<td>1,013</td>
<td>285</td>
<td>0.48</td>
<td>6.2</td>
</tr>
<tr>
<td>9</td>
<td>676</td>
<td>10.8</td>
<td>449</td>
<td>148</td>
<td>4785</td>
<td>1,011</td>
<td>285</td>
<td>0.462</td>
<td>7.1</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>11</td>
<td>448</td>
<td>148</td>
<td>4859</td>
<td>1</td>
<td>285</td>
<td>0.45</td>
<td>7.6</td>
</tr>
<tr>
<td>4</td>
<td>675</td>
<td>10.9</td>
<td>447</td>
<td>155</td>
<td>4936</td>
<td>1</td>
<td>286</td>
<td>0.43</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>10.7</td>
<td>449</td>
<td>147</td>
<td>4884</td>
<td>1</td>
<td>285</td>
<td>0.43</td>
<td>7.6</td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>10.8</td>
<td>447</td>
<td>144</td>
<td>4857</td>
<td>1,012</td>
<td>286</td>
<td>0.43</td>
<td>6.7</td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>10.7</td>
<td>447</td>
<td>151</td>
<td>4889</td>
<td>1</td>
<td>284</td>
<td>0.438</td>
<td>7.3</td>
</tr>
<tr>
<td>4</td>
<td>675</td>
<td>10.8</td>
<td>447</td>
<td>147</td>
<td>4839</td>
<td>1</td>
<td>285</td>
<td>0.438</td>
<td>7.4</td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10.7</td>
<td>448</td>
<td>148</td>
<td>4841</td>
<td>1,011</td>
<td>285</td>
<td>0.44</td>
<td>7.2</td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10.8</td>
<td>451</td>
<td>142</td>
<td>4841</td>
<td>1,01</td>
<td>286</td>
<td>0.44</td>
<td>7.5</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10.8</td>
<td>448</td>
<td>152</td>
<td>4796</td>
<td>1</td>
<td>286</td>
<td>0.44</td>
<td>7.5</td>
</tr>
<tr>
<td>7</td>
<td>675</td>
<td>10.6</td>
<td>449</td>
<td>153</td>
<td>4788</td>
<td>1</td>
<td>285</td>
<td>0.44</td>
<td>7.7</td>
</tr>
<tr>
<td>8</td>
<td>675</td>
<td>10.6</td>
<td>449</td>
<td>151</td>
<td>4682</td>
<td>1</td>
<td>285</td>
<td>0.454</td>
<td>7.6</td>
</tr>
<tr>
<td>8</td>
<td>676</td>
<td>10.6</td>
<td>449</td>
<td>148</td>
<td>4728</td>
<td>1</td>
<td>286</td>
<td>0.45</td>
<td>7.3</td>
</tr>
<tr>
<td>9</td>
<td>676</td>
<td>10.6</td>
<td>449</td>
<td>147</td>
<td>4738</td>
<td>1</td>
<td>285</td>
<td>0.454</td>
<td>6.6</td>
</tr>
<tr>
<td>9</td>
<td>676</td>
<td>10.6</td>
<td>449</td>
<td>150</td>
<td>4722</td>
<td>1</td>
<td>285</td>
<td>0.456</td>
<td>7.3</td>
</tr>
<tr>
<td>10</td>
<td>676</td>
<td>10.5</td>
<td>449</td>
<td>148</td>
<td>4653</td>
<td>1</td>
<td>285</td>
<td>0.468</td>
<td>6.7</td>
</tr>
<tr>
<td>10</td>
<td>676</td>
<td>10.5</td>
<td>449</td>
<td>149</td>
<td>4661</td>
<td>1</td>
<td>286</td>
<td>0.468</td>
<td>7.2</td>
</tr>
<tr>
<td>9</td>
<td>676</td>
<td>10.6</td>
<td>449</td>
<td>150</td>
<td>4693</td>
<td>1,013</td>
<td>285</td>
<td>0.47</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>676</td>
<td>10.6</td>
<td>449</td>
<td>149</td>
<td>4648</td>
<td>1</td>
<td>285</td>
<td>0.47</td>
<td>6.7</td>
</tr>
<tr>
<td>11</td>
<td>675</td>
<td>10.5</td>
<td>450</td>
<td>141</td>
<td>4617</td>
<td>1</td>
<td>285</td>
<td>0.475</td>
<td>6.9</td>
</tr>
<tr>
<td>10</td>
<td>676</td>
<td>10.6</td>
<td>449</td>
<td>138</td>
<td>4689</td>
<td>1</td>
<td>286</td>
<td>0.47</td>
<td>6.8</td>
</tr>
<tr>
<td>9</td>
<td>677</td>
<td>10.6</td>
<td>449</td>
<td>139</td>
<td>4686</td>
<td>1</td>
<td>286</td>
<td>0.486</td>
<td>7.2</td>
</tr>
<tr>
<td>8</td>
<td>676</td>
<td>10.6</td>
<td>449</td>
<td>148</td>
<td>4731</td>
<td>1</td>
<td>285</td>
<td>0.45</td>
<td>7.4</td>
</tr>
<tr>
<td>8</td>
<td>677</td>
<td>10.6</td>
<td>448</td>
<td>140</td>
<td>4738</td>
<td>1</td>
<td>285</td>
<td>0.45</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>676</td>
<td>10.7</td>
<td>448</td>
<td>145</td>
<td>4738</td>
<td>1,01</td>
<td>285</td>
<td>0.45</td>
<td>7.4</td>
</tr>
<tr>
<td>8</td>
<td>676</td>
<td>10.7</td>
<td>448</td>
<td>150</td>
<td>4739</td>
<td>1,01</td>
<td>285</td>
<td>0.45</td>
<td>7.5</td>
</tr>
<tr>
<td>8</td>
<td>677</td>
<td>10.7</td>
<td>448</td>
<td>153</td>
<td>4749</td>
<td>11</td>
<td>286</td>
<td>0.45</td>
<td>7.4</td>
</tr>
<tr>
<td>8</td>
<td>676</td>
<td>10.6</td>
<td>448</td>
<td>153</td>
<td>4769</td>
<td>1</td>
<td>286</td>
<td>0.45</td>
<td>7.6</td>
</tr>
<tr>
<td>8</td>
<td>677</td>
<td>10.6</td>
<td>448</td>
<td>157</td>
<td>4765</td>
<td>1</td>
<td>286</td>
<td>0.45</td>
<td>6.7</td>
</tr>
<tr>
<td>8</td>
<td>676</td>
<td>10.6</td>
<td>448</td>
<td>147</td>
<td>4749</td>
<td>1</td>
<td>285</td>
<td>0.45</td>
<td>6.7</td>
</tr>
<tr>
<td>9</td>
<td>677</td>
<td>10.7</td>
<td>448</td>
<td>147</td>
<td>4740</td>
<td>1,012</td>
<td>286</td>
<td>0.456</td>
<td>7.4</td>
</tr>
<tr>
<td>9</td>
<td>676</td>
<td>10.7</td>
<td>448</td>
<td>150</td>
<td>4739</td>
<td>1</td>
<td>285</td>
<td>0.456</td>
<td>7.1</td>
</tr>
<tr>
<td>9</td>
<td>677</td>
<td>10.7</td>
<td>448</td>
<td>146</td>
<td>4726</td>
<td>1,012</td>
<td>285</td>
<td>0.456</td>
<td>6.7</td>
</tr>
<tr>
<td>11</td>
<td>676</td>
<td>10.6</td>
<td>449</td>
<td>148</td>
<td>4605</td>
<td>1</td>
<td>285</td>
<td>0.47</td>
<td>6.7</td>
</tr>
<tr>
<td>13</td>
<td>677</td>
<td>10.3</td>
<td>450</td>
<td>145</td>
<td>4465</td>
<td>1,013</td>
<td>284</td>
<td>0.48</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>595</td>
<td>10.1</td>
<td>442</td>
<td>148</td>
<td>3638</td>
<td>1</td>
<td>284</td>
<td>0.48</td>
<td>6.9</td>
</tr>
<tr>
<td>13</td>
<td>675</td>
<td>10.5</td>
<td>449</td>
<td>152</td>
<td>4525</td>
<td>1,01</td>
<td>285</td>
<td>0.48</td>
<td>7.3</td>
</tr>
<tr>
<td>13</td>
<td>677</td>
<td>10.5</td>
<td>449</td>
<td>148</td>
<td>4551</td>
<td>1</td>
<td>285</td>
<td>0.48</td>
<td>6.9</td>
</tr>
<tr>
<td>14</td>
<td>676</td>
<td>10.4</td>
<td>449</td>
<td>147</td>
<td>4508</td>
<td>1</td>
<td>285</td>
<td>0.485</td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>676</td>
<td>10.4</td>
<td>450</td>
<td>145</td>
<td>4445</td>
<td>1,013</td>
<td>287</td>
<td>0.5</td>
<td>6.6</td>
</tr>
<tr>
<td>16</td>
<td>676</td>
<td>10.5</td>
<td>450</td>
<td>147</td>
<td>4466</td>
<td>1,011</td>
<td>285</td>
<td>0.5</td>
<td>6.8</td>
</tr>
<tr>
<td>21</td>
<td>675</td>
<td>10.3</td>
<td>451</td>
<td>144</td>
<td>4302</td>
<td>1</td>
<td>286</td>
<td>0.52</td>
<td>6.8</td>
</tr>
<tr>
<td>19</td>
<td>676</td>
<td>10.2</td>
<td>451</td>
<td>147</td>
<td>4324</td>
<td>1</td>
<td>285</td>
<td>0.51</td>
<td>7.3</td>
</tr>
<tr>
<td>20</td>
<td>676</td>
<td>10.2</td>
<td>451</td>
<td>145</td>
<td>4310</td>
<td>1</td>
<td>285</td>
<td>0.512</td>
<td>6.6</td>
</tr>
<tr>
<td>18</td>
<td>676</td>
<td>10.4</td>
<td>450</td>
<td>141</td>
<td>4403</td>
<td>1</td>
<td>284</td>
<td>0.49</td>
<td>7</td>
</tr>
<tr>
<td>15</td>
<td>675</td>
<td>10.4</td>
<td>454</td>
<td>141</td>
<td>4500</td>
<td>1,013</td>
<td>285</td>
<td>0.48</td>
<td>7.5</td>
</tr>
<tr>
<td>13</td>
<td>676</td>
<td>10.5</td>
<td>448</td>
<td>144</td>
<td>4558</td>
<td>1,013</td>
<td>285</td>
<td>0.475</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>676</td>
<td>10.5</td>
<td>448</td>
<td>150</td>
<td>4511</td>
<td>1</td>
<td>286</td>
<td>0.475</td>
<td>7.4</td>
</tr>
<tr>
<td>13</td>
<td>676</td>
<td>10.5</td>
<td>448</td>
<td>137</td>
<td>4546</td>
<td>1</td>
<td>284</td>
<td>0.475</td>
<td>7.4</td>
</tr>
<tr>
<td>12</td>
<td>676</td>
<td>10.6</td>
<td>448</td>
<td>140</td>
<td>4556</td>
<td>1</td>
<td>284</td>
<td>0.47</td>
<td>7.4</td>
</tr>
<tr>
<td>12</td>
<td>676</td>
<td>10.5</td>
<td>453</td>
<td>140</td>
<td>4542</td>
<td>1</td>
<td>285</td>
<td>0.475</td>
<td>7.4</td>
</tr>
<tr>
<td>12</td>
<td>676</td>
<td>10.5</td>
<td>451</td>
<td>142</td>
<td>4554</td>
<td>1</td>
<td>285</td>
<td>0.475</td>
<td>7.5</td>
</tr>
<tr>
<td>12</td>
<td>676</td>
<td>10.6</td>
<td>449</td>
<td>154</td>
<td>4544</td>
<td>1</td>
<td>284</td>
<td>0.475</td>
<td>7.4</td>
</tr>
<tr>
<td>12</td>
<td>676</td>
<td>10.6</td>
<td>448</td>
<td>160</td>
<td>4589</td>
<td>1</td>
<td>284</td>
<td>0.468</td>
<td>7.5</td>
</tr>
<tr>
<td>12</td>
<td>676</td>
<td>10.6</td>
<td>452</td>
<td>144</td>
<td>4594</td>
<td>1,011</td>
<td>286</td>
<td>0.469</td>
<td>7.5</td>
</tr>
<tr>
<td>13</td>
<td>676</td>
<td>10.4</td>
<td>448</td>
<td>156</td>
<td>4531</td>
<td>1</td>
<td>284</td>
<td>0.47</td>
<td>7.3</td>
</tr>
<tr>
<td>12</td>
<td>676</td>
<td>10.6</td>
<td>448</td>
<td>153</td>
<td>4572</td>
<td>1,013</td>
<td>285</td>
<td>0.47</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>14</td>
<td>676</td>
<td>10,5</td>
<td>449</td>
<td>135</td>
<td>4546</td>
<td>1</td>
<td>285</td>
<td>0,485</td>
<td>7,4</td>
</tr>
<tr>
<td>14</td>
<td>676</td>
<td>10,6</td>
<td>453</td>
<td>136</td>
<td>4556</td>
<td>1</td>
<td>285</td>
<td>0,485</td>
<td>7,5</td>
</tr>
<tr>
<td>14</td>
<td>677</td>
<td>10,5</td>
<td>448</td>
<td>144</td>
<td>4543</td>
<td>1</td>
<td>286</td>
<td>0,485</td>
<td>7,7</td>
</tr>
<tr>
<td>14</td>
<td>675</td>
<td>10,5</td>
<td>449</td>
<td>143</td>
<td>4535</td>
<td>1</td>
<td>284</td>
<td>0,485</td>
<td>7,2</td>
</tr>
<tr>
<td>16</td>
<td>676</td>
<td>10,5</td>
<td>449</td>
<td>147</td>
<td>4476</td>
<td>1</td>
<td>285</td>
<td>0,488</td>
<td>7,3</td>
</tr>
<tr>
<td>18</td>
<td>676</td>
<td>10,3</td>
<td>450</td>
<td>145</td>
<td>4417</td>
<td>1</td>
<td>285</td>
<td>0,492</td>
<td>6,9</td>
</tr>
<tr>
<td>18</td>
<td>676</td>
<td>10,5</td>
<td>449</td>
<td>148</td>
<td>4445</td>
<td>1</td>
<td>286</td>
<td>0,492</td>
<td>7</td>
</tr>
<tr>
<td>20</td>
<td>675</td>
<td>10,3</td>
<td>450</td>
<td>149</td>
<td>4359</td>
<td>1</td>
<td>286</td>
<td>0,51</td>
<td>6,3</td>
</tr>
<tr>
<td>19</td>
<td>677</td>
<td>10,2</td>
<td>450</td>
<td>153</td>
<td>4363</td>
<td>1</td>
<td>285</td>
<td>0,5</td>
<td>7,5</td>
</tr>
<tr>
<td>19</td>
<td>676</td>
<td>10,3</td>
<td>450</td>
<td>143</td>
<td>4340</td>
<td>1</td>
<td>285</td>
<td>0,5</td>
<td>7,1</td>
</tr>
<tr>
<td>14</td>
<td>676</td>
<td>10,5</td>
<td>448</td>
<td>145</td>
<td>4558</td>
<td>1</td>
<td>286</td>
<td>0,485</td>
<td>6,6</td>
</tr>
<tr>
<td>11</td>
<td>676</td>
<td>10,6</td>
<td>447</td>
<td>152</td>
<td>4610</td>
<td>1,011</td>
<td>285</td>
<td>0,468</td>
<td>7,6</td>
</tr>
<tr>
<td>9</td>
<td>675</td>
<td>10,5</td>
<td>446</td>
<td>145</td>
<td>4661</td>
<td>1</td>
<td>285</td>
<td>0,45</td>
<td>7,4</td>
</tr>
<tr>
<td>6</td>
<td>675</td>
<td>10,7</td>
<td>445</td>
<td>152</td>
<td>4757</td>
<td>1</td>
<td>285</td>
<td>0,44</td>
<td>7,4</td>
</tr>
<tr>
<td>4</td>
<td>677</td>
<td>10,7</td>
<td>447</td>
<td>141</td>
<td>4804</td>
<td>1</td>
<td>286</td>
<td>0,43</td>
<td>7,4</td>
</tr>
<tr>
<td>3</td>
<td>675</td>
<td>10,7</td>
<td>449</td>
<td>132</td>
<td>4836</td>
<td>1,012</td>
<td>285</td>
<td>0,425</td>
<td>7,5</td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10,8</td>
<td>445</td>
<td>143</td>
<td>4800</td>
<td>1,012</td>
<td>285</td>
<td>0,43</td>
<td>7,3</td>
</tr>
<tr>
<td>5</td>
<td>677</td>
<td>10,7</td>
<td>451</td>
<td>140</td>
<td>4754</td>
<td>1</td>
<td>285</td>
<td>0,435</td>
<td>7,4</td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10,7</td>
<td>445</td>
<td>150</td>
<td>4756</td>
<td>1,013</td>
<td>286</td>
<td>0,435</td>
<td>7,4</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10,8</td>
<td>445</td>
<td>151</td>
<td>4738</td>
<td>1</td>
<td>286</td>
<td>0,44</td>
<td>7,4</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10,7</td>
<td>445</td>
<td>144</td>
<td>4736</td>
<td>1</td>
<td>285</td>
<td>0,445</td>
<td>6,9</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10,7</td>
<td>445</td>
<td>141</td>
<td>4736</td>
<td>1,01</td>
<td>285</td>
<td>0,445</td>
<td>7,3</td>
</tr>
<tr>
<td>8</td>
<td>648</td>
<td>10,6</td>
<td>421</td>
<td>148</td>
<td>4446</td>
<td>1</td>
<td>285</td>
<td>0,448</td>
<td>7,3</td>
</tr>
<tr>
<td>9</td>
<td>677</td>
<td>10,7</td>
<td>446</td>
<td>151</td>
<td>4694</td>
<td>1</td>
<td>285</td>
<td>0,45</td>
<td>7,5</td>
</tr>
<tr>
<td>10</td>
<td>677</td>
<td>10,7</td>
<td>446</td>
<td>150</td>
<td>4645</td>
<td>1</td>
<td>286</td>
<td>0,46</td>
<td>7,2</td>
</tr>
<tr>
<td>12</td>
<td>676</td>
<td>10,6</td>
<td>447</td>
<td>147</td>
<td>4612</td>
<td>1</td>
<td>286</td>
<td>0,465</td>
<td>7</td>
</tr>
<tr>
<td>15</td>
<td>676</td>
<td>10,5</td>
<td>448</td>
<td>153</td>
<td>4518</td>
<td>1</td>
<td>286</td>
<td>0,488</td>
<td>7,1</td>
</tr>
<tr>
<td>17</td>
<td>675</td>
<td>10,5</td>
<td>449</td>
<td>146</td>
<td>4481</td>
<td>1</td>
<td>285</td>
<td>0,492</td>
<td>7,3</td>
</tr>
<tr>
<td>19</td>
<td>675</td>
<td>10,6</td>
<td>450</td>
<td>145</td>
<td>4436</td>
<td>1</td>
<td>286</td>
<td>0,5</td>
<td>6,9</td>
</tr>
<tr>
<td>21</td>
<td>677</td>
<td>10,4</td>
<td>451</td>
<td>147</td>
<td>4369</td>
<td>1</td>
<td>284</td>
<td>0,52</td>
<td>7,2</td>
</tr>
<tr>
<td>18</td>
<td>677</td>
<td>10,4</td>
<td>451</td>
<td>151</td>
<td>4413</td>
<td>1</td>
<td>285</td>
<td>0,495</td>
<td>7,4</td>
</tr>
<tr>
<td>19</td>
<td>676</td>
<td>10,4</td>
<td>451</td>
<td>151</td>
<td>4404</td>
<td>1</td>
<td>285</td>
<td>0,5</td>
<td>7,4</td>
</tr>
<tr>
<td>16</td>
<td>676</td>
<td>10,4</td>
<td>451</td>
<td>147</td>
<td>4483</td>
<td>1</td>
<td>285</td>
<td>0,49</td>
<td>7,5</td>
</tr>
<tr>
<td>14</td>
<td>677</td>
<td>10,5</td>
<td>449</td>
<td>147</td>
<td>4540</td>
<td>1,01</td>
<td>284</td>
<td>0,48</td>
<td>7,2</td>
</tr>
<tr>
<td>11</td>
<td>675</td>
<td>10,6</td>
<td>448</td>
<td>150</td>
<td>4624</td>
<td>1</td>
<td>284</td>
<td>0,465</td>
<td>7,4</td>
</tr>
<tr>
<td>9</td>
<td>676</td>
<td>10,7</td>
<td>452</td>
<td>141</td>
<td>4741</td>
<td>1</td>
<td>285</td>
<td>0,45</td>
<td>7,4</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10,9</td>
<td>449</td>
<td>142</td>
<td>4866</td>
<td>1,013</td>
<td>285</td>
<td>0,44</td>
<td>7,5</td>
</tr>
<tr>
<td>1</td>
<td>676</td>
<td>10,8</td>
<td>445</td>
<td>147</td>
<td>4910</td>
<td>1,011</td>
<td>285</td>
<td>0,42</td>
<td>7,4</td>
</tr>
<tr>
<td>1</td>
<td>676</td>
<td>10,9</td>
<td>444</td>
<td>141</td>
<td>4926</td>
<td>1</td>
<td>287</td>
<td>0,42</td>
<td>6,7</td>
</tr>
<tr>
<td>1</td>
<td>677</td>
<td>10,9</td>
<td>444</td>
<td>139</td>
<td>4922</td>
<td>1</td>
<td>285</td>
<td>0,42</td>
<td>6,9</td>
</tr>
<tr>
<td>1</td>
<td>676</td>
<td>10,9</td>
<td>444</td>
<td>145</td>
<td>4926</td>
<td>1</td>
<td>286</td>
<td>0,42</td>
<td>7,4</td>
</tr>
<tr>
<td>1</td>
<td>675</td>
<td>11</td>
<td>445</td>
<td>139</td>
<td>4908</td>
<td>1</td>
<td>285</td>
<td>0,42</td>
<td>7,3</td>
</tr>
<tr>
<td>1</td>
<td>676</td>
<td>11</td>
<td>444</td>
<td>149</td>
<td>4918</td>
<td>1,013</td>
<td>285</td>
<td>0,42</td>
<td>7,3</td>
</tr>
<tr>
<td>2</td>
<td>676</td>
<td>11</td>
<td>445</td>
<td>154</td>
<td>4923</td>
<td>1,013</td>
<td>284</td>
<td>0,425</td>
<td>7,5</td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>10,8</td>
<td>445</td>
<td>151</td>
<td>4882</td>
<td>1</td>
<td>285</td>
<td>0,43</td>
<td>7,3</td>
</tr>
<tr>
<td>4</td>
<td>677</td>
<td>10,9</td>
<td>449</td>
<td>138</td>
<td>4892</td>
<td>1</td>
<td>285</td>
<td>0,435</td>
<td>7,5</td>
</tr>
<tr>
<td>5</td>
<td>677</td>
<td>10,9</td>
<td>451</td>
<td>143</td>
<td>4852</td>
<td>1</td>
<td>286</td>
<td>0,436</td>
<td>7,5</td>
</tr>
<tr>
<td>7</td>
<td>677</td>
<td>10,8</td>
<td>451</td>
<td>152</td>
<td>4784</td>
<td>1</td>
<td>284</td>
<td>0,445</td>
<td>7,1</td>
</tr>
<tr>
<td>7</td>
<td>677</td>
<td>10,8</td>
<td>446</td>
<td>150</td>
<td>4775</td>
<td>1</td>
<td>284</td>
<td>0,445</td>
<td>7,1</td>
</tr>
<tr>
<td>10</td>
<td>676</td>
<td>10,6</td>
<td>446</td>
<td>153</td>
<td>4697</td>
<td>1</td>
<td>285</td>
<td>0,46</td>
<td>7,1</td>
</tr>
<tr>
<td>10</td>
<td>676</td>
<td>10,7</td>
<td>448</td>
<td>152</td>
<td>4655</td>
<td>1</td>
<td>285</td>
<td>0,46</td>
<td>7,6</td>
</tr>
<tr>
<td>14</td>
<td>676</td>
<td>448</td>
<td>448</td>
<td>154</td>
<td>4599</td>
<td>1,011</td>
<td>284</td>
<td>0,48</td>
<td>7</td>
</tr>
<tr>
<td>14</td>
<td>677</td>
<td>10,5</td>
<td>449</td>
<td>149</td>
<td>4559</td>
<td>1</td>
<td>284</td>
<td>0,48</td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>676</td>
<td>10,6</td>
<td>450</td>
<td>153</td>
<td>4528</td>
<td>1,013</td>
<td>286</td>
<td>0,486</td>
<td>6,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>15</td>
<td>676</td>
<td>10,7</td>
<td>450</td>
<td>150</td>
<td>5454</td>
<td>1</td>
<td>284</td>
<td>0,485</td>
<td>7,3</td>
</tr>
<tr>
<td>13</td>
<td>676</td>
<td>10,7</td>
<td>449</td>
<td>147</td>
<td>4621</td>
<td>1</td>
<td>285</td>
<td>0,475</td>
<td>7,3</td>
</tr>
<tr>
<td>13</td>
<td>675</td>
<td>10,7</td>
<td>448</td>
<td>142</td>
<td>4635</td>
<td>1</td>
<td>285</td>
<td>0,475</td>
<td>7,4</td>
</tr>
<tr>
<td>10</td>
<td>676</td>
<td>10,7</td>
<td>448</td>
<td>145</td>
<td>4699</td>
<td>1</td>
<td>286</td>
<td>0,458</td>
<td>6,7</td>
</tr>
<tr>
<td>9</td>
<td>676</td>
<td>10,8</td>
<td>447</td>
<td>144</td>
<td>4758</td>
<td>1</td>
<td>284</td>
<td>0,45</td>
<td>6,6</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10,8</td>
<td>446</td>
<td>144</td>
<td>4823</td>
<td>1</td>
<td>285</td>
<td>0,43</td>
<td>6,7</td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>10,9</td>
<td>445</td>
<td>148</td>
<td>4961</td>
<td>1</td>
<td>285</td>
<td>0,41</td>
<td>7,3</td>
</tr>
<tr>
<td>0</td>
<td>676</td>
<td>11,1</td>
<td>444</td>
<td>149</td>
<td>5010</td>
<td>1</td>
<td>286</td>
<td>0,42</td>
<td>7,4</td>
</tr>
<tr>
<td>1</td>
<td>675</td>
<td>11,1</td>
<td>444</td>
<td>149</td>
<td>4985</td>
<td>1</td>
<td>286</td>
<td>0,41</td>
<td>6,5</td>
</tr>
<tr>
<td>0</td>
<td>676</td>
<td>11,1</td>
<td>444</td>
<td>150</td>
<td>5005</td>
<td>1</td>
<td>286</td>
<td>0,41</td>
<td>6,9</td>
</tr>
<tr>
<td>0</td>
<td>676</td>
<td>11,1</td>
<td>444</td>
<td>148</td>
<td>5015</td>
<td>1</td>
<td>286</td>
<td>0,41</td>
<td>6,9</td>
</tr>
<tr>
<td>1</td>
<td>676</td>
<td>11,1</td>
<td>445</td>
<td>152</td>
<td>4957</td>
<td>1</td>
<td>286</td>
<td>0,43</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>676</td>
<td>11,1</td>
<td>445</td>
<td>153</td>
<td>4950</td>
<td>1</td>
<td>285</td>
<td>0,435</td>
<td>6,9</td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>11,1</td>
<td>445</td>
<td>148</td>
<td>4919</td>
<td>1</td>
<td>285</td>
<td>0,436</td>
<td>5,9</td>
</tr>
<tr>
<td>4</td>
<td>675</td>
<td>11,1</td>
<td>445</td>
<td>147</td>
<td>4908</td>
<td>1,012</td>
<td>285</td>
<td>0,45</td>
<td>7,3</td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10,9</td>
<td>446</td>
<td>146</td>
<td>4857</td>
<td>1,012</td>
<td>286</td>
<td>0,455</td>
<td>7,1</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10,9</td>
<td>446</td>
<td>147</td>
<td>4820</td>
<td>1</td>
<td>285</td>
<td>0,455</td>
<td>7,5</td>
</tr>
<tr>
<td>8</td>
<td>675</td>
<td>10,9</td>
<td>451</td>
<td>146</td>
<td>4787</td>
<td>1,013</td>
<td>285</td>
<td>0,455</td>
<td>7,2</td>
</tr>
<tr>
<td>9</td>
<td>676</td>
<td>10,8</td>
<td>446</td>
<td>146</td>
<td>4837</td>
<td>1</td>
<td>285</td>
<td>0,455</td>
<td>7,1</td>
</tr>
<tr>
<td>13</td>
<td>675</td>
<td>10,8</td>
<td>447</td>
<td>150</td>
<td>4847</td>
<td>1</td>
<td>286</td>
<td>0,452</td>
<td>7,1</td>
</tr>
<tr>
<td>14</td>
<td>676</td>
<td>10,8</td>
<td>447</td>
<td>145</td>
<td>4787</td>
<td>1,01</td>
<td>286</td>
<td>0,455</td>
<td>6,8</td>
</tr>
<tr>
<td>15</td>
<td>676</td>
<td>10,9</td>
<td>445</td>
<td>150</td>
<td>4798</td>
<td>1</td>
<td>285</td>
<td>0,455</td>
<td>7,2</td>
</tr>
<tr>
<td>11</td>
<td>677</td>
<td>10,8</td>
<td>446</td>
<td>150</td>
<td>4809</td>
<td>1</td>
<td>285</td>
<td>0,45</td>
<td>6,8</td>
</tr>
<tr>
<td>8</td>
<td>676</td>
<td>10,9</td>
<td>445</td>
<td>144</td>
<td>4802</td>
<td>1</td>
<td>285</td>
<td>0,475</td>
<td>7,3</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10,8</td>
<td>447</td>
<td>152</td>
<td>4675</td>
<td>1</td>
<td>286</td>
<td>0,48</td>
<td>7,1</td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10,8</td>
<td>448</td>
<td>149</td>
<td>4615</td>
<td>1</td>
<td>286</td>
<td>0,485</td>
<td>7,3</td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>10,8</td>
<td>448</td>
<td>148</td>
<td>4531</td>
<td>1</td>
<td>286</td>
<td>0,47</td>
<td>7,5</td>
</tr>
<tr>
<td>2</td>
<td>676</td>
<td>10,8</td>
<td>451</td>
<td>155</td>
<td>4674</td>
<td>1</td>
<td>285</td>
<td>0,46</td>
<td>7,6</td>
</tr>
<tr>
<td>1</td>
<td>676</td>
<td>10,8</td>
<td>450</td>
<td>147</td>
<td>4754</td>
<td>1</td>
<td>286</td>
<td>0,44</td>
<td>7,4</td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>10,8</td>
<td>445</td>
<td>145</td>
<td>4842</td>
<td>1</td>
<td>284</td>
<td>0,43</td>
<td>7,4</td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>10,8</td>
<td>444</td>
<td>151</td>
<td>4880</td>
<td>1</td>
<td>284</td>
<td>0,43</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>10,8</td>
<td>444</td>
<td>148</td>
<td>4897</td>
<td>1,011</td>
<td>285</td>
<td>0,435</td>
<td>7,2</td>
</tr>
<tr>
<td>4</td>
<td>675</td>
<td>10,9</td>
<td>448</td>
<td>155</td>
<td>4877</td>
<td>1,01</td>
<td>285</td>
<td>0,43</td>
<td>7,2</td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10,9</td>
<td>448</td>
<td>144</td>
<td>4878</td>
<td>1,013</td>
<td>285</td>
<td>0,435</td>
<td>7,4</td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10,8</td>
<td>447</td>
<td>148</td>
<td>4879</td>
<td>1</td>
<td>284</td>
<td>0,43</td>
<td>7,1</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10,8</td>
<td>445</td>
<td>158</td>
<td>4828</td>
<td>1</td>
<td>284</td>
<td>0,43</td>
<td>7,3</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>10,8</td>
<td>445</td>
<td>147</td>
<td>4839</td>
<td>1</td>
<td>285</td>
<td>0,43</td>
<td>6,7</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10,8</td>
<td>445</td>
<td>148</td>
<td>4813</td>
<td>1</td>
<td>285</td>
<td>0,452</td>
<td>7,1</td>
</tr>
<tr>
<td>8</td>
<td>676</td>
<td>10,9</td>
<td>448</td>
<td>143</td>
<td>4802</td>
<td>1</td>
<td>285</td>
<td>0,455</td>
<td>7,5</td>
</tr>
<tr>
<td>8</td>
<td>676</td>
<td>10,9</td>
<td>450</td>
<td>147</td>
<td>4797</td>
<td>1,01</td>
<td>287</td>
<td>0,458</td>
<td>7,6</td>
</tr>
<tr>
<td>10</td>
<td>676</td>
<td>10,8</td>
<td>451</td>
<td>150</td>
<td>4726</td>
<td>1</td>
<td>285</td>
<td>0,465</td>
<td>7,5</td>
</tr>
<tr>
<td>14</td>
<td>676</td>
<td>10,7</td>
<td>448</td>
<td>151</td>
<td>4602</td>
<td>1</td>
<td>286</td>
<td>0,475</td>
<td>7,5</td>
</tr>
<tr>
<td>12</td>
<td>676</td>
<td>10,7</td>
<td>447</td>
<td>147</td>
<td>4641</td>
<td>1,013</td>
<td>285</td>
<td>0,47</td>
<td>7,2</td>
</tr>
<tr>
<td>17</td>
<td>676</td>
<td>10,6</td>
<td>449</td>
<td>150</td>
<td>4510</td>
<td>1,011</td>
<td>285</td>
<td>0,49</td>
<td>7,4</td>
</tr>
<tr>
<td>19</td>
<td>675</td>
<td>10,5</td>
<td>450</td>
<td>154</td>
<td>4461</td>
<td>1</td>
<td>284</td>
<td>0,495</td>
<td>7,3</td>
</tr>
<tr>
<td>21</td>
<td>675</td>
<td>10,4</td>
<td>451</td>
<td>152</td>
<td>4444</td>
<td>1</td>
<td>285</td>
<td>0,52</td>
<td>7,3</td>
</tr>
<tr>
<td>20</td>
<td>676</td>
<td>10,5</td>
<td>450</td>
<td>146</td>
<td>4420</td>
<td>1</td>
<td>285</td>
<td>0,5</td>
<td>6,8</td>
</tr>
<tr>
<td>22</td>
<td>676</td>
<td>10,4</td>
<td>457</td>
<td>151</td>
<td>4390</td>
<td>1</td>
<td>286</td>
<td>0,52</td>
<td>7,4</td>
</tr>
<tr>
<td>21</td>
<td>676</td>
<td>10,5</td>
<td>451</td>
<td>146</td>
<td>4412</td>
<td>1,013</td>
<td>284</td>
<td>0,52</td>
<td>7,1</td>
</tr>
<tr>
<td>20</td>
<td>676</td>
<td>10,5</td>
<td>450</td>
<td>144</td>
<td>4438</td>
<td>1,013</td>
<td>284</td>
<td>0,52</td>
<td>7,1</td>
</tr>
<tr>
<td>16</td>
<td>677</td>
<td>10,6</td>
<td>449</td>
<td>147</td>
<td>4566</td>
<td>1</td>
<td>285</td>
<td>0,485</td>
<td>7,2</td>
</tr>
<tr>
<td>14</td>
<td>677</td>
<td>10,7</td>
<td>447</td>
<td>148</td>
<td>4659</td>
<td>1</td>
<td>285</td>
<td>0,475</td>
<td>7,5</td>
</tr>
<tr>
<td>9</td>
<td>677</td>
<td>10,7</td>
<td>448</td>
<td>151</td>
<td>4756</td>
<td>1</td>
<td>284</td>
<td>0,465</td>
<td>7,3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>675</td>
<td>11</td>
<td>445</td>
<td>147</td>
<td>4981</td>
<td>1</td>
<td>285</td>
<td>0,42</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>---</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>3</td>
<td>675</td>
<td>11,1</td>
<td>444</td>
<td>146</td>
<td>4959</td>
<td>1</td>
<td>284</td>
<td>0,43</td>
<td>6,8</td>
</tr>
<tr>
<td>4</td>
<td>675</td>
<td>11</td>
<td>445</td>
<td>147</td>
<td>4920</td>
<td>1</td>
<td>284</td>
<td>0,435</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>11,1</td>
<td>445</td>
<td>149</td>
<td>4948</td>
<td>1</td>
<td>286</td>
<td>0,436</td>
<td>6,8</td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>11</td>
<td>446</td>
<td>145</td>
<td>4898</td>
<td>1,011</td>
<td>284</td>
<td>0,436</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>11</td>
<td>445</td>
<td>148</td>
<td>4908</td>
<td>1</td>
<td>285</td>
<td>0,436</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>675</td>
<td>11</td>
<td>446</td>
<td>150</td>
<td>4885</td>
<td>1,013</td>
<td>285</td>
<td>0,436</td>
<td>7,1</td>
</tr>
<tr>
<td>5</td>
<td>677</td>
<td>10,9</td>
<td>446</td>
<td>148</td>
<td>4885</td>
<td>1</td>
<td>285</td>
<td>0,44</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>676</td>
<td>11</td>
<td>446</td>
<td>151</td>
<td>4887</td>
<td>1</td>
<td>286</td>
<td>0,44</td>
<td>6,8</td>
</tr>
<tr>
<td>6</td>
<td>675</td>
<td>11</td>
<td>445</td>
<td>150</td>
<td>4879</td>
<td>1</td>
<td>284</td>
<td>0,44</td>
<td>7,2</td>
</tr>
<tr>
<td>6</td>
<td>677</td>
<td>10,9</td>
<td>446</td>
<td>146</td>
<td>4876</td>
<td>1</td>
<td>285</td>
<td>0,44</td>
<td>6,8</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10,9</td>
<td>446</td>
<td>150</td>
<td>4833</td>
<td>1</td>
<td>285</td>
<td>0,445</td>
<td>7,3</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10,9</td>
<td>446</td>
<td>149</td>
<td>4831</td>
<td>1</td>
<td>286</td>
<td>0,46</td>
<td>6,8</td>
</tr>
<tr>
<td>8</td>
<td>675</td>
<td>10,8</td>
<td>446</td>
<td>147</td>
<td>4812</td>
<td>1</td>
<td>286</td>
<td>0,458</td>
<td>6,8</td>
</tr>
<tr>
<td>9</td>
<td>677</td>
<td>10,8</td>
<td>447</td>
<td>145</td>
<td>4777</td>
<td>1</td>
<td>285</td>
<td>0,464</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>676</td>
<td>10,6</td>
<td>446</td>
<td>139</td>
<td>4580</td>
<td>1</td>
<td>285</td>
<td>0,475</td>
<td>7,3</td>
</tr>
<tr>
<td>10</td>
<td>676</td>
<td>10,7</td>
<td>445</td>
<td>144</td>
<td>4644</td>
<td>1</td>
<td>286</td>
<td>0,47</td>
<td>7,2</td>
</tr>
<tr>
<td>7</td>
<td>676</td>
<td>10,8</td>
<td>446</td>
<td>149</td>
<td>4771</td>
<td>1</td>
<td>285</td>
<td>0,46</td>
<td>6,8</td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10,9</td>
<td>445</td>
<td>148</td>
<td>4893</td>
<td>1,011</td>
<td>285</td>
<td>0,435</td>
<td>6,7</td>
</tr>
<tr>
<td>2</td>
<td>676</td>
<td>10,9</td>
<td>444</td>
<td>147</td>
<td>4892</td>
<td>1</td>
<td>285</td>
<td>0,42</td>
<td>6,2</td>
</tr>
<tr>
<td>1</td>
<td>676</td>
<td>10,9</td>
<td>444</td>
<td>142</td>
<td>4910</td>
<td>1</td>
<td>286</td>
<td>0,41</td>
<td>6,9</td>
</tr>
<tr>
<td>1</td>
<td>677</td>
<td>10,9</td>
<td>444</td>
<td>146</td>
<td>4906</td>
<td>1</td>
<td>285</td>
<td>0,41</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>676</td>
<td>10,7</td>
<td>445</td>
<td>147</td>
<td>4903</td>
<td>1,012</td>
<td>285</td>
<td>0,42</td>
<td>7,3</td>
</tr>
<tr>
<td>2</td>
<td>676</td>
<td>10,9</td>
<td>445</td>
<td>150</td>
<td>4871</td>
<td>1,012</td>
<td>285</td>
<td>0,42</td>
<td>7,6</td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>10,9</td>
<td>449</td>
<td>154</td>
<td>4905</td>
<td>1</td>
<td>286</td>
<td>0,43</td>
<td>7,2</td>
</tr>
<tr>
<td>3</td>
<td>677</td>
<td>10,9</td>
<td>445</td>
<td>149</td>
<td>4889</td>
<td>1,013</td>
<td>286</td>
<td>0,43</td>
<td>6,9</td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10,8</td>
<td>445</td>
<td>147</td>
<td>4846</td>
<td>1</td>
<td>285</td>
<td>0,435</td>
<td>6,9</td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10,9</td>
<td>445</td>
<td>149</td>
<td>4854</td>
<td>1</td>
<td>285</td>
<td>0,435</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>677</td>
<td>10,8</td>
<td>446</td>
<td>153</td>
<td>4803</td>
<td>1,01</td>
<td>285</td>
<td>0,46</td>
<td>6,9</td>
</tr>
<tr>
<td>6</td>
<td>677</td>
<td>10,9</td>
<td>446</td>
<td>149</td>
<td>4828</td>
<td>1</td>
<td>285</td>
<td>0,44</td>
<td>6,7</td>
</tr>
<tr>
<td>8</td>
<td>676</td>
<td>10,7</td>
<td>447</td>
<td>144</td>
<td>4735</td>
<td>1</td>
<td>286</td>
<td>0,445</td>
<td>6,6</td>
</tr>
<tr>
<td>10</td>
<td>676</td>
<td>10,8</td>
<td>445</td>
<td>145</td>
<td>4860</td>
<td>1</td>
<td>286</td>
<td>0,47</td>
<td>6,7</td>
</tr>
<tr>
<td>13</td>
<td>675</td>
<td>10,6</td>
<td>449</td>
<td>147</td>
<td>4596</td>
<td>1</td>
<td>286</td>
<td>0,476</td>
<td>6,6</td>
</tr>
<tr>
<td>16</td>
<td>676</td>
<td>10,5</td>
<td>450</td>
<td>141</td>
<td>4547</td>
<td>1</td>
<td>285</td>
<td>0,485</td>
<td>7,1</td>
</tr>
<tr>
<td>18</td>
<td>676</td>
<td>10,5</td>
<td>451</td>
<td>146</td>
<td>4485</td>
<td>1</td>
<td>286</td>
<td>0,49</td>
<td>6,6</td>
</tr>
<tr>
<td>19</td>
<td>676</td>
<td>10,5</td>
<td>451</td>
<td>154</td>
<td>4481</td>
<td>1</td>
<td>284</td>
<td>0,495</td>
<td>7,5</td>
</tr>
<tr>
<td>17</td>
<td>676</td>
<td>10,4</td>
<td>445</td>
<td>147</td>
<td>4593</td>
<td>1</td>
<td>285</td>
<td>0,48</td>
<td>6,6</td>
</tr>
<tr>
<td>16</td>
<td>676</td>
<td>10,5</td>
<td>452</td>
<td>143</td>
<td>4549</td>
<td>1</td>
<td>285</td>
<td>0,48</td>
<td>7,1</td>
</tr>
<tr>
<td>13</td>
<td>675</td>
<td>10,6</td>
<td>449</td>
<td>144</td>
<td>4628</td>
<td>1</td>
<td>285</td>
<td>0,475</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>676</td>
<td>10,7</td>
<td>449</td>
<td>153</td>
<td>4725</td>
<td>1,011</td>
<td>284</td>
<td>0,45</td>
<td>7,3</td>
</tr>
<tr>
<td>5</td>
<td>676</td>
<td>10,9</td>
<td>450</td>
<td>150</td>
<td>4938</td>
<td>1,01</td>
<td>284</td>
<td>0,445</td>
<td>7,4</td>
</tr>
<tr>
<td>4</td>
<td>676</td>
<td>10,9</td>
<td>448</td>
<td>143</td>
<td>4948</td>
<td>1,013</td>
<td>285</td>
<td>0,43</td>
<td>7,4</td>
</tr>
<tr>
<td>0</td>
<td>677</td>
<td>11</td>
<td>444</td>
<td>144</td>
<td>5007</td>
<td>1</td>
<td>285</td>
<td>0,41</td>
<td>6,1</td>
</tr>
<tr>
<td>-1</td>
<td>675</td>
<td>11</td>
<td>444</td>
<td>149</td>
<td>4993</td>
<td>1</td>
<td>285</td>
<td>0,4</td>
<td>6,8</td>
</tr>
<tr>
<td>0</td>
<td>677</td>
<td>11</td>
<td>445</td>
<td>149</td>
<td>5002</td>
<td>1</td>
<td>287</td>
<td>0,4</td>
<td>7,1</td>
</tr>
<tr>
<td>0</td>
<td>676</td>
<td>11</td>
<td>445</td>
<td>157</td>
<td>4979</td>
<td>1</td>
<td>286</td>
<td>0,4</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>676</td>
<td>11</td>
<td>445</td>
<td>148</td>
<td>4990</td>
<td>1</td>
<td>285</td>
<td>0,41</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>676</td>
<td>11,1</td>
<td>445</td>
<td>144</td>
<td>4980</td>
<td>1,012</td>
<td>285</td>
<td>0,42</td>
<td>6,9</td>
</tr>
</tbody>
</table>
EK B

TEMEL DENETİM TEKNIKLERİ VE DENETİM ELEMANLARI

Bir kapalı-döngü denetim sistemi içinde denetim elemanının göreve, ölçme elemanı üzerinde geri beslenen çıkış büyüklüğünü, başvuru giriş büyüklüğünü ile karşılaştırırmaktır. Karşılaştırmadan ortaya çıkabilecek hata değerinin yapısına ve kendi denetim etkisine bağlı olarak uygun bir kumanda veya denetim sinyali üretnmek (Yüksel 1995).

Dört temel denetim etkisi vardır.

a) İkili veya aç-kapa (on-off) denetim etkisi
b) Oranlı denetim etkisi (P etkisi)
c) İntegral denetim etkisi (I etkisi)
d) Türev denetim etkisi (D etkisi)

Temel denetim etkileri bir arada uygun şekilde kullanılarak değişik denetim elemanları oluşturulur. Denetim elemanları davranışlarına göre; kesikli çalışan ve sürekli çalışan olmak üzere ikiye ayrılır. Aç-kapa denetim elemanı kesikli çalışan ve oranlı, integral, türev etkileri ile çalışan denetim elemanları ise sürekli çalışan tipleridir.

B.1. İki Konumlu veya Aç-Kapa Tipi Denetim Organı

Sadece iki belirli konumda bulunur. Hata değerine bağlı olarak denetim elemanı ve buna bağlı olarak motor elemanı devrede veya devrede değildir.

\[ e(t) \rightarrow \text{Denetim Organı} \rightarrow m(t) \rightarrow e(t) = r(t) - b(t) \quad (b.1) \]

\[ e(t) = \text{Basvuru giriş} \]

\[ b(t) = \text{Geribesleme sinyali} \]

\[ e(t) > 0 \text{ için (çıkış istenilen değerden düşük) } m(t) = M_1 \text{ yani denetim sinyali kuvvetlendirilmelidir.} \]

\[ e(t) < 0 \text{ için (çıkış istenilen değerin üstünde) } m(t) = -M_2 \text{ yani denetim sinyali zayıflatılmalıdır.} \]

\[ m(t) \]

\[ e(t) \]

\[ M_1 \]

\[ M_2 \]

\[ (+) \]

\[ (-) \]

\[ (+) \]

\[ (-) \]

\[ e_1 \]

\[ -e_1 \]

\[ M_1 \]

\[ M_2 \]

\[ \text{Şekil B.1. İki Konumlu Denetim} \]
Fakat bir motorda sürüntme kuvveti nedeniyle ani bir ters hareket meydana getirilmeyeceğinden bir ölü bölge vardır. (b)

Bu durumda hata sinyali ölü bölge içinde kaldığı sürece denetim organı sıfır kumanda sağlar. Bu eşit hata değeri aşılığında pozitif yada negatif yönde kumanda sağlanır. Bu nedenle istek değeri (ayar değeri) etrafında sürekli salınım oluşur.

**Şekil B.2. Açık-Kapalı Kontrol (Ideal)**

**Şekil B.3. İdeal Açık-Kapalı Kontrol Transfer Eğrisi**


Uygulama alanları ütü, buz dolabı, firın gibi çok hassas denetim gerektirmeyen sistemlerde kullanılabilir.
Bu tip kontrolün transfer eğrisi Şekil B.3.’te görülmektedir. Ancak pratikte, endüstriyel sistemlerde bu tip ideal bir Açık-Kapalı kontrol sistemi kullanılmaz. Proses’teki bozucu faktörler ve elektriksel gürültü nedeniyle, set(ayar) değeri geçişleri bu şekilde tek noktada olursa sistem osilasyona geçer ve devamlı ayar değeri etrafında sık aralıklı açma-kapama yapar. Özellikle bu durum son kontrol elemanlarının çok kısa sürede tahrip olmasına neden olur.

Bu durumu önlemek için set değeri geçişlerinde “histerezis” ya da “sabit bant” oluştur. Şekil B.4.’te sabit bantlı açık-kapalı kontrol eğrisi görülmektedir.

**Şekil B.4. Histerisizli açık-kapalı kontrol eğrisi**

Şekil B.5.’te ise Histerisizli açık-kapalı kontrol tipi transfer eğrisi görülmektedir.

**Şekil B.5. Histerisizli Açık-Kapalı Kontrol Transfer Eğrisi**
B.2. Orantı Tipi Denetim Organı (P - Denetim)

Denetim organı çıkışı ile girişi bir oransal sabite eşitlenir.

\[ \frac{m(t)}{e(t)} = KP \quad m(t) = Kp.e(t) \]

\[ L \left[ m(t) \right] = L \left[ Kp.e(t) \right] \Rightarrow M(s) = Kp.E(s) \Rightarrow Kp = \frac{M(s)}{E(s)} \quad (b.2.) \]

Burada Kp, orantı kazancıdır ve sabıttır.

Hata ne kadar büyük olursa düzeltici denetim sinyali, m(t) de o oranda büyük olur. Hata çok küçük olduğunda ise denetim organı yeteri kadar etkili düzeltici sinyal üretmez. Bu nedenle bu tip denetim sistemleri kaźıcı durum \( r(t) = b(t) \) durumun, \( r(t) = \) Başvuru girişi, \( b(t) = \) geri besleme sinyali hatası verirler. Kazanç (Kp) artırılarak bu durum düzeltilebilir. Fakat bu sefer de elemanın doyuma değeri aşırlırsa sabit çıkış değeri verir. Bu nedenle sağlıklı bir kontrol gerçekleşmez.

![Şekil B.6. P-Tipi Denetim Organı](image)

Bu tip denetim organında cevap süresi yanı çıkışın istenen değere ulaşma süresi uzundur. Bu sürenin kısaltılması için integral tipi denetim organı ile uygun hale getirilir.

Oransal kontrolü, blok şema ile gösterecek olursak;

![Şekil B.7. Oransal Kontrol Blok Şeması](image)

**Şekil B.7. Oransal Kontrol Blok Şeması**

Fark değeri oransal kontrol devresinden geçerek uygun çıkış formuna gelir. Proses tam set değerinde tutmak zordur. Denge durumuna gelinceye kadar sıcaklık değişimi olması, hatta sıcaklık değeriyle set değeri arasında belli bir fark kalması oransal kontrolün en belirgin özellikidir.

Set değeri ile sistemin oturduğu ve sabit kaldıgı sıcaklık arasındaki farka “OFFSET” denir. Offset'i azaltmak için oransal bant küçültülebilir. Ancak daha önce belirtildiği gibi oransal band küçültüleceğe, açık-kapalı kontrolle yaklaşıldığı için set değeri etrafında salınımlar artabilir. Geniş oransal bantta offset'in büyük olabileceği düşünülerek prosese uygun oransal bandın seçilmesi gerekir.

Sıcaklık yükseler, birkaç kere set değeri etrafında salınım yapıktan sonra set değerinin üzerinde veya altında sabit bir sıcaklık farkı ile gelip oturur. Offset'i artı veya eksi olabilir. Bir prosente tüm ayarlar yapıldıktan sonra, örneğin, artı oluşan offset değeri proseste birkaç küçük değişiklik olması ile eksi değere gidebilir veya artı olarak yükselebilir.

B.3. İntegral Etki ve Oranlı Artı İntegral Tipi Denetim Organı (PI-Denetim)

Oranlı etkide ortaya çıkan kalıcı durum hatasını gidermek için hatanın integrali ile orantılı deneti etkisi ilave edilir.

\[
m(t) = K_i \int_{0}^{t} e(t) \, dt \quad \text{veya} \quad m(t) = \frac{1}{T_i} \int_{0}^{t} e(t) \, dt
\]

Bu etkinin transfer fonksiyonu

\[
M(s) = K_i \left( \frac{E(s)}{s} \right) \Rightarrow \frac{M(s)}{E(s)} = \frac{K_i}{s}
\]

veya

\[
M(s) = \frac{1}{T_i} \left( \frac{E(s)}{s} \right) \Rightarrow \frac{M(s)}{E(s)} = \frac{1}{T_i s}
\]

şeklindedir.

Integral etkinin ortaya çıkan için oluşan hata birikimi ile orantılıdır.

Uygulamalarda integral etki daha çok oransal etki ile kullanılarak cevap süresi kısaltılır.

\[
m(t) = K_p e(t) + K_i \int_{0}^{t} e(t) \, dt \quad \text{veya} \quad (b.6.)
\]
\[ m(t) = Kp e(t) + \frac{1}{T_i} \int_0^t e(t) dt \]  

(b.7.)

Burada Kp/Ki = Ti integral etki zamanıdır. PI-denetiminin transfer fonksiyonu

\[ \frac{M(s)}{E(s)} = Kp \left(1 + \frac{1}{TiS} \right) \]  

(b.8.)

şeklindedir.

Böylece hata sıfır olana kadar değişimi sürduren denetim etkisi sağlanır.

İntegral etkinin etkisini, Şekil B.8. 'de verilen PI kontrolün geçici bir hata karşısında gösterdiği açık çevrim cevabında görülebilir.

**Şekil B.8. PI Denetim Etkisi**

Başlangıçta hata(sapma) sıfır olup, kontrolör çıkışı belli bir değerde (veya sıfır değerinde) bulunmaktadır. Daha sonra şiddeti olan ve belli bir süre sabit kalan ve sonunda sıfır olan bir basamak hata değişimi uygulanmıştır. Kontrol etkisinde görülen başlangıç sıçraması tamamen oranı etkiden, \( m_p(t) \) 'den dolayı ortaya çıkmış olup, \( m_p(t) = KpE \) hatanın şiddeti, E sabit kaldığı sürece sabit kalır.

Bir sabitin integrali zamannın doğruşal bir fonksiyon olup PI kontrolü içinde integral etkinin payı aşağıdaki gibi ifade edilebilir.

129
\[ m_i = (K_p E/T_i) t \]  
(b.9.)

Bu da Şekil B.8.'de görüldüğü gibi eğimi \( K_p E/T_i \) olan bir rampa fonksiyonudur. İntegral etki zamanı \( T_i \) ne kadar küçük olursa rampanın eğimi o kadar dik olur ve verilen bir zaman için integral etki payı o oranda büyük olur. Hatta sıfır olana kadar rampa yukselmeye devam eder ve hatanın sıfır olduğu anda integral etki değişimi durur ve orantı etki payı \( K_p E \) miktarı kadar aşağı sıçrar.

En yaygın kullanım alanları basınç, seviye ve akış denetim sistemleridir. İntegral etki denetlenen çıkış büyüklüğünde meydana gelebilecek kalıcı durum hatalarını ortadan kaldırır. Değişen talepler üzerinde yeterli denetim etkisi sağlanır.

Kazanç çok yüksek tutulursa (sınır değeri aşılırsa) çıkış doyuma değerinde (+Vp, -Vp) sabit kalır. Bu durumda etkili deneti sağlanamaz.

**B.4. Türev Etki ve Oranlı Artı Türev Tipi Denetim Organı (PD-Denetim)**

\[ m(t) = Kd \frac{de(t)}{dt} \]  
ve ya \[ m(t) = Td \frac{de(t)}{dt} \]  
(b.10.)

şeklinde ifade edilir.

Transfer fonksiyonu;

\[ \frac{M(s)}{E(s)} = KdS \]  
ve ya \[ \frac{M(s)}{E(s)} = TdS \]  
(b.11.)

şeklinde edilir.

Türev etkinin en önemli üstünlüğü hata değişmeye başlar başlamaz hatanın giderilmesini sağlar. Fakat sabitin türevi sıfır olduğu için türev denetimi, zamanla değişmeyen sabit hata üzerinde etkili değildir. Bu nedenle orantılı denetim organı ile birlikte kullanılır.

\[ m(t) = K_p e(t) + Kd \frac{de(t)}{dt} = TdS \]  
(b.12.)

şeklinde olur.

\[ m(t) = K_p \left( e(t) + \frac{Kd}{K_p} \frac{de(t)}{dt} \right) \]

olur.

\[ Td = \frac{Kd}{K_p} \]  
(b.13.)

(türev etki zamanı)

PD denetiminin transfer fonksiyonu,
\[
\frac{M(s)}{E(s)} = Kp(1 + Tds)
\]

(\text{b.14.})

şeklindedir.

Oranlı etkiye türev etkisi ile elde edilen PD-denetim,kalıcı durum hatasını sıfırlar.
Sakıncası ise denetim sinyalleri yanında sistemde ortaya çıkan gürültü sinyallerini de kuvvetlendirir. Son denetim organı çıktında salınımlı hareket oluşur.

Uygulama alanları servo mekanizmalarıdır

**B.5. Oranlı Artı İntegral Artı Türev Etki ve Denetim Organı(PID-Denetim)**

PID denetim; üç temel denetim etkisinin üstünlükleri tek bir birim içinde birleştirir. Integral etki , sistemde ortaya çıkabilecek kalıcı-durum hatasını sıfırlar. Türev etki ,yalnızca PI denetim etkisi kullanması haline göre sistemin aynı bağlı kararlılığı için cevap hızını artırır. Böylece PID-denetim organı sistemde sıfır kalıcı-durum hatası olan hızlı bir cevap sağlar.

\[
m(t) = Kpe(t) + \frac{Ki}{Kp} \int e(t)dt + \frac{Kd}{Kp} \frac{de(t)}{dt}
\]

\[
m(t) = Kp \left[ e(t) + \frac{1}{Ti} \int e(t)dt + Td \frac{de(t)}{dt} \right]
\]

(\text{b.15.})

şeklindedir.
Transfer fonksiyonu;

\[
\frac{M(s)}{E(s)} = Kp \left[ 1 + \frac{1}{TiS} + TdS \right]
\]

(\text{b.16.})

şeklindedir.

Uygulama alanları sıcaklık ,pH ,yoğunluk , kanışım v.b alanlardır.

\[\text{Şekil B.9. Çeşitli denetim etkilerinin karşılaştırılması}\]

131
B.6. Denetim Organlarının DeneySEL Ayarı

Kapalı çevrim denetim sisteminin referans girişine bir basamak fonksiyonu uygulanması halinde sistem cevabının yeni kalıcı durum değeri en kısa zamanda ve kararlı bir şekilde erişmesini sağlayan denetim organı ayarı en uygun ayar kabul edilir. Bu amaçla, Ziegler ve Nichols tarafından bir ölçü geliştirilmiş(1942) olup bu ölçüte göre, c(t) zaman alanı cevap eğrisinin, g₂ ikinci aşama genliğinin, g₁ birinci aşama genliğine oranı ¼ olması gerekir. Şekil B.10’da gösterildiği gibi cevap eğrisinde, ikinci aşama genliğinin g₂ nin, birinci aşama genliği g₁’e oranının ¼’ü üne düşmesi yük değişimleri için düzenleyici türünden denetleyiciler için en uygun ayar kabul edilir. Bu ölçüte uyum matematiksel bir dayanağı olmamakla birlikte, hızlı cevap ve çabuk sonuçlere sağladığı deneySEL olarak saptanmıştır. Bu ölçüte göre bulunacak denetim organı ayarlarının tek olmayacağı belirgin bireridir. DeneySEL yolda yapılan ayar yöntemlerinden biri titreşim yöntemidir.

B.6.1. Titreşim Yöntemi

Ziegler ve Nichols tarafından geliştirilen sürekli titreşim yöntemi deneySEL yöntemlerin en tanınmış olanlarından birirdir. Bu yöntemin öngörüdüğü ayarlar hemen hemen denetim denetim sistemi altında standartlar olarak kabul edilmektedir.

![Şekil B.10. Titreşimli Cevap Eğrisi](image)

Şekil B.11. Titreşim Yöntemi

Tablo B.1. Titreşim Yöntemine Göre Denetim Organı Ayar Değerleri

<table>
<thead>
<tr>
<th>Etki Türü</th>
<th>( K_P )</th>
<th>( T_i )</th>
<th>( T_d )</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>0.5( K_{p\text{max}} )</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PI</td>
<td>0.45( K_{p\text{max}} )</td>
<td>0.825( P_u )</td>
<td>–</td>
</tr>
<tr>
<td>PID</td>
<td>0.6( K_{p\text{max}} )</td>
<td>0.5( P_u )</td>
<td>0.125( P_u )</td>
</tr>
</tbody>
</table>

B.7. Kademeli Denetim


Şekil B.12. Kademeli Denetim
ÖZGEÇMİŞ